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1 Detailed Mathematical Formulation
We here explain the mathematical details in Sec. 3.1 to justify the need of parallel streams.

Separable Convolution Kernel. A 4D tensor A is separable along the third dimension if
A j1, j2, j3 , the vector of channel values at each spatial location, can be decomposed as

A j1, j2, j3 =A(3)
j3 A(1,2)

j1, j2 ∀( j1, j2, j3), (1)

where A(3),A(1,2) are sub-tensors with size 1× 1× J3× 1 and J1× J2× 1×C. Similarly, we
can decompose A along other spatial dimensions. Thus, for any 4D input tensor D,

A∗D = ∑
j1, j2, j3

A j1, j2, j3 ·D j1, j2, j3 = ∑
j3
A(3)

j3 ( ∑
j1, j2

A(1,2)
j1, j2 ·D j1, j2, j3) =A(3) ∗ (A(1,2) ∗D), (2)

which can be implemented with a chain of 2D and 1D convolution layer.

General Convolution Kernel. Given a general 4D tensor A, we show how to decompose
it into the sum of separable tensors. First, we use high-order singular value decomposition
(HOSVD) [2] to decompose A with orthogonal matrices {U (k)}k∈{1,2,3} of the size {Ik ×
Jk}k∈{1,2,3} and singular value tensor S of the size I1× I2× I3×C, where each channel vector
−−−−→
Ai1,i2,i3 can be expressed as

A j1, j2, j3 = ∑
i1,i2,i3

Si1,i2,i3 U (1)
i1, j1 U (2)

i2, j2 U (3)
i3, j3 . (3)

Then, we can further decompose the singular value tensor S into the sum of subtensors
{Sαl ,βl}αl∈{1,2,3},βl∈{1,..,Iαl },

whose non-zero entries are only on the βl-th sub-tensor along
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the αl-th dimension.

S = ∑
l
Sαl ,βl , where Sαl ,βlU (αl)

iαl , jαl
= 0 for iαl 6= βl (4)

Suppose αl0 = 1, then S
αl0 ,βl0
i1,i2,i3

=~0 for i1 6= βl0 , we can define Al0
j1, j2, j3

as

Al0
j1, j2, j3 = ∑

i1,i2,i3
Sαl0 ,βl0 U (1)

i1, j1 U (2)
i2, j2 U (3)

i3, j3 =U (1)
βl0 , j1

∑
i2,i3

Sαl0 ,βl0 U (2)
i2, j2 U (3)

i3, j3 , (5)

whereAl
j1, j2, j3 is a separable convolution kernel according to Eqn. 1. Thus, the given tensor

A can be written as

A j1, j2, j3 = ∑
i1,i2,i3

(∑
l
Sαl ,βl )U (1)

i1, j1U
(2)
i2, j2U

(3)
i3, j3 = ∑

l
( ∑
i1,i2,i3

Sαl ,βlU (1)
i1, j1U

(2)
i2, j2U

(3)
i3, j3) = ∑

l
Al

j1, j2, j3 , (6)

where is a sum of separable convolution kernel along the αl-th dimension. To reduce com-
putation, we need to select a subset of {Al} to learn for (2+1)D convolution. Previous
approaches [3, 4] chooses Al whose 1D and 2D decomposition correspond to temporal and
spatial convolution for the video input specifically. Here, we achieve better modeling capac-
ity for a fixed number of l by using {Al} with sub-tensors of different orientations. Thus,
we define lk = {l : αl = k} and group the sub-tensors by their orientations αl as

A∗D = (∑
l∈l1

Al,(1) ∗ (Al,(2,3) ∗D))+(∑
l∈l2

Al,(2) ∗ (Al,(1,3) ∗D))+(∑
l∈l3

Al,(3) ∗ (Al,(1,2) ∗D)), (7)

which can be implemented as the sum of three parallel streams of 2D and 1D convolution
layers with different orientations.

2 Toy Experiments
In this section, we analyze various design choices of our PmSCn convolution module with
toy experiments on random approximations of 3D ConvNets.

Dataset We generate 20k random data volumes of sizes 30×20×20×100 from normal dis-
tribution and randomly sample consecutive channels in the last dimension for the network
input. For our target network, we generate a set of ground truth labels for input volumes as
the network’s output and apply data augmentation. For the approximated network, we use
the output prediction of the target network as input labels.

Setup Our target network is a simplified 3D ConvNet depicted in Table 1. Our goal is to
functionally approximate the target network by varying the hyper-parameters m and n, the
number of streams and the dimension of the subspace respectively. We first train the target
network. Then we use its output as input labels to the approximated networks. We train
each network for 100 epochs using Adam optimizer with a learning rate of 0.001. We report
validation loss and accuracies to assess the quality of our approximations.
Effects of m and n: We explore different values of m ∈ (1,2,3), the number of streams
to use, and n ∈ (1,2,∗), the number of channels in the intermediate layers. For n, a value
of 1 indicates one-to-one convolution mapping, 2 is groups of two, and * signifies whole
network approximation where the subspace spans the entire ConvNet operations except the
last layer in the network. In Figure 1 (a), we show validation accuracy, and in Figure 1 (b),
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#Index Layer Filter Size Filter Num. Output Size Activation
0 Conv 3×3×3 60 30×30×30 ReLu
1 Conv 3×3×3 60 30×30×30 ReLu
2 Pooling 2×2×2 0 15×15×15
3 Conv 3×3×3 60 15×15×15 ReLu
4 Conv 1×1×1 3 15×15×15 Sigmoid

Table 1: Target 3D ConvNet Architecture
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Figure 1: Comparison of validation accuracy and loss for three streams for subspaces 1, 2,
and whole network against 3D target. In all cases, our PmSCn models achieved better error
and accuracy than the 3D target.

we show validation loss for each of our P3SC1, P3SC2, and P3SC∗ modules. Irrespective of
the number of streams, we observe similar performance, so we report the tri-streams results.

Varying the subspace parameter n, have more pronounce impact on performance. When
approximating an entire network with a 1:1 replacement of convolutions with n = 1, we
achieve the best approximation of the target 3D network. We think this is because the 1:1
replacement is closer in functionality to conventional 3D than configurations of n > 1.
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3 Training Details

3.1 Action recognition

We perform training for 50 epochs with an initial learning rate of 1e−5 and decay of 1e−6. A
batch size of 16 is used and computation is performed on a single GPU. For augmentation,
we use temporal jittering and spatial random shifts, shears, and zooms.

3.2 MRI brain extraction

We train each network architecture from scratch using Adam optimizer with an initial learn-
ing rate of 1e−5 and decay of 1e−6. The input patch sizes is set to 64×64×64 and a
mini-batch size of 4 is used. Training is performed for 50 epochs on a single GPU.

3.3 EM segmentation

In order to predict the 3D affinities, we used the MALIS training loss [1]. The initial learning
rate of 1e−4 is used with a momentum of 0.9 and a weight decay of 1e−5. For the first 50K
iterations, we use euclidean loss function. Then MALIS loss function is swapped-in for
the rest of the training iterations. After 300k iterations, we report Variation of Information
(VI) scores for each network architecture. The training data was augmented with 16 three
dimensional rotation, flipping and also by adding intensity noise.

4 Additional Results

4.1 MRI brain extraction

We show a qualitative comparison, in Figure ??, of (a) ground truth data provided by human
expert, (b) segmentation output of our best model P2SC2, and (c) segmentation output from
3D baseline model. We separate the segmentation by class to better observe the quality
differences.

4.2 ResNet Layer Activations

In Figure 2, we show a visualization of the first eight filters of the first convolution layer
of the (a) baseline 3D network, compared to the individual streams of our P3SC1 network
depicted in (b), (c), and (d). In (b), a spatial stream captures mostly the appearance attributes
of the video frames. In (c) and (d), motion dynamics are captured with orthogonal temporal
streams.
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Figure 2: Comparison of layer activation of the first convolution layer for (a) 3D convolu-
tion, 1st stream (b), 2nd stream (c), and 3rd stream (d) of P3SC1 layers.
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