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Abstract

The bag-of-visual-words (BoW) generation is a widely used unsupervised feature
extraction method for the variety of computer vision applications. However, space and
computational complexity of bag-of-visual-words generation increase with an increase
in the size of the dataset because of computational complexities involved in underlying
algorithms. In this paper, we present Fast-BoW, a scalable method for BoW genera-
tion for both hard and soft vector-quantization with time complexities O(|h|log, k) and
O(|h|k), respectively'. We replace the process of finding the closest cluster center with
a softmax classifier which improves the cluster boundaries over k-means and also can be
used for both hard and soft BoW encoding. To make the model compact and faster, we
quantize the real weights into integer weights which can be represented using few bits
(2 —8) only. Also, on the quantized weights, we apply the hashing to reduce the number
of multiplications which makes the process further faster. We evaluated the proposed
approach on several public benchmark datasets. The experimental results outperform the
existing hierarchical clustering tree-based approach by ~ 12 times.

1 Introduction

Due to advances in the content generation and sharing techniques, a large amount of visual
data is available which can be exploited for the variety of applications such as content-based
retrieval, classification, action/activity recognition, etc. The bag-of-visual-words (BoW) is
an important task for unsupervised representation of visual data based on the local feature
descriptors [5, 6, 9, 10, 17, 21, 22]. Recently, there has been substantial research on BoW
representation [1, 2, 3, 12, 20]. The BoW generation process involves two phases, 1) vector
quantization for vocabulary generation that is typically performed by k-means clustering
algorithm, and 2) frequency histogram generation using nearest neighbour search.

During the the vector quantization, the goal is to construct a vocabulary V' with a small
average quantization error. For a given £ = {F,-- -, F,}, the set of local feature descrip-
tors F; = {f1,....,f,, }.fi € R? where d is the dimension of the local feature descriptor for
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"Here, |h| is the size of the hash table used in the proposed approach and & is the vocabulary size
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n training videos. The input to the vector quantization algorithm is a set of m vectors
Q={f,...5,},f; € R? where Q C {F; U---UFy}. The output of the algorithm is a set of
k vectors V = {l, ..., }, i € R, where k < m. The set V is called the vocabulary. We
say that V is a good vocabulary for Q if for most f € Q there is a representative u € V such
that the Euclidean distance between f and u is small. The average quantization error of V
with respect to Q is defined as

1 n
J(V, Q) =E [lrg}gkllF u,ll} m;:ll?}&”f’ willes )]

where || - || denotes Euclidean norm and the expectation is over F drawn uniformly at random
from Q. The k-optimal set of visual words is defined to be the vocabulary V of size k for
which J(V, Q) is minimized. Typically, k-means algorithm is used for this whose per epoch
computational complexity is O(mdk). The average quantization error for a general sets of
unit diameter in R?, is roughly k~%/¢ for large k [4]. For high dimensional local feature
vectors where d is high, it becomes too time consuming. For instance, if d = 100, and A is
the average quantization error for k; visual words, then to guarantee a quantization error of
A/2, one needs a vocabulary of size k; ~ 24/ 2k1: that is, 250 times as many visual worlds
just to halve the error. In other words, vector quantization is susceptible to the same curse of
dimensionality that has been the bane of other non-parametric statistical methods.

However, increasing the vocabulary size k increases the time to generate the frequency
histograms which requires O(d k) real values vector-vector multiplications per local feature
descriptor in a video. As in real-world application, this computation is performed on the
fly and thus it effects their real-time performance. The typical solution to this problem is to
maintain tree hierarchy of the clusters. The use of a tree leads to O(dlog, k) but invariably
leads to a significant fall in the effectiveness of the generated BoW features. Dasgupta et
al. [2] proposed a set of hierarchical random projection trees for vector quantization and
subsequent search of the right subspace by traversing each tree and finally making a con-
sensus. This approach reduces the time complexity in tree construction in comparison to
other tree methods. But the use of several trees increases the time of BoW generation. Also,
due to hard splitting criteria, the projection tree-based algorithms suffer from the high loss
in classification accuracy. The proposed Fast-BoW addresses both issues, namely, loss in
accuracy and computational time by learning probability distribution of the clusters at each
level of the tree and then applying quantization and hashing to reduce the vector operations.
The contributions of the proposed approach are:

e We develop Fast-BoW, which is a scalable algorithm for the generation of the Bow
that is essential in many computer vision approaches [5, 6, 9, 10, 15, 21, 22].

e We reduce the number of integer-real multiplication upper bounded with |h| the size
of hash table in the worst case while completely avoiding real-real multiplications.

e Fast-BoW is orders of magnitudes faster than sequential BoW and tree based BoW
approaches to obtain a desired time performance. As a specific example, on the KTH
data sets with 7 = 849, the average local feature descriptors in a video and k = 65536,
Fast-BoW runs 4000x and 12 x faster than the sequenial and tree approaches, respec-
tively, while reduces the loss in classification to less than 0.5%, while the tree approach
drops upto 5%.
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e Also, the Fast-BoW brings the ability to control the trade-off between computation
efficiency and classification quality in the prediction phase.

The remainder of this paper is organized as follows. Section 2 presents the proposed Fast-
BoW for fast generation of the BoW. Section 3 discusses the experimental setup, dataset, and
performance of Fast-BoW. Finally, we conclude in section 4.

2 Proposed Fast-BoW

As shown in the Fig. 1, the proposed approach first uses the clustering algorithm (like k-
means) for vector quantization of the training vector space into the pre-defined number of
clusters. Then to learn the probability distribution of each cluster, we train a soft-max clas-
sifier. The class labels for the soft-max are the cluster index of each point received from the
clustering algorithm. Also, the large weight matrices have a significant redundancy that can
be avoided by applying model compression techniques. We exploit this fact to reduce the
memory and computation time by applying weight quantization and hashing. The weight
quantization reduces the number of levels (i.e. unique floating point numbers) in a weight
matrix and the hashing reduces the number of floating point multiplications needed for a
matrix-vector or vector-vector multiplication.
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Figure 1: Scaling the process of BoW generation.

2.1 Learning Probability Distribution of the Clusters

First, we learn k clusters using k-means on the local feature descriptors. As the cluster
learning from a large number of local feature descriptors is time-consuming, thus we first
use a small sample to learn the initial clusters {u,,- - -, 4, } and later refinement the centers
using the remaining points only once as suggested by Raghunathan ef al. [13]. Let, for i
local feature descriptor f;, ,ué- be the closest center then it updates the ,u.; as

py=(1—=n)us—1+nf; 2)
where, N = 3“0# gives the best results. After successfully learning the means of the k
clusters, the next task is to learn the probability distribution for soft/hard cluster assignment
for that Gaussian mixture model (GMM) can be used. However, GMM’s training and pre-
diction are time-consuming and also speed-up of them is also not so easy. Thus, we learn
a softmax classifier on the given data where the labels of each vector are the cluster index
previously given by the k-means. Doing so helps in learning the soft boundaries for the clus-
ters that can be applied to both types of hard and soft BoW generations. The probability of a
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local feature descriptor f; belongs to j* cluster is
(3)

The 0 is learned by maximization of the class cross entropy. The object function for the
softmax classifier along with regularization is

k d

Py vee @

i=1j=1

1l & ee?fi
J(e):—; i;];](]:)’i)log <t ot

The loss function in Equation (4) is solved using scaled conjugate gradient[11].

2.2  Weight Quantization and Hashing

The parameter 6 contains k.d real numbers and the computation of p(y; = j|f;; 0) requires
computation of k inner product of d-dimensional real-valued vectors. Although, its cheaper
than the k-means and GMM it still poses significant challenges. Also, a known fact is that the
0 contains significant redundancy and the operations on real numbers (generally represented
using 32-64 bits) are much more complex than the integer-real numbers. In order to exploit
these facts, first we apply quantization on the values of the parameter 0 and then maintain a
hash table h where the quantization and hash functions are defined as follows:

Definition 1. The quantization function q : R — 7Z on a real scalar parameter 6 € R is
defined as

=40 = i@ ©

Definition 2. The hash function h: 7. — 7" on a integer key z € 7 is defined as
h(z) = z+L, (6)

where, | -] denotes the nearest integer and L is a free parameter such that [h| = 2L+ 1 is
the size of the hash table. The Algorithm I provides the pseudocode of the procedure of the
learning softmax parameters, quantization, and generation of hash table.

Algorithm 1 Fast-BoW: Gen_Vocabulary
Input: Q : Set of local feature descriptors for vocabulary generation, m : Cardinality of the
Q. i.e., |Q|, k : Size of the vocabulary i.e., |V|
Output: 6* : Softmax parameters, h : Hash table
gen_vocabulary
[V,idx] = k-means(Q, k);
model = softmax(X = Q,Y = idx);
0 = model .0;
H = Unique values in the range of ¢(0);
0" = h(q(0)); {Replace the values of the 6 with its hash value (i.e. indexes in h)}
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Once, we get h and 6%, then the BoW histogram is generated using Algorithm 2 where
for each local feature descriptor, it first groups and then do summation of its values in a hash
bucket s according to similar parameter indexes in respective 67’s then do the multiplication
of the real values vector s and the quantized integer-valued vector h which can be represented
using less number of bits. Doing so reduces the number of multiplications to less than |h|
which also contains one operand as short integer thus speeds up the entire process and the
complexity reduces to O(|h|k) from the O(d k).

Algorithm 2 Fast-BoW: Gen_Histogram

Input: F={f},---,f,}:Setof mlocal feature descriptors of a video, h :Hash table, 6* :-Hash
values of parameters, k :#Clusters, d :#Dimensions
Output: x :Global BoW feature descriptor

gen_BoW
fori=1:mdo
max_idx = —1; max_sum < —oo;
for j=1:kdo
s+ 0; sum<«+0;
for/=1:ddo
Ser, += i3
end for
for/=1:|h|do
sum +=s; X hy;
end for

if sum > max_sum then
max_sum <— sum;, max_idx < j,
end if
end for
Ximax_idx += 1;
end for

2.3 Hierarchical Tree for Hard BoW generation

In the hard BoW generation, we need to find most probable cluster only unlike soft BoW
where we need to compute the probabilities with all the clusters. Thus to further speed
up and sustain the classification accuracy of the simple hierarchical trees, we apply similar
techniques as discussed above. At each internal node, we learn and maintain a hash table of
softmax classifier’s parameters with k = 2. Thus, the final complexity of finding a cluster re-
duces to O(|h|log, k) from O(|h| k) for soft clustering and O(d log, k) for simple hierarchical
trees.

3 Empirical Evaluation

All the methods are implemented in C++. The experiments are conducted on a machine
with Intel(R) Xeon(R) CPU E5620@2.40GHz processor and 32GB RAM. We conducted
experiments on various large-scale and challenging video datasets for human action recog-
nition, namely, KTH [14], HMDBS51 [7] and UCF101 [19]. The space-time interest points
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(STIP) [8] are used as the local features descriptors for the generation of the BoW per video
clip. Table 1 provide the details of the datasets used in the experiments.

Table 1: Details of the datasets used
Dataset Classes | Train Test Avg.Length

Videos | Videos (Desc.)
KTH 6 383 216 4 sec. (849)
HMDB51 51 3,567 1,530 5 sec. (1456)
UCF101 101 9,535 3,782 | 7.21 sec. (1574)

The sequential BoW generation (Seq-BoW) and tree-based BoW generation (Tree-BoW)
approached are used as the baseline for both the effectiveness (classification accuracy) and
the computational time. To measure the effectiveness of the generated BoW features, we use
the linear SVM with default hyper-parameters for all the existing and proposed approaches
because the objective of this research work is to scale the process of BoW generation while
preserving the effectiveness of the generated features instead of improving the state-of-the-
art on these datasets. However, one can use a scalable kernel SVMs [16, 18] with a suitable
kernel to further improve the classification accuracy. Also, we keep the train and test split as
described in the respective dataset. In case of multiple train-test splits, the performance is the
averaged for the splits. The performance of both the existing and the proposed approach are
compared for various sizes of the vocabularies (i.e. k = {128,1024,8192,65536}). Fig. 2
illustrate the challenge of the rapid increase in the computation time for the sequential Bow
with an increase in the vocabulary size on the KTH action dataset. It shows that large vo-
cabulary based BoW increase the classification performance but also increase the time taken
in the BoW generation rapidly and after certain vocabulary size it becomes impractical to
be used in real-time. For example for the vocabulary sizes k = 8192 and k = 65536 the
time taken by Seq-BoW is 3.295 and 31.076 seconds, respectively for the video of 4 second
duration.

100 10 *

Classification Accuracy (%)

BoW Generation Time (ms) [log scale]

128 1024 8192 65536
Number of Clusters

128 1024 8192 65536
Number of Clusters

Figure 2: Effect of the vocabulary size on classification accuracy and BoW generation time.

Table 2 shows the performance of the classification for existing and proposed methods
on various sizes of the vocabularies. The results demonstrate that the proposed approach
Fast-BoW is significantly reduced the loss in the effectiveness of the generated BoW in com-
parison to the hierarchical clustering based tree approach. The results in Table 3 illustrate
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Table 2: Comparison of the classification performance (%) of the proposed Fast-BoW ap-
proach with the existing Seq-BoW and Tree-BoW approaches

Number of Clusters (k)
Dataset+Method 128 1024 | 8192 | 65536
KTH+Seq-BoW 85.19 | 90.28 | 93.06 | 95.37
KTH+Tree-BoW 79.17 | 88.89 | 86.11 | 90.74
KTH+Fast-BoW 82.41 | 89.81 | 89.96 | 90.74

HMDBS51+Seq-BoW | 08.17 | 13.99 | 15.16 | 15.37
HMDBS51+Tree-BoW | 06.54 | 11.11 | 13.40 | 11.50
HMDBS51+Fast-BoWw | 07.19 | 13.59 | 13.79 | 14.38
UCF101+Seq-BoW 16.13 | 30.88 | 36.20 | 39.66
UCF101+Tree-BoW 12.14 | 27.10 | 32.84 | 32.18
UCF101+Fast-BoW 14.99 | 2747 | 35.69 | 37.82

that the Fast-BoW outperform all the existing approaches with ~ 4000x and ~ 12 x, respec-
tively.

Table 3: Comparison of time (milliseconds) taken in BoW generation per test video.

Number of Clusters (k)
Dataset+Method 128 | 1024 | 8192 | 65536
KTH+SeqBoW 33 345 | 3295 | 31076
KTH+TreeBoW 3 4 5 7
KTH+FastBoW 0.24 | 032 | 0.39 | 0.57
HMDBS51+SeqBoW 40 585 | 5152 | 35805
HMDB51+TreeBoW 5 6 9 13

HMDB51+FastBoW | 0.37 | 049 | 0.71 1
UCF101+SeqBoW 129 | 219 | 9265 | 18470
UCF101+TreeBoW 14 15 20 26
UCF101+FastBoW 1 1 2 2
Values greater than 1 ms are rounded to nearest integers.

Figure 3 illustrate the comparison of the loss in the classification performance of the
existing Tree-Bow and the proposed Fast-BoW with respect to the sequential approach Seq-
BoW. The figure clearly shows that the loss in the proposed Fast-BoW is significantly lower
than the loss in the Tree-BoW for various vocabulary size across all three datasets. Thus, the
proposed Fast-BoW preserves the effectiveness of the BoW features in comparison to the
existing Tree-BoW approach.

Figure 4 illustrate the speed-up gain by the proposed Fast-BoW with respect to the ex-
isting Seq-BoW and Tree-BoW approaches. It can be observed from the figure that the
proposed Fast-BoW gains several orders of speed-up over the existing approaches. For se-
quential approach, it is /= 100x faster for the vocabulary size k = 128 and this scale increase
with the increase in the vocabulary size. Also, it achieves =~ 12x speed up over the Tree-
BoW approach when keeping the |h| = v/d, where d = 162 is the dimensions of the STIP
descriptors. As the reducing the |h| (for example |h| = log, d) results into further speed-up
but also increases the loss in the classification performance. Also, the proposed approach
took < 2 milliseconds only for each video of duration 4 — 7.21 seconds. Thus making the
BoW approach practical to be used in real-time with increased vocabulary sizes and in-
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Figure 3: Comparison of the classification loss in existing tree based approach (Tree-BoW)
and the proposed Fast-BoW approach with respect to sequential BoW (baseline).
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Figure 4: Scaling factor of the proposed approach (Fast-BoW) with respect to sequential
approach (Seq-BoW) and the existing tree based approach (Tree-BoW).

creased effectiveness.

4 Conclusion

The proposed Fast-BoW scale the computational complexity of hard and soft bag-of-words
generation to O(|h|log, k) and O(|h|k) from O(dlog, k) and O(dk), respectively. While
it better preserves the effectiveness of the generated features than the existing hierarchical
clustering tree-based approach. The use of softmax for predicting the cluster probabilities
for a local feature vector not only improves the clustering performance but also provides the
flexibility to further scaling by applying quantization and hashing. The experimental results
show that the choosing |h| = v/d gives almost no loss to the final classification accuracy
while choosing |h| = log, d resulted into a mild loss. Thus the proposed method Fast-BoW
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shows the efficacy to be used in real-time applications with large vocabularies.
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