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A Out-of-Distribution detection metrics

In out-of-distribution detection, comparing different detector approaches cannot be done by
measuring only accuracy. The question we want to answer is if a given test sample is from
a different distribution than that of the training data. The detector will be using some infor-
mation from the classifier or embedding space, but the prediction is whether that processed
sample is part of the in-distribution or the out-distribution. To measure that, we adopt the
metrics proposed in [4]:

e FPR at 95% TPR is the corresponding False Positive Rate (FPR=FP/(FP+TN)) when
the True Positive Rate (TPR=TP/(TP+FN)) is at 95%. It can be interpreted as the
misclassification probability of a negative (out-distribution) sample to be predicted as
a positive (in-distribution) sample.

e Detection Error measures the probability of misclassifying a sample when the TPR
is at 95%. Assuming that a sample has equal probability of being positive or negative
in the test, it is defined as 0.5(1 — TPR) 4 0.5FPR.

where TP, FP, TN, FN correspond to true positives, false positives, true negatives and false
negatives respectively. Those two metrics were also changed to TNR at 95% TPR and
Detection Accuracy in [3], which can be calculated by doing 1 — x from the two metrics
above explained respectively. We use the latter metrics only when comparing to other state-
of-the-art methods. This is also done because the implementation in both [3, 4] allows for
using a TPR which is not at 95% in some cases, meaning that the Detection Error can go
below 2.5 since TPR is not fixed to 0.95.

In order to avoid the biases between the likelihood of an in-distribution sample to be-
ing more frequent than an out-distribution one, we need threshold independent metrics that
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Table 1: Quantitative comparison between cross-entropy and metric learning based methods
training on LeNet for MNIST - 2, 6, 7 (In-dist), O, 3, 4 and 8 (Seen Out-dist) and 5, 9, 1
(Unseen Out-dist Novelty).

In-dist . FPR at Detection .
Method accuracy Out-dist 95% TPR Error AUROC AUPR-in  AUPR-out
Novelty 33.76 19.38 92.33 92.73 92.29
Gaussian noise 0.70 2.85 98.85 99.21 98.14
CE 9970 SVHN 0.23 2.60 99.48 98.64 99.91
CIFAR-10 2.86 3.93 98.96 98.02 99.57
Novelty 21.05 13.03 94.48 94.02 94.46
Gaussian noise 0.00 1.95 98.54 99.21 95.15
Ours-ML  99.54 SVHN 0.00 1.74 98.88 98.76 99.61
CIFAR-10 0.01 2.36 98.87 98.93 99.12
Novelty 0.16 1.67 99.95 99.94 99.96
Gaussian noise 0.00 1.76 99.14 99.46 97.66
Ours - ODM  99.64 SVHN 0.00 0.96 99.65  99.41 99.89
CIFAR-10 0.00 1.31 99.54 99.45 99.68

measure the trade-off between false negatives and false positives. We adopt the following
performance metrics proposed in [2]:

e AUROC is the Area Under the Receiver Operating Characteristic proposed in [1]. It
measures the relation between between TPR and FPR interpreted as the probability of
a positive sample being assigned a higher score than a negative sample.

o AUPR is the Area Under the Precision-Recall curve proposed in [5]. It measures the
relationship between precision (TP/(TP+FP)) and recall (TP/(TP+FN)) and is more
robust when positive and negative classes have different base rates. For this met-
ric we provide both AUPR-in and AUPR-out when treating in-distribution and out-
distribution samples as positive, respectively.

B Quantitative results of the MNIST experiment

In this section we present the quantitative results of the comparison on the MNIST dataset.
In this case we allowed a 5-dimensional embedding space for ML so the representation is
rich enough to make the discrimination between in-dist and out-dist. For CE, as it is fixed
to the number of classes, the embedding space is 3-dimensional. In Table 1 we see that
ML performs a better than CE on all cases. ODM almost solves the novelty problem while
keeping a similar performance on anomalies as ML. It is noticeable that CE struggles a bit
more with Gaussian noise than the other anomalies. In this case, CE still produces highly
confident predictions for some of the noise images.

C Experimental results on additional Tsinghua splits

Alternatively to the Tsinghua split generated with the restrictions introduced in Section 4.2,
we also perform the comparison in a set of 10 random splits without applying any restriction
to the partition classes. We still discard the classes with less than 10 images per class.
Table 2 shows the average performance for this set of splits with their respective standard
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Table 2: Comparison between ODIN and our proposed learning strategies on a WRN-28-
10 architecture, when using novelty, anomaly (background patches and Gaussian noise) as
seen out-of-distribution data as well as not seen out-of-distribution. The experiments are
performed on a set of 10 random splits and the metrics provided are the mean of the metrics
on the individual splits =+ its standard deviation.

Method In-dist Out-dist PPRai - Detection - ,yRoc  AUPR-in  AUPR-out
accuracy 95% TPR error

Tsinghua (unseen)  20.85+£2.28 12.92+1.14  93.50+1.05 93.78+1.93 92.41+0.73

ODIN 99.294+0.05 Background (unseen)  8.39+6.34  6.70+3.17  98.06+£1.26  97.02+3.15  98.79+0.60

Noise (unseen) 0.03+0.43 2.53£0.85 99.67+0.34  99.60+0.39  99.74+0.41

Tsinghua (unseen) 21.05+£3.25 13.03+£1.62 94.18+0.92 94.42+1.12 92.75+1.08

Ours- ML 99.16+0.16 Background (unseen)  1.914+1.02  3.45+£0.51  99.14+0.32  98.79+0.35 99.40+0.22

Noise (unseen) 0.30+0.96  2.65£0.48  99.274+0.36  99.09+0.40 99.43+0.35

Tsinghua (seen) 16.29+4.53  10.65+2.26  96.27+0.86  96.78+0.93 95.11%1.15

Ours - ODM  99.13+£0.22  Background (unseen)  0.39+1.63 2.714+0.31 99.50+0.27  99.30+0.31  99.66+0.20

Noise (unseen) 0.01+1.39  2.51£0.70  99.59+0.54  99.51+0.60 99.69+0.43

Tsinghua (unseen)  20.36+3.63 12.68+1.81  93.47+1.55 93.58+2.10 92.00+1.74

Ours -ODM  99.09+0.18  Background (seen)  0.01+0.03  2.51£0.01  99.97+0.02  99.92+0.03 99.98+0.01

Noise (unseen) 0.00+0.00 2.50+0.01 99.99+0.03  99.974+0.05  99.99+0.01

Tsinghua (unseen)  20.87+£1.63 12.93+0.81  93.65+1.05 94.01+1.48 92.33+0.89

Ours - ODM  99.02+2.42  Background (unseen)  0.97+1.19  2.99+£0.60  99.14+0.19  98.90+0.23  99.39+0.19

Noise (seen) 0.00+£0.00  2.50£0.01  100.00+£0.00 99.98+0.01  99.99+1.85

deviation. Since the split of the classes is random, this leads to highly similar or mirrored
classes to be separated into in-distribution and out-distribution, creating situations that are
very difficult to predict correctly. For instance, detecting that a turn-left traffic sign is part
of the in-distribution while the turn-right traffic sign is part of the out-distribution, is very
difficult in many cases. Therefore, the results from the random splits have a much lower
performance, specially for the novelty case.

When comparing the metric learning based methods, ODM improves over ML for the
test set that has been seen as out-distribution during training. In general, using novelty data
as out-distribution makes an improvement over said test set, as well as for background and
noise. However, when using background images to push the out-of-distribution further from
the in-distribution class clusters in the embedding space, novelty is almost unaffected. The
same happens when noise is used as out-distribution during training. This could be explained
by those cases improving the embedding space for data that is initially not so far away from
the in-distribution class clusters. This would change the embedding space to push further the
anomalies, but would leave the novelty classes, originally much closer to the clusters, almost
at the same location.

When introducing out-of-distribution samples, the behaviour on the random splits is the
same as for the restricted splits: while introducing novelty helps the detection on all cases,
introducing anomaly helps the detection of the same kind of anomaly.

D Embeddings on Tsinghua

Figure 1 shows the embeddings for ODM (with novelty as seen out-od-distribution) and ML
after applying PCA. When using ML, the novelties are not forced to be pushed away from
the in-distribution clusters so they share the embedding space in between those same in-
distribution clusters. In the case of ODM, the out-of-distribution clusters are more clearly
separated from the in-distribution ones.
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Figure 1: Embedding spaces after PCA for ODM (left) and ML (right) tested for in-dist
(blue shaded) and out-dist (yellow shaded). Results are for TSinghua (first row), background
patches (second row) and Gaussian noise (third row). Best viewed in color.
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