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Abstract

In this paper, we address the problem of visual relationship detection, which requires
joint image and language understanding to predict semantic connections between de-
tected objects. Most of the previous works in this domain have applied visual classifi-
cation methods based on extracted visual features to solve this problem. However, each
type of relationship has various object combinations and each object pair has diverse
interactions; thus, considering all possible relationships is difficult and expensive. In
this paper, we mainly propose a region-object relevance-guided framework that identi-
fies regions related to the labels of object pairs in images, thereby decreasing the number
of possible relationships to be considered for efficiency. Furthermore, we construct a
semantic space with an exploratory mechanism that weights informative regions as rel-
evant. Our entire network is trained end-to-end using a multi-task loss function for es-
timating visual relationships. Finally, we evaluate our method on two public large-scale
datasets. Our method achieves remarkably high performance levels on both datasets that
are better than or comparable to those of state-of-the-art methods under conditions using
only relationship annotations from the dataset. In addition, our proposed method facili-
tates prediction at speeds below 150 ms per image. Thus, our method is well-suited for
real-time applications.

1 Introduction
In the history of computer vision, the capacity for feature learning and transfer learning of
convolutional neural networks (CNNs) [18] has gradually improved image processing tasks.
For example: image classification [14, 16, 34] labeled each image with a particular class,
object detection [8, 23, 29, 30] labeled each region using a method that guides the search
for object instances in an image, and semantic or instance segmentation [5, 15, 24, 26, 41]
labeled each image pixel. As an important aspect of image processing, object detection
has become a popular research field. This task involves not only classifying every object
in an image, but also localizing each object by adding bounding boxes. This makes object
detection significantly more difficult than image classification. With the development of
high-speed GPU for parallel computing and crowd sourcing technology for collecting image
annotations, fast and accurate object detection is becoming possible despite the large number
of existing object categories.

More advanced except for semantic or instance segmentation is the task of visual rela-
tionship detection (VRD). Visual relationships represent the visually observable interactions
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between the objects in images. Each relationship has three elements: subject (sbj), pred-
icate (pred), and object (obj). Thus, the relationship can be represented in a triplet form
<sbj-pred-obj>, such as <person-ride-horse>. In addition, VRD involves classifying and
localizing the objects of the <sbj, obj> pairs and the interactions between them as preds.

However, visual relationships are not a new concept. In previous research, Sadeghi et
al. [31] proposed visual phrase detection (VPD) to recognize multiple objects that interact
with each other as phrases. Visual phrases represent the semantic connections between inter-
acting objects in bounding boxes, similar to the triplets described above. Each type of phrase
is considered as a relationship category in the VPD framework. This is a natural approach
for this task, but the increasing number of objects and predicates makes it difficult to treat
VPD as a classification task. For example, consider a visual phrase dataset with N = 100
object categories and K = 70 predicates; there are N2K = 700k relationships in total. The
task in [31] is conducted in a restricted context, where the number of possible relationships
is moderate. However, the VRD frameworks can handle this problem by dividing the entire
process into object classification and predicate classification, owing to the advent of object
detection. Lu et al. [25] attempted to construct a linear model by optimizing the objective
function that combines the visual appearance and language modules for relationship predic-
tion. Furthermore, they introduced a visual relationship dataset (VR) to study the learning
of a large number of visual relationships from given images using the linear model. The
results in [25] suggest that predicates cannot be reliably predicted with a linear model using
only visual modules ([25] reports Recall@100 of only 7.11% for their visual prediction). Al-
though the visual features in [25] are extracted from the union of the sbj and the obj boxes,
predicates are predicted without consideration of the relevance between object proposals and
the labels of object pairs in images.

In this paper, we mainly propose a region-object relevance-guided framework that looks
for regions related to the labels of object pairs in images. More specifically, we utilize
the relevance between the visual features of object proposals and the language features of
the labels of object pairs by constructing an inner product space. The relationships can
be predicted by focusing on relevance regions, as unexpected relationships can largely be
excluded. Figure 1 shows the illustration of predictions preds from relevance regions derived
by weighting. High relevance regions (bright areas) are marked with bounding boxes and the
corresponding preds are output from the weighted regions. In addition, the entire network for
our method is trained in an end-to-end manner with a multi-task loss function for estimating
visual relationships. This single network architecture reduces the complexity during training
and testing while improving the overall relationship detection accuracy.

In summary, our main contributions can be summarized as follows: 1) We propose a
region-object relevance guided framework; a simple but efficient end-to-end deep network
using an inner product space with a weighting mechanism for relevance regions in images.
To the best of our knowledge, such an architecture is the first of its kind for VRD; 2) Our
method jointly optimizes object detection and relationship detection using a multi-task loss
function; 3) When using only relationship annotations, our method outperforms most of
existing methods for VRD in terms of detection accuracy and processing time.

2 Related Work
As the intermediate task connecting vision and language, VRD [25] is rooted in object de-
tection, which has been investigated for several years. Convolutional neural networks [18]
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Figure 1: Illustration of predicting preds from relevance regions derived by weighting. High
relevance regions (bright areas) are marked with bounding boxes and the corresponding
preds are output from the weighted regions. The preds are arranged in descending order
of likelihood.

were first introduced as the R-CNN [9] for object detection, which processes every object
proposal without sharing computation, thereby resulting in time-consuming delays. Fast
R-CNN [8] was proposed to share convolutional layers among object proposals and over-
come this problem. A region of interest (RoI) pooling layer was then designed to shape
convolutional features to the same size in [8]. Ren et al. proposed Faster R-CNN [30] by
utilizing a region proposal network (RPN) to generate high-quality proposals and adopted
[8] to perform RoI-wise classification and refinement. We use [30] as an object detection
module due to its superior performance. Note that our method cannot be simply considered
as appending a relationship prediction layer to Faster-RCNN. In fact, our method uses an
inner product space with a weighting mechanism for relevance regions and jointly optimizes
object detection and relationship detection using a multi-task loss function.

Modeling the relationships which represent interactions between multiple objects is not
a new concept in the current literature. There have been a number of studies that explore the
use of various relationships (e.g. co-occurrence statistics, spatial relationships, and action or
human-object interactions). For example, [27] used object co-occurrence statistics derived
from datasets to incorporate semantic context into object categorization tasks. [7, 11, 12]
attempted to learn spatial relationships between objects to improve individual object cate-
gorization. [13, 32] also used spatial relationships in an operator’s spoken instructions to
control robots for object picking. Action is one of the most important relationships, consid-
ering that sbj is a human and pred is a verb. In recent years, action recognition in images [10]
has been a popular research field, and various datasets [1, 2, 33, 37] have been constructed
to focus on human-object interactions. However, most of these works were used for leverag-
ing the relationships for other tasks, such as object segmentation [19], object detection and
pose estimation [36], scene classification and object detection [3], action, pose, and object
detection [6], and action retrieval [28]. Note that our work is essentially different from these
works as we aim to provide a method dedicated to generic relationships, such as actions (e.g.
“kick"), relative positions (e.g. “above"), functionals (e.g. “with"), and comparisons (e.g.
“taller than").

Lu et al. [25] first formalized VRD as a task and provided a large-scale dataset that
included generic relationships. Recent works in this field [20, 21, 22, 38, 40, 42] have
followed this active research topic. Li et al. [20] proposed a CNN with a phrase-guided
message passing structure (PMPS) to simultaneously predict relationship components within
a single deep network. In contrast to this top-down design, we follow a bottom-up design,
which detects objects and then predicts the possible relationships among them. Yu et al. [38]
proposed an end-to-end deep neural network that absorbs internal (training annotations) and
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Figure 2: Overview of our system composed of the object detection module and visual rela-
tionship detection module. The former module output detected object labels and locations in
an image using the classifier and the bounding box regressor. The object labels are converted
into corresponding word-embedding vectors. The latter output predicted predicate labels
from the classifier by constructing an inner product space between the image region vectors
related to each object pair and the pair feature vector concatenating the paired word vectors
and then using the weighted and summed vectors.

external (public text on the Internet, i.e. Wikipedia) linguistic knowledge using a teacher-
student distillation framework to regularize the learning process. Finally, adding spatial
features obtained from pairs of detected bounding boxes improved prediction performance.
On the other hand, Zhang et al. [40] conducted research on weakly supervised learning and
captured the spatial context of relationships by using a position-role-sensitive score map with
pairwise RoI pooling. Compared with the above works, we aim to effectively and simply
implement VRD using only relationship annotations from the dataset.

3 Visual Relationship Prediction
Figure 2 shows an overview of our system. We propose a probabilistic model to predict the
pred jointly with the sbj and the obj. Let s,o = {sm,om;m = 1, ...,N} and p = {pm;m =
1, ...,N} denote a set of <sbj, obj> pairs and a set of preds representing their interactions.
Object pairs and their interaction types are jointly predicted in triplet form, and we derive
the optimal prediction by maximizing the following joint relationship probability.

< s∗,p∗,o∗ >= arg max
s,p,o

P(s,p,o) (1)

Next, P(s,p,o) is divided into the probabilities estimated by the object detection module and
the VRD module.

P(s,p,o) = P(s,o)P(p|s,o) (2)

where P(s,o) is the joint probability of predicted sbj and obj obtained from the object detec-
tion module (i.e., Faster R-CNN), P(p|s,o) is the conditional probability of preds, given sbjs
and objs obtained from the VRD module. More precise descriptions about each module are
described below.

3.1 Object Detection Module
The left half of Figure 2 corresponds to the object detection module, which is utilized to
localize objects (sbj and obj) and provide their classification labels in the images. Faster R-
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CNN [30] is used for this task because of its high accuracy and efficiency. If the predictions
of sbj and obj are independent of each other, the joint probability P(s,o) can be rewritten as:

P(s,o) = P(s)P(o) (3)

where P(s), P(o) are individual output probabilities of sbj and obj obtained from the object
detection module.

3.2 Visual Relationship Detection Module
The right half of Figure 2 corresponds to the VRD module. In this process, the object pairs of
<sbj, obj> are selected from among object labels obtained from the object detection module.
Each selected label is converted into its word-embedding vector to represent the semantic
meaning of each object. The word-embedding vectors of sbj and obj are concatenated to
learn the joint representations of the object pairs (described as pair features in the figure).
These operations can be written as:

l = concat(w2v(sm),w2v(om)) (4)

where concat(·, ·) indicates the concatenation of two target vectors, and w2v(·) indicates the
conversion of the target label into the corresponding word-embedding vector. This semantic
representation can be obtained by the learning model, which can predict surrounding words
from the target within a context window.

Let V = {vi j|vi j ∈ RM; i, j = 1, ...,K} (i, j refers to the index of sbj and obj, K is the
number of object proposals, and M is the dimension number of visual features) denote vi-
sual features reshaped into fixed size, the image regions related to object pairs are extracted
by learning the semantic connection models between visual features corresponding to the
integrated regions of the object pairs vi j and the language features of their labels (i.e., the
fixed-length word vector l ∈ RL). The weight of the object proposals related to object pairs
is expressed as:

gi j = (Avi j +bA)
T (Bl+bB) (5)

wi j =
exp(gi j)

∑m ∑n exp(gmn)
,W = {wi j|i, j = 1, ...,K} (6)

where A ∈ RS×M , B ∈ RS×L are the projection matrices embedding v j and l into the inner
product space, and bA, bB ∈ RS (S is the dimension number of inner product space) are the
bias terms of affine projection (Eq. (5)). Note that A and B control which visual features
have high correlation with specific pair features. The weight wi j is obtained by applying the
softmax function to gi j for normalization (∑i ∑ j wi j = 1, wi j > 0). The relevance weights of
object proposals corresponding to object pairs are represented as W (Eq. (6)). This matrix
contains the results of the inner products between each visual feature and each language
feature; thus, each value in W measures the similarity between an integrated region and both
labels of object pair. The visual and language features are then multiplied by the relevance
weights wi j and summed over all object pairs to generate a region-object relevance vector
SW .

SW =
K

∑
i=1

K

∑
j=1

wi jvl
i j (7)
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where vl
i j is the vector concatenating vi j and l. Finally, this region-object relevance vector is

used to predict the pred for the given image regions and the object labels of sbj and obj. The
final predictions that a set of pm can be obtained from that of sm and om are expressed as:

P(p|s,o) = softmax(WP · f (SW )+bP) (8)

where f is the activation function called ReLU, and bP ∈RCp is the bias term. (Cp is the num-
ber of possible relationships). WP ∈ RCp×M converts so that the dimension of the relevance
region vector is the same as Cp.

3.3 Multi-task Loss
We use a multi-task loss L to jointly train the object label, the bounding box position, and
the relationship label. The prediction targets for each object proposal are a ground-truth
object label u, a ground-truth bounding box offset b, and a ground-truth relationship label v
provided from the training dataset. More specifically, the loss function can be written as:

L(po,u,b, t
u,pr,v) = Lob j(po,u)+ I[u≥ 1]Lbbox(b, tu)+Lrel(pr,v) (9)

where the first loss Lob j(po,u) is the multinomial cross entropy loss for the object classifica-
tion, and the second loss Lbbox(tu,b) is the smooth L1 loss between the regressed box offset tu
(corresponding to the ground-truth object label u) and the ground-truth box offset b. I[u≥ 1]
is an indicator function, which outputs 1 when u ≥ 1 and 0 vice versa. Thus, we define the
box location loss Lbbox on positive object proposals only; the object classification loss Lob j
is defined on both positive and negative object proposals. The third loss Lrel(pr,v) is the
multinomial cross entropy loss for the relationship detection, and is defined as follows:

Lrel(pr,v) =− log pv
r (10)

4 Experiment

4.1 Experimental Settings
We evaluated our approach on two large-scale public datasets, which contained the annota-
tions of visual relationship in triplet form <sbj-pred-obj> and gave the ground-truth object
labels with their bounding boxes. We used: (1) VR [25]: the Visual Relationship dataset,
which contains 5,000 images with 100 objects and 70 predicates. In total, there are 37,993
visual relationship instances with 6,672 triplet types. We followed the same train/test split as
in [25]; i.e., 4,000 images for training and 1,000 images for testing. This dataset includes a
zero-shot testing set that contains relationships that never occur in the training set to evaluate
generalization capabilities. (2) VG [17]: the Visual Genome Version 1.2 dataset contains
108K images and 998K relationship annotations that belong to 74,361 triplet types. This
dataset is annotated by crowd workers; thus, the triplet labels are noisy (e.g., the spellings
of nouns and verbs are inconsistent). Therefore, we followed the same filtering as in [21]
to preprocess the dataset; specifically, we selected the top 150 frequent objects and top 50
predicates. After preprocessing, 95,952 images remained. We randomly divided these into
two subsets: 5,000 images as the testing subset and the remaining images as the training
subset.

Citation
Citation
{Lu, Krishna, Bernstein, and Fei-Fei} 2016

Citation
Citation
{Lu, Krishna, Bernstein, and Fei-Fei} 2016

Citation
Citation
{Krishna, Zhu, Groth, etprotect unhbox voidb@x penalty @M  {}al.} 2017

Citation
Citation
{Li, Ouyang, Zhou, Wang, and Wang} 2017{}



Y. GOUTSU: REGION-OBJECT RELEVANCE-GUIDED VRD 7

Table 1: Component analysis of the proposed method on VR and VG using different factors.
We used top 100 recall as the evaluation metric. RR, CF1, CF2, and SC denote whether
to use region-object relevance, co-occurrence frequency of <sbj-obj> pair, co-occurrence
frequency of <sbj-pred> and <pred-obj> pairs, and spatial configuration, respectively.

Dataset Method Predicate Det. Phrase Det. Relationship Det.
RR CF1 CF2 SC R@100 (%) R@100 (%) R@100 (%)

VR

X 71.85 16.38 11.73
X X 74.69 18.92 13.46
X X X 77.65 21.56 14.58
X X X X 82.10 23.50 15.98

VG

X 67.52 8.39 6.40
X X 71.57 10.95 8.33
X X X 74.32 13.11 9.89
X X X X 77.18 14.96 10.95

The VRD involves detecting objects and predicting their relationships. We evaluated our
approach using three conventional tasks [25]: (1) Predicate detection: The input was an
image and a set of ground-truth boxes of sbj and obj with corresponding labels. The output
was a set of preds representing the relationships between them. The purpose of this task was
to predict preds without relying on object detection, where the labels and locations of the sbj
and obj were given. (2) Phrase detection: The input was an image and a set of ground-truth
boxes of sbj and obj. The output was a set of triplets and union bounding boxes, which
covered the whole triplet. The purpose of this task was to predict <sbj-pred-obj> triplets
and localize each whole triplet with a union bounding box. A prediction was considered as
correct if sbj, pred, and obj were correctly classified and the IoU between the predicted union
box and the ground-truth was greater than 0.5. (3) Relationship detection: Given an input
image, a set of triplets and bounding boxes for sbj and obj was predicted. The purpose of
this task was to predict <sbj-pred-obj> triplets and localize each sbj and obj with a bounding
box. This is similar to the task above; however, the IoU between the predicted boxes and
their ground-truth boxes were simultaneously greater than 0.5.

Following [25], we used Recall@100 (R@100) as the evaluation metric in our experi-
ments. R@K computes the fraction of times a correct relationship was predicted in the top
K confident relationship predictions for an image. As discussed in [25], we did not use the
mean average precision (mAP) as it is not a proper metric and cannot exhaustively annotate
all possible relationships. Thus, if some correct relationships are missing or incomplete, they
will mistakenly penalize the detection as they will not be ground-truths.

We initialized our model on the ImageNet pretrained VGG-16 network provided by
Caffe, and optimized the entire network parameters using the stochastic gradient descent
(SGD) algorithm. We set the base learning rate at 0.001 and decreased it in stages. During
training, the proposal having a minimum 0.5 IoU with ground-truth was regarded as the cor-
rect localization; the non-maximum suppression (NMS) threshold was set to 0.3. We used
Gensim Word2Vec to convert object labels to word-embedding vectors. The word vector
dimensions were set to 300. All experiments were run on a single GeForce GTX1070 GPU.

4.2 Experimental Results

We first tested various combinations of different factors of the proposed method to improve
the performance. Table 1 summarizes the results. The RR factor is the baseline that utilizes
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Table 2: Comparison of predicate, phrase, and relationship detections with various state-of-
the-art approaches on VR (second row) and VG (third row). We used top 100 recall as the
evaluation metric. “-" denotes that a result is not applicable.

Dataset Method Predicate Det. Phrase Det. Relationship Det.
R@100 (%) R@100 (%) R@100 (%)

VR

LP [25] 47.87 17.03 14.70
VtransE [39] 44.76 22.42 15.20

PPR-FCN [40] 47.43 23.15 15.72
VRL [22] - 22.60 20.79

DR-Net [4] 81.90 23.45 20.88
Ours 82.10 23.50 15.98

VG

LP* [25] 33.32 12.64 0.14
ISGG* [35] 62.74 20.23 9.91

MSDN** [21] 66.41 21.82 10.51
Ours 77.18 14.96 10.95

* These results of LP and ISGG were reported in [21].
** This result output from the method without using caption proposals and caption annotations.

Table 3: Comparison of the average processing time per image of the relationship prediction
phase on VR (second row) and VG (third row). We excluded the proposal generation time
cost by RPN.

Dataset Method Relationship Det.
Time (ms)

VR

VtransE* [39] 270
PPR-FCN* [40] 150
DR-Net** [4] 113

Ours 108

VG MSDN** [21] 172
Ours 146

* These results listed just for reference were reported in [40].
** These results of DR-Net and MSDN were output by ourselves on the same PC.

only the region-object relevance, which estimates the conditional probabilities defined by
Eq. (8). This result indicates that the VRD task could not be effectively completed using
visual appearances related to object pairs alone, as there are many object pairs that must be
considered. It was necessary to select correct triplets among the object-pair candidates by
excluding any unexpected triplets. The CF1 and CF2 factors excluded unexpected triplets
from among the object-pair candidates by using co-occurrence frequencies for the <sbj-obj>
pair and co-occurrence frequencies for the <sbj-pred> and <pred-obj> pairs. By adding
these factors, we can see that statistical relationships among triplet components helped to
improve recall by 2.85%∼5.80% in the VR dataset and 3.49%∼6.80% in the VG dataset.
In addition, the SC factor leveraged the spatial configurations, i.e., the relative positions
of bounding boxes between object pairs. This factor showed a 1.40%∼4.45% gain in the
VR dataset and 1.06%∼2.86% gain in the VG dataset when compared to results where it
was not added. This improvement indicates that visual appearance, statistical relationships,
and spatial configurations are complementary to one another. Note that we used the best
performance method in the following comparisons.

Next, we compared our method with previous works in terms of predicate, phrase, and
relationship detections. Table 2 summarizes these comparisons. On the VR dataset, our
method outperformed the state-of-the-art methods in both predicate and phrase detections,
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Figure 3: Qualitative examples of relationship detection on VG. The colored bounding boxes
denote the detected objects in the image. The relationships under the images are colored
when the relationship is correctly predicted in the top 5 most probable relationships to each
object pair, while black indicates failed relationship detection owing to the failure of object
detection. The colors of the object labels correspond to those of the bounding boxes in the
image.

and achieved a comparable performance in relationship detection. However, the VRL and
DR-Net methods performed slightly better than our method in relationship detection, which
may owe to the rate of false positives and false negatives in object detection being much
higher than those of the aforementioned methods. Furthermore, the heuristic exclusion
method explained above could not effectively decrease the number of unexpected relation-
ships. In addition, the ResNet-101 CNN network was used to improve performance in [4],
while we used the standard VGG-16 network. Compared with the method in [22], this
method uses attribute types describing color, shape, or poses of objects as well as relation-
ship types from annotations of a large-scale dataset to build a semantic action graph. On the
VG dataset, our method outperformed the state-of-the-art methods in both predicate and re-
lationship detection when using only relationship annotations from the dataset. Note that we
used the results of LP and ISGG reported in [21] and the results of MSDN without caption
proposals and caption annotations as supplemental sources for fair comparisons. Figure 3
shows the qualitative examples of relationship detection on the VG dataset.

To ensure a multi-faceted analysis of our method, we also compared it with previous
works in terms of the average processing time per image during the relationship prediction
phase. Table 3 summarizes this comparison. Note that we ran DR-Net1 and MSDN2 under
the same PC conditions for fair comparison, while we used the results of VtransE and PPR-
FCN reported in [40]. In addition, we excluded the proposal generation time cost of RPN,
etc., as the time of this phase (part of object detection phase) differs considerably depending
on the applied method. From the results in Table 3, we can see that our method performed
better than those from the described previous works on both VR and VG datasets. This
achievement is most likely the result of the simple and efficient architecture of our method
on a single network in an end-to-end manner.

1https://github.com/doubledaibo/drnet_cvpr2017
2https://github.com/yikang-li/MSDN
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5 Conclusion
This paper presents a region-object relevance-guided framework, which is a simple and effi-
cient end-to-end deep network, using an inner product space with a weighting mechanism for
relevance regions in images to implement VRD. Experimental results demonstrated that the
VRD task could not be more effectively implemented using only relevance regions related to
object pairs. However, visual appearance, statistical relationships, and spatial configurations
are complementary to one another, which results in superior best performance. Finally, ex-
periments on the VR and VG datasets showed improvements for VRD in terms of detection
accuracy and processing time when compared with previous works using only relationship
annotations from the dataset.
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