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Abstract

Image restoration problems are typical ill-posed problems where the regularization
term plays an important role. The regularization term learned via generative approaches
is easy to transfer to various image restoration, but offers inferior restoration quality
compared with that learned via discriminative approaches. On the contrary, the regu-
larization term learned via discriminative approaches are usually trained for a specific
image restoration problem, and fail in the problem for which it is not trained. To address
this issue, we propose a generic diffusion process (genericDP) to handle multiple Gaus-
sian denoising problems based on the Trainable Non-linear Reaction Diffusion (TNRD)
models. Instead of one model, which consists of a diffusion and a reaction term, for
one Gaussian denoising problem in TNRD, we enforce multiple TNRD models to share
one diffusion term. The trained genericDP model can provide both promising denoising
performance and high training efficiency compared with the original TNRD models. We
also transfer the trained diffusion term to non-blind deconvolution which is unseen in
the training phase. Experiment results show that the trained diffusion term for multiple
Gaussian denoising can be transferred to image non-blind deconvolution as an image
prior and provide competitive performance.

1 Introduction
Image restoration problems, e.g., image denoising, deconvolution, super-resolution and et.
al, have been researched for decades, and are still active research areas. In image restoration
problems, we aim to recover the clean image u, given its degraded counterpart f generating
by the following procedure,

f = Au+ v, (1)
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where v is the added noise, for Gaussian denoising, v is assumed to be additive zero mean
Gaussian noise. A is the degradation operator, e.g., for image denoising, A is identity matrix;
for image super-resolution, A is decimating operator; for image deconvolution, A is blur
operator.

1.1 Related Works
It is well known that image restoration problems are typical ill-posed problems. Variational
approaches are suitable to solve these problems with the proper regularization terms. A
typical variational model is given as

E(u, f ) =R(u)+D(u, f ), (2)

where R(u) is the regularization term, and D(u, f ) is the data term. Widely used image
regularization term models include the most well-known Total Variation (TV) functional
[19], Total Generalized Variation (TGV) [2], Expected Patch Log Likelihood (EPLL) [26]
and Fields of Experts (FoE) based analysis operator [5, 17].

In recent years, machine learning based approaches have achieved better restoration per-
formance compared with the hand-crafted regularization terms and widely used BM3D [7].
The machine learning based approaches can be divided into two groups, generative ap-
proaches and discriminative approaches. Generative approaches, e.g., FoE [17], K-SVD
[8] and EPLL [26], aim to learn the probabilistic model of natural images, which is used as
the regularization term to recover various degraded images. On the contrary, discriminative
approaches aim to learn the inference procedure that minimizes the energy (9) using pairs
of degraded and clean images, e.g., Cascade Shrinkage Fields (CSF, [20]), and Trainable
Non-linear Reaction Diffusion (TNRD, [6]).

1.2 Our Motivations and Contributions
Taking TNRD as an example, while it offers both high computational efficiency and high
restoration quality, it is highly specified for a specific restoration problem and fails in the
problem for which it is not trained. If we have to handle Gaussian denoising problems
of σ ranging from 1 to 50, we need to train 50 models. In terms of training efficiency, the
performance of discriminative approaches is not as good as that of generative approaches. To
address this issue, we propose a generic diffusion process model to combine the advantages
of both discriminative and generative approaches, i.e., training a model that provides high
training efficiency and achieves competitive restoration quality. The contribution of this
study is summarized as follows:

(a) Unlike one model for one Gaussian denoising problem in TNRD, we enforce multiple
TNRD models handling different noise level to share one diffusion term.

(b) We give the derivations of the gradients for training the proposed model, which is
important for training the proposed model. We train the parameters in a supervised manner,
and train the models in an end-to-end fashion.

(c) We transfer the trained diffusion term to deal with non-blind image deconvolution
which is unseen in the training phase. The resulting optimization problem is optimized via
the half quadratic splitting (HQS).

(d) Experiment results show that the genericDP model can achieve almost the same per-
formance compared with the TNRD model trained for a specific σ . In non-blind image
deconvolution problem, with this trained diffusion term, it provides competing results.
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Figure 1: The architecture of the proposed genericDP.

2 Generic Diffusion Process
In this section, we first introduce the proposed generic diffusion process (genericDP), and
then we give the gradients of the loss function w.r.t. the parameters.

2.1 Generic Diffusion Process
To handle the inefficiency of discriminative training, we enforce these TNRD models han-
dling different noise level to share one diffusion term, each of which only keeps its own
reaction term 1 , formulated as follow,

E(u, f j) =
M

∑
i=1
1i ·

λσi

2
‖u− fi‖2 +

Nk

∑
i=1

ρi(ki ∗u), (3)

where 1i is an indicator function that is set to 1 when i = j, otherwise is set to 0. M is the
number of noise levels. Truncating the gradient descent of minimizing Eq. (3) with T steps,
we arrive the proposed genericDP model, described as follow,u0 = f j, t = 1, · · · ,T

ut = ut−1−
(

Nk
∑

i=1
k̄t

i ∗φ t
i (k

t
i ∗ut−1)+λ t

σ j
(ut−1− f j)

)
.

(4)

The resulting model is shown in Fig. 1. Given an input u0 = f j that degraded by Gaussian
noise with σ j, only the data term corresponding to σ j is used. In this work, we parameterize
the local filters and nonlinear functions following [6].

2.2 Training of GenericDP
The parameters of the genericDP in (4) are Θ = {Θt}t=T

t=1 , where Θt = {kt
i ,φ

t
i ,λ

t
σ1
, · · · ,λ t

σM
}.

Given these training image pairs of degraded input f s
js and ground-truth us

gt , the training

1 By omitting the reaction term, the diffusion process is able to handle multiple Gaussian denoising as well.
Details are discussed in Section 3.
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procedure is formulated as
Θ∗ = argminΘL(Θ) =

S
∑

s=1
`
(
us

T ,u
s
gt
)

s.t.

us
0 = f s

js , t = 1 · · ·T

us
t = us

t−1−
(

Nk
∑

i=1
k̄t

i ∗φ t
i (k

t
i ∗us

t−1)+λ t
σ j
(us

t−1− f s
js)

)
,

(5)

where us
T is the output of the genericDP in Eq. (4). The inputs are generated using one σ j

among σ1, · · · ,σM . In this paper, the loss function is `(uT ,ugt) =
1
2‖uT −ugt‖2.

If not specifically mentioned, we just omit the sample index s to keep the derivation clear.
It is easy to extend the following derivation for one training sample to all training samples.
Using back-propagation technique [12], the gradients of `(uT ,ugt) w.r.t. the parameters Θ is

∂`(uT ,ugt)

∂Θt
=

∂ut

∂Θt
· ∂ut+1

∂ut
· · · ∂`(uT ,ugt)

∂uT
. (6)

Computing the gradient of `(uT ,ugt) w.r.t λ t
σ j

. Given Eq. (4), the derivative of ut w.r.t.
λ t

σ j
is computed as

∂ut

∂λ t
σ j

=−(ut−1− f j)
>. (7)

Coining ∂`(uT ,ugt )
∂ut

= e, the derivative of `(uT ,ugt) w.r.t. λσ j is given as

∂`(uT ,ugt)

∂λ t
σ j

=−(ut−1− f j)
>e . (8)

We only use the samples generated by σ j to compute the gradients `(uT ,ugt) w.r.t. λσ j , and
update the parameter λ t

σ j
with these gradients.

The derivative of `(uT ,ugt) w.r.t. kt
i and φ t

i are similar to that in [6]. Different from the
update of parameter λ t

σ j
, all training samples are used to update the parameter kt

i and φ t
i .

3 Experimental Results
In this section, we first investigate the influence of the parameters, and then compare the
trained genericDP models with the state-of-the-art denoising methods. Finally, we trans-
fer the trained diffusion term to the non-blind image deconvolution which is unseen in the
training phase, and compare it with the state-of-the-art non-blind deconvolution methods.

3.1 Training Setups
The training dataset is constructed over 1000 natural images collected from the Internet. We
randomly cropped 2 regions of size 90× 90 from each image, resulting in a total of 2000
training images of size 90×90.

Given pairs of noisy input and ground-truth images, we minimize Eq. (5) to learn the
parameters of the genericDP models with commonly used gradient-based L-BFGS [14].

As TNRD model serves as a strong baseline, we initialize the parameters Θ using the
TNRD model. We tested the trained models on the 68 images test dataset [18]. We evaluated
the denoising performance using PSNR [6] and SSIM [24].
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Table 1: Influence of the number of training samples, the range of noise level and
with/without reaction term.

σ

5 15 25 50
TNRD8

7×7 37.77 31.42 28.94 26.01
2k-M=25 37.57 31.38 28.85 -
4k-M=25 37.55 31.41 28.91 -
4k-M=15 37.65 31.40 - -
4k-M=50 37.38 31.35 28.90 25.99
4k-M=50-w/o 34.19 30.78 28.55 25.68

3.2 Influence of the Parameters

Number of the training samples. In this experiment, the inference stage T was set to 8, the
range of the noise level M was set to 25. In [6], 400 images of size 180× 180 are used. In
terms of the number of total pixels, 1600 images of size 90×90 may be sufficient. Therefore,
we use 2000 images of size 90×90 as described above. We also used 4000 images to train
the models by doubling each training image in those 2000 images.

We first trained the TNRD8
7×7 model using the new training samples. The trained TNRD

model provided almost the same denoising performance with the models trained using 400
images of size 180×180 in [6]. Therefore, using the new training images to train the gener-
icDP models does not introduce extra image content, which may contribute to the model
performance improvement.

As shown in Table 1, given more training images, the overall performance was improved
and was very competing with the original TNRD trained for each specific noise level. There-
fore, S = 4000 is preferred.

Range of the noise levels. In this experiment, the inference stage T was set to 8, the
number of the training samples S was set to 4000. We investigated the influence of the range
of noise level M, by shortening the range to M = 15 and enlarging the range to M = 50. In
M = 15, compared with that in M = 25, the performance was improved only in σ = 5, but
very limited . In M = 50, compared with that in M = 25, the performance in σ = 5 was
reduced by 0.17dB; the performance in other σ were similar to that in M = 25. As the time
of training these models with different M is almost the same, M = 50 is preferred.

Note that, we only trained one genericDP model instead of 50 TNRD models to handle
multiple Gaussian denoising with σ ranging of 1 to 50. Therefore, the training time of the
genericDP model is almost 50 times faster than that of training 50 TNRD models.

Inference stage. In [6], the TNRD model is considered as a multi-layer network or
convolutional network. Meanwhile deeper models, e.g., VGG [22] and ResNet [11], have
achieved success in image classification on ImageNet. Therefore, it is worth trying more
inference stages in the genericDP model as well.

The number of training images S was set to 4000, the range of noise level M was set
to 50. We trained the genericDP model by setting inference stage T to 8, 10 and 16 2.
As inference stage T increasing, the genericDP model did not provide significantly better
denoising performance. Considering the training time and model performance, T = 8 is
prefered.

2There is no available TNRD models for inference stage T = 10 and T = 16, we trained the genericDP models
in greedy and joint training scheme from a plain initialization.
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Table 2: Denoising comparison on test images [18].

Method
σ

runtime (s)
5 15 25 50

BM3D 37.59 / 0.9635 31.08 / 0.8717 28.57 / 0.8013 25.62 / 0.6864 1.2
TNRD8

7×7 37.77 / 0.9651 31.42 / 0.8822 28.94 / 0.8162 26.01 / 0.7062 2.2
EPLL 37.57 / 0.9648 31.19 / 0.8820 28.68 / 0.8119 25.68 / 0.6873 145.3
KSVD 37.21 / 0.9621 30.87 / 0.8664 28.29 / 0.7869 25.18 / 0.6551 -
genericDP 37.38 / 0.9620 31.35 / 0.8803 28.90 / 0.8142 25.99 / 0.7030 2.3

1

3.3 With/without Reaction Term

Intuitively, it makes scene to train the genericDP model without reaction term. The trained
genericDP model in such setting, coined as genericDP-wo, offered inferior denoising results
compared with the genericDP model trained with reaction term, as shown in the last two rows
of Table 1. The genericDP-wo model merely contains a pure diffusion process. Therefore,
it tends to oversmooth the texture regions and/or produces artifacts in the homogeneous
regions. Therefore, we argue that when training the genericDP model, the reaction term is
crucial and is preferred in the following experiments.

3.4 Image Denoising

We trained the genericDP model by setting, the number of training images S = 4000, the
range of noise level M = 50, the inference stage T = 8, and with reaction term. We com-
pared the trained genericDP model with BM3D [7], EPLL [26], KSVD [1] and TNRD [6]
in Gaussian denoising. The codes of the competing methods were downloaded from the
authors’ homepage. The comparison noise level were σ =5, 15, 25 and 50. Dealing with
one noise level, the genericDP used the corresponding reaction term for that noise level. The
comparison results are listed in Table 2. Visual comparison is shown in Fig. 2. Despite
the efficient transferring, the generative approaches, e.g., EPLL and KSVD, provide inferior
denoising performance, and the inference procedure is quite long 3. In [16], gating networks
are exploited to accelerate the inference process for EPLL-GMM. While inference time goes
down significantly, the gated EPLL provides inferior results compared with EPLL-GMM.

Our genericDP model provides competing results with TNRD8
7×7 trained for a specific

noise level, but runs slightly slower than TNRD8
7×7.

3.5 Non-blind Deconvolution

It is more flexible by decouple the data term and regularization term in Eq. (9) to trans-
fer image prior or prior-like term, e.g., state-of-the-art denoising methods, to other image
restoration problems.

E(u, f ) =R(u)+D(u, f ), (9)

where R(u) is the regularization term, and D(u, f ) is the data term. In [3, 4, 15, 23], Alter-
nating Direction Method of multiplier (ADMM) is exploited to split the regularization and

3 The runtime of KSVD varies for different noise level, 761, 117, 51, 18 seconds for σ = 5, 15, 25 and 50
respectively. However, the runtime of KSVD is still larger than that of our genericDP model.
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(a) original (b) noisy (14.15, 0.0507) (c) proposed (34.40,
0.9457)

(d) TNRD [6] (34.34,
0.9392)

(e) BM3D [7] (33.45,
0.9266)

(f) KSVD [1] (31.88, 8940) (g) EPLL [26] (32.51,
0.8868)

Figure 2: Image denoising comparison. From left to right, images are generated by original,
noisy, ours genericDP model, TNRD, BM3D, KSVD and EPLL. The original image is added
noise level σ = 50. The numbers in the blankets are PSNR and SSIM values respectively.

data term, while in [9, 10, 20, 25] half quadratic splitting (HQS) is used. In this paper, we
focus on HQS approaches.

By introducing a couple of auxiliary variables z, one can decouple the data term and
regularization term in Eq. (9), which is reformulated as

E(u,z, f ) =R(z)+D(Au, f )+
β

2
‖u− z‖2, (10)

where β

2 ‖u− z‖2 is the added quadratic term. β is the penalty parameter, when β → ∞, the
solution of Eq. (10) goes very close to that of Eq. (9). In HQS setting, Eq. (10) is divided
into two sub-problems aszt+1 = argmin

z
R(z)+ β

2 ‖ut − z‖2

ut+1 = argmin
u
D(Au, f )+ β

2 ‖u− zt+1‖2.
(11)

By alternatively minimizing these two sub-problems and increasing β iteratively, we can get
the estimation of latent image û. Sub-problem zt+1 can be regarded as a denoising process
using image prior R(z), e.g., FoE, or using state-of-the-art denoising methods, e.g., BM3D
or TNRD. Sub-problem ut+1 aims to find a solution which satisfies the data term and is close
to the zt+1. The commonly used data term is in `2 norm, i.e., D(Au, f ) = λ

2 ‖Au− f‖2. With
the updated zt+1, ut+1 sub-problem has a closed-form solution,

ut+1 = (λ1A>A+ I)−1(λ1A> f + zt+1), (12)

where λ1 =
λ

β
, I ∈Rp×p is an identity matrix.

The regularization term trained in previous subsection is donated asRdenoise. Therefore,
the optimization of non-blind deconvolution is reformulated aszt+1 = argmin

z
Rdenoise(z)+

β

2 ‖ut − z‖2

ut+1 = argmin
u
D(Hu, f )+ β

2 ‖u− zt+1‖2,
(13)
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Table 3: Non-blind image deconvolution comparison on test images [13].

Method
σ

runtime (s)
5 15 25 50

BM3D 37.59 / 0.9635 31.08 / 0.8717 28.57 / 0.8013 25.62 / 0.6864 1.2
TNRD8

7×7 37.77 / 0.9651 31.42 / 0.8822 28.94 / 0.8162 26.01 / 0.7062 2.2
EPLL 37.57 / 0.9648 31.19 / 0.8820 28.68 / 0.8119 25.68 / 0.6873 145.3
KSVD 37.21 / 0.9621 30.87 / 0.8664 28.29 / 0.7869 25.18 / 0.6551 -
genericDP 37.38 / 0.9620 31.35 / 0.8803 28.90 / 0.8142 25.99 / 0.7030 2.3

Method
σ

runtime (s)
2.55 5.10 7.65 10.20

TNRD8
7×7 28.68 / 0.8597 27.97 / 0.8357 27.41 / 0.8145 26.92 / 0.7939 2.2

EPLL 26.94 / 0.8894 26.09 / 0.8481 25.31 / 0.8102 24.65 / 0.7767 54.4
3×3 FoE 32.46 / 0.9231 30.09 / 0.8745 28.71 / 0.8379 27.74 / 0.8077 2740.5
Rdenoise 31.39 / 0.9142 29.62 / 0.8766 28.15 / 0.8347 26.97 / 0.7899 1.6

1

where β is increasing exponentially. Matrix H is the matrix form of the blur kernel h. In
this process, λ in D(Hu, f ) is set to 100

1 , 100
4 , 100

9 and 100
16 for σ = 2.55, 5.10, 7.65 and 10.20

respectively. β increases exponentially as β = γ i, where γ is set to 1.8, 1.7, 1.6 and 1.5 for
σ = 2.55, 5.10, 7.65 and 10.20 respectively. The power i = t−1 for each inference stage t
respectively. The number of iteration here is simply the number of inference stage T , while
the number of iteration is 30 for [25] and more than 100 for [3].

We compare theRdenoise with TNRD [6], EPLL [26] and FoE [21] in non-blind deconvo-
lution. The codes of the competing methods were downloaded from the authors’ homepage
4. The test images are from [13], which are widely used in image deconvolution. In this test
dataset, there are eight blur kernels and four images. The blurry images are generated in the
following way, firstly applying a blur kernel and then adding zero-mean Gaussian noise with
noise level σ . The noise levels are 2.55, 5.10, 7.65 and 10.20.

As illustrated in Table 3, the Rdenoise provides competing results with FoE, and better
results than EPLL and TNRD. TheRdenoise runs slightly faster than TNRD 5, and faster than
EPLL and FoE. While FoE method provides good deconvolution results, the inference time
is very long. Therefore, it is not scalable to recover large image for FoE. Considering the
inference efficiency and deconvolution performance, the Rdenoise is very promising. Visual
comparison is shown in Fig. 3.

4 Conclusion
Instead of training multiple TNRD models, we enforce these diffusion processes sharing one
diffusion term and keeping its own reaction term. As a result, we only need to train one
model to handle multiple Gaussian denoising of σ in a range. We derive the gradients of loss
function w.r.t. the parameters, and train the model in a supervised and end-to-end manner.
The trained genericDP model can offer very competing denoising performance compared
with the original TNRD model trained for each specific noise level. Meanwhile, the training
efficiency is very impressive compared with TNRD and even generative approaches. We
transfer the trained diffusion term to non-blind deconvolution using HQS method. Experi-
ment results show that the trained diffusion term can be used as a generic image prior and
work well in image non-blind deconvolution which is unseen during training.

In this work, we train the genericDP model using images only degraded by Gaussian
noise in a range. We will use more types of degradation operators A, e.g., image super-

4 There is no available TNRD codes for non-blind deconvolution, we implement it and train it using greedy
training.

5 Using HQS, we can accelerate the sub-problem ut+1 described in Eq. 13 using Fast Fourier Transform (FFT).
Note that one needs to careful handle the image boundary conditions.

Citation
Citation
{Levin, Weiss, Durand, and Freeman} 2009

Citation
Citation
{Zhang, Zuo, Gu, and Zhang} 2017

Citation
Citation
{Brifman, Romano, and Elad} 2016

Citation
Citation
{Chen, Yu, and Pock} 2015

Citation
Citation
{Zoran and Weiss} 2011

Citation
Citation
{Schmidt, Schelten, and Roth} 2011

Citation
Citation
{Levin, Weiss, Durand, and Freeman} 2009



Q. PENG, Y. DOU, Y. CHEN, W. FENG: LEARNING GENERIC DIFFUSION PROCESSES 9

(a) original (b) blurred
(17.30, 0.3917)

(c) proposed
(24.43, 0.8131)

(d) TNRD [6]
(24.36, 0.7860)

(e) FoE [21]
(30.16, 0.8922)

(f) EPLL [26]
(21.59, 0.7986)

(g) original (h) blurred
(24.79, 0.7514)

(i) proposed
(36.73, 0.9661)

(j) TNRD [6]
(32.76, 0.9299)

(k) FoE [21]
(35.32, 0.9580)

(l) EPLL [26]
(29.67, 0.9528)

(m) original (n) blurred
(22.39, 0.4478)

(o) proposed
(29.41, 0.8200)

(p) TNRD [6]
(28.50, 0.8148)

(q) FoE [21]
(28.20, 0.8205)

(r) EPLL [26]
(26.60, 0.7987)

Figure 3: Non-blind image deconvolution comparison. From left to right, images are gen-
erated by original, blurred, ours genericDP model, TNRD, FoE and EPLL. In the first two
rows, the original image is blurred by kernel 4 and 5 respectively, then is added noise level
σ = 2.55. In the last row, the original image is blurred by kernel 5, then is added noise level
σ = 10.20. The numbers in the blankets are PSNR and SSIM values respectively.
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resolution, image deblocking, to train the genericDP model, hoping that a more generic
image prior can be learned. We will also transfer the learned diffusion term to other unseen
image restoration problems to validate the generality of the trained diffusion term.
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