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Abstract

Remote sensing scene categorisation is a task to distinguish the basic level scene
images in accordance with the contents of the subordinate level feature representations.
This gives rise to a significant semantic gap between subordinate level features and the
basic level scene contents. In this paper, we propose recurrent transformer networks (RT-
N) to mitigate the above problem. RTN incorporates learning transformation-invariant
regions with transformer based attention mechanism, thus reducing the semantic gap ef-
ficiently. It also can learn the canonical appearance for the most relevant regions based
on the subordinate level contents of the remote sensing scene images. The predictions of
both transformation parameters and classification score are derived from the bilinear CN-
N pooling regression. The whole network is differentiable and can be learned end-by-end
by only acquiring the basic level labels. Through extensive experiments, we demonstrate
that our RTN is able to achieve state-of-the-art performance on several public remote
sensing scene datasets.

1 Introduction
During the last decades, the rapid development of remote sensing observation technologies
has made it easier to accumulate gigabytes of high spatial resolution image data on a daily
basis. Such kind of remote sensing (RS) images are associated with a wide range of applica-
tions such as land use and land cover (LULC) determinations, urban planning, environmental
monitoring, vegetation mapping and natural hazards detection [1, 2, 3]. Hence, the remote
sensing scene categorisation (RSSC) is critically important for human to smart interpret and
understand the contents of RS images.

RSSC referred as categorising the complex arrangement scene images into a set of se-
mantic classes, which is a fairly challenging task due to the following problems. First, RSSC
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(a) (b)
Figure 1: Examples from NWPU-RESISC45 [6].(a) within-class diversity: palace (1st row),
church (2nd row), and railway station (3rd row). (b) between-class similarity: railway station
vs. stadium vs. church; airport vs. railway vs. free way; Dense residential vs. commercial
area vs. industrial area; meadow vs. forest vs. wetland (from top to bottom and from left to
right).

aims to abstract the basic-level semantic information of the RS images from subordinate-
level feature representations, which will produce a semantic gap between the scene labels
and the image contents [4]. Second, unlike natural scene images, RS image datasets have the
characteristics of rich image variations, i.e. large within-class diversity and high between-
class similarity as shown in Fig. 1, which makes the general methods insufficient to challenge
the RSSC tasks [5]. Third, it is even more challenging to precisely predict labels of a large
number of testing data by utilising a small number of training samples [6].

Many methods have been explored to handle the above issues. In the early stage, most
methods rely on specific hand-crafted features for RSSC, but these methods lack the abil-
ity to bridge the semantic gap between the represent features and the ground truth [7]. A
recent trend in RSSC is to take advantages of the convolutional neural networks (CNN) to
learn discriminative feature representation, which has demonstrated superior performances
compared to the hand-crafted methods [8]. However, CNN-based methods usually neglect
the impacts on the classification which are yielded by the aforementioned semantic gaps and
variances problems [9].

To cope the above issues, we design recurrent transformer networks (RTN) for RSSC
tasks inspired by the spatial transformer networks (STN) [10]. In contrast with the original
STN, our RTN can gradually learn to attend on multiple discriminative regions by leveraging
the inter-scale loss between each two STN streams. We briefly summarise our contributions
as follows: (1) Our RTN can progressively localise discriminative regions and learn robust
transformation-invariant features, which reduces the semantic gaps between the basic lev-
el categories and the subordinate level categories. (2) Our RTN guarantees to retain the
information by using bilinear pooling. Meanwhile, it can progressively learn the subtle dif-
ferences for small regions of the images by introducing the inter-scale loss. (3) We conduct
extensive experiments and achieve state-of-the-art accuracy on three challenging RS image
datasets. The RTN can be efficiently trained by end-to-end with only requiring the labels of
the basic level categories.
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2 Related Work

In recent years, RSSC task has been explored extensively. The core of existing methods
is learning robust feature representations. In this section, we will introduce the milestone
works from two aspects which are extracting hand-crafted features and CNN-based features.

Hand-crafted Feature Approaches. In the early stage, remote sensing images were in low
resolution, many approaches referred to utilise hand-crafted features for RSSC tasks. The
handcrafted features incorporate colour, texture and shape information to learn task-specific
descriptors. For example, [11] learns the texture information by applying the completed
local binary pattern (LBP) features. [12] further fuse LBP features with the different local
features such as SIFT and fisher vectors. Considering handcrafted features are insufficient
to compose the rich semantic information of the remote sensing images, many works [13,
14, 15] have been proposed to employ clustering or to encode multi-local features to obtain
more discriminative features. Applying the bag of visual words (BOVW) model [2, 16] to
generate the semantic features is also popular in RSSC domains.

CNN-based Feature Approaches. Recently, deep learning based architectures have been
intensively exploited to improve the performance of RSSC tasks and achieved impressive
results. For example, [17] introduces a two-stage framework to extract deep features from
the pre-trained model, while using a supervised CNN classifier to predict final classification
score. [18] proposes a stacked sparse autoencoder model to learn the feature representa-
tion for the land-use classification task. In addition, [8] provides an analysis of how to
better applying CNN for RSSC tasks and demonstrate their best results produced by using
the combination of the fine-tuning and the linear support vector machine (SVM). As CNN
features are limited by lacking the ability to learn invariance of the input data, [9] proposes
plugging a new rotation-invariant layer into the CNN. Besides, [19] investigates the profits
of the data augmentation methods, such as flip, translation, and rotation. One notable work
has been proposed by [5], which imposes metric learning regularisation on the CNN features
and has achieved state-of-the-art results on popular RSSC datasets.

In contrast with aforementioned methods, our framework can efficiently handle the vari-
ances of the input data by exploiting STN [10] without the data augmentation process, and
meanwhile, learn the discriminative features by utilising bilinear pooling methods [20].

3 Approach

In this section, we will introduce the proposed recurrent transform networks (RTN) for
remote sensing scene categorisation. The core of our RTN is to recursively discover the
transformation-invariant regions and learn the latent relationship based region feature rep-
resentations. As shown in Figure 2, our RTN framework composes of three major parts
which are recurrent warp operation, bilinear pooling operation, and intra-scale loss Lintra
and inter-scale loss Linter. The proposed RTN architecture can automatically discover multi-
scale transformed regions and learn their canonical appearances. With employing bilinear
pooling function and inter-scale loss function, RTN is efficient to handle the variances of
the input data in a mutually reinforced manner and achieve competitive results on the public
RSSC datasets.
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Figure 2: The architecture of recurrent transformer networks (RTN). Given an input image,
the localisation network will learn to predict the transformer parameters. With recurrently
applying the warp operation, the network can progressively attend to the discriminative re-
gions and produce multi-scale relevant sub-images (i.e., three streams including raw image).
The classification loss Lintra is designed to evaluate the results for each stream, while the
inter-scale loss Linter is employed to discover the relationship of the neighbouring streams.
All of the regression layers are based on bilinear pooling (i.e.,⊗). ’conv’, ’pooling’ and ’ f c’
denote the convolutional layer, max pooling layer, and fully-connected layer respectively.

3.1 Recurrent Warp Operation

The recurrent warp operation is to handle CNN variance problems by learning multi-scale
discriminative regions inspired by spatial transformer networks [10]. The original STN in-
cludes multiple independent streams, and each stream learns its own spatial transformation
independently, which neglects the latent relationship of each stream.

To address these disadvantages, we propose recurrent warp operation which extract-
s the relevant multi-scale region-based feature representations progressively. Specifically,
our warp operation runs in a recurrent manner, which can be denoted as

I(s) = fwarp(θ (s)τ(s), I(s−1)), (1)

where I(s) is the s-th scale image ( e.g., I(0) is the raw image), θ s is the transformation
parameters computed by the localisation function θ s = f (s)loc(I

(s−1)), and τ(s) is the target
coordinates of the regular grid in the output image. Each warp operation fwarp has the similar
progress to the original STN [10]. Suppose the i-th target point of the output image as
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Then, it allows doing the warp operations, such as crop, scale, and translation. The warp
operation requires applying a sampling kernel on the input image I(s−1), to produce the value
at a particular pixel in the finer scale image I(s). In this work, we obtain finer scale image
by employing the standard bilinear interpolation, and the i-th target point value of I(s) can be
written as

I(s)i =
H

∑̃
h=1

W

∑̃
w=1

I(s−1)
h̃w̃

max(0,1−|x(s−1)
i − w̃|)max(0,1−|y(s−1)

i − h̃|)), (3)

where H and W denote the height and width of the input image I(s−1). With repeatedly
calling the warp operation, the network can progressively yield multi-scale discriminative
regions.

3.2 Intra-scale Loss and Inter-scale Loss
As the recurrent warp operation produces the relevant regions from coarser scales to finer
scales, we extract feature representation for each stream by the pre-trained deep architecture
(e.g., VGG16 [21] in this work). To maintain the selectivity of the spatial information, we
employ the bilinear pooling method [20] to generate the final classification scores. The
standard bilinear pooling can be written as

B(X ) =
hw

∑
i=1

xixT
i , (4)

where B(X ) ∈ Rc×c denotes the bilinear pooled feature, and xi ∈ Rc denotes the feature
vector at the i-th channel of the given VGG feature X ∈ Rh×w×c. Equation 4 captures the
second order statistics of the feature map. Then, we can apply a fully-connected layer fol-
lowed with a softmax layer to map the bilinear pooled feature to the probability distribution
of the responding category entries.

Based on the generated probability, an alternative way is to optimise it directly. However,
it lacks considering the relationship of the neighbouring scales. To cope this issue, we merge
intra-scale loss for each stream and inter-scale loss for neighbouring streams to optimise the
network. The final loss is defined as

L =
S

∑
s=0

L(s)
intra +α

S−1

∑
s=0

L(s)
inter, (5)

where α is a hyper-parameter to adjust the total loss and learn the latent relationship between
the neighbouring scales. Suppose P(s) and P∗ as the predicted label vector from a specific
scale and the ground truth label respectively, then the intra-scale loss L(s)

intra can be written as

L(s)
intra =−

n

∑
k=1

P∗
k logP(s)

k , (6)
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where n is the number of the classification. To ensure the streams learning in a mutual
reinforcement way, we impose inter-scale loss for the adjoining scales and define it as

L(s)
inter = max(0,

n

∑
k=1

P∗
k (logP(s)

k − logP(s+1)
k )−margin)

= max(0,L(s+1)
intra −L(s)

intra −margin),

(7)

which enforces L(s+1)
intra < L(s)

intra +margin during the training phase. In such way, each scale
can refer to the adjoining scales to progressively learn sub-region feature representations.
With gradually attending at the finer scale, the extracted features are able to decrease the
semantic gap by degrees and boost the performance of the proposed architecture on the
RSSC datasets.

3.3 Backpropagation of the Model
The framework of our RTN has been demonstrated as above, we will illustrate the backprop-
agation process of the RTN. The warp operation and the bilinear pooling have been proven
by [10] and [20], which is differentiable within the CNN. We will provide the update of a
specific network parameter in the scenarios of merging inter-scale and intra-scale loss func-
tions. Without loss of generality, we consider a convolutional weight w̄ in the VGG-based
feature extraction part at scale s. Its update can be calculated by the stochastic gradient
descent (SGD)

w̄ =w̄− η
m

m

∑
i=1

∂Li

∂ w̄

=w̄− η
m

m

∑
i=1

∂ (L(s)
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inter,i)

∂ w̄

=w̄− η
m

m

∑
i=1

((1+αδ (s−1)
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i )
L(s)
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(8)

where η denotes the learning rate, Li refers to the value of the loss function at the i-th
training example, m is the batch size, and α is introduced in Equation 5. δ is associated with
Equation 7 to denote the options of the returned value, which is defined as

δ (s−1)
i =

{
1, if L(s−1)

intra,i < L(s)
intra,i −margin

0, otherwise
. (9)

More specifically, the value of the δ refers to the degree of relevance of the adjacent scales.
For instance, if the intra-scale loss of the I(s) is significantly higher than I(s−1), it acquires
increasing the learning rate of weights by α to reduce the distances between I(s) and I(s−1),
and vice versa.

4 Experiments

4.1 Datasets
We conduct experiments on three publicly available remote sensing image datasets, including
NWPU-RESISC45[6], UC Merced[22], and AID[23]. We provide a summary statistics and
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show them in Table 1. For the NWPU-RESISC45 dataset, we set the ratios of the training set
to 10% and 20%, and the left 90% and 80% for testing. For AID and UC Merced datasets,
the training ratios are set to 20% and 80% respectively, and the rest of the data for testing.
More details of the split information can be found in Table 2.

Table 1: The statistics of the datasets used for experiments.
Datasets Images per class Scene Class Total Images Image size

NWPU-RESISC45 [6] 700 45 31500 256×256
AID [23] 220∼420 30 10000 600×600

UC Merced [22] 100 21 2100 256×256

4.2 Implementation Details

We evaluate our framework with employing VGG16 [21] architecture, which has been pre-
trained on the ImageNet. ’conv5_3’ features are extracted to predict the classification score.
The localisation net is composed of two convolutional layers, each of which is followed with
a max-pooling layer. Then, we compute the bilinear pooling features, with two subsequent
fully-connected layers to predict the transformation parameters. All the input images are
resized to 224 × 224 resolutions.

We set the initial learning rate as 0.0001 and 0.01 for the localisation net and classifi-
cation net with weight decay rate 0.0005. The input batch size is 36. To keep the model
training stable, we empirically set the α and margin in Equation 5 and Equation 7 as 0.1 and
0.05. The model is roughly trained for 80k iterations with standard SGD.

4.3 Experimental Results and Comparisons

Existing methods for RSSC tasks can be partitioned into two categories, which are hand-
crafted feature approaches and deep CNN-based feature approaches. We show the classifi-
cation results produced by some representative methods. Note that the relevant results are
borrowed from the original papers. As shown in Table 2, we can obvious that our method
outperforms the hand-crafted feature approaches by a significant margin. CNN-based fea-
ture approaches have a much better performance on predicting the categories for RSSC tasks
compared with the hand-craft feature approaches. From Table 2, we can obvious that both
GoogLeNet [24] and VGG16 [21] are able to obtain the acceptable results on three experi-
ment datasets. On UC Merced dataset [22], VGG16 with the support vector machine (SVM)
gets 97.14% accuracy, which is only 1.82% lower than our RTN framework. Such dispari-
ties become larger and larger, along with the growing size of the datasets and the number of
training samples.

The best accuracies on RSSC datasets are made by the recently proposed D-CNN method,
which takes the metrics learning as the regularisation term [5]. Compared to the state-of-the-
art results of D-CNN, our RTN achieves improvements to the categorisation accuracies on all
experiment datasets. Specifically, we obtain 92.44% on AID database, with 1.62% relative
gain. Moreover, we provide the confusion matrices of our RTN and D-CNN in the same set-
tings, to demonstrate the detailed differences between two methods. As shown in Fig. 3, our
RTN achieves 76% classification accuracy on the most challenging category-Palace, with
3% gain compared to D-CNN. Additionally, 32 out of 45 classes obtain better or the similar
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result for per-class accuracy. This leads to our RTN attain a new state-of-the-art performance
for RSSC tasks.

Table 2: Comparison results of our RTN to baselines and previous work. We experiment the
accuracy in different training ratios on three public RSSC datasets.

Method NWPU-RESISC45 AID UC-Merced
10% 20% 20% 80%

Handcraft
Feature

SPM+SIFT [25] 27.83 32.96 38.43 60.02
LLC+SIFT [26] 38.81 40.03 58.06 72.55

BoVW+SIFT [27] 41.72 44.97 62.49 75.52

Deep
Feature

GoogLeNet+SVM [24] 82.57 86.02 87.51 96.82
VGG16+SVM [21] 87.15 90.36 89.33 97.14

D-CNN with GoogLeNet [5] 86.89 90.49 88.79 97.07
D-CNN with VGG16 [5] 89.22 91.89 90.82 98.93
RTN with VGG16 (ours) 89.90 92.71 92.44 98.96

(D-CNN method) (Our RTN)
Figure 3: Confusion matrices of D-CNN [5] and our RTN on the NWPU-RESISC45 dataset
(20% ratio for training).

Table 3: The classification results of our RTN framework at the different scales on NWPU-
RESISC45 dataset (20% ratio for training).

Scales. scale 0 scale 1 scale 2 scale (0+1)
scale (0+1+2)

w/o Linter

scale (0+1+2)
w/ Linter

Acc. 91.20% 91.84% 90.20% 92.35% 92.49% 92.71%

4.4 Qualitative Analysis and Visualisations
We show the accuracy of the attended regions from multiple scales of our RTN framework
for qualitative analysis. All experiments are evaluated at the same settings with the different
scales. As shown in Table 3, scale 1 presents the higher accuracy than both scale 2 and
scale 1 (e.g., the raw image). This reflects the finer scale is discriminative to corresponding
categories, but it should not zoom in without any limitation. The finer scale learns the subtle
differences of the images but meanwhile appears incorporating less information. An efficient
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Figure 4: Visualisations of test images of our method on NWPU-RESISC45 dataset. The
first row are the raw images and the rest rows are respect to the finer scale images.

way is to stack multiple scales to generate the classification results (e.g., scale (0+1) achieves
92.35% accuracy). With imposing the inter-scale loss Linter, our RTN obtain the best result
(92.71%), even surpassing scale (0+1+2) without using Linter. It confirms the truth of Linter
can strengthen the relevancy of abutting scales during learning.

To better understand our RTN model, we visualised the model responses for specific
input images. We have randomly picked six groups of test images and have shown the raw
images and the attended finer scale regions in Figure 4. The visualisations suggest that
our RTN is capable of removing cluttered backgrounds and gradually focusing on specific
discriminative parts. Apart from learning the relevant regions, our RTN also enables to
discover the canonical appearances of the finer regions and improves the final classification
results.

5 Conclusions
In this paper, we have presented novel recurrent transformer networks (RTN) for remote
sensing scene categorisation. The model learns invariance of the input data, which is achieved
by progressively focusing multiple discriminative regions from coarser scales to finer scales
and leveraging the extra inter-scale loss for the neighbouring regions to enforce the sub-
regions learning in mutually reinforcement way. The proposed framework can be trained
end-by-end and achieves state-of-the-art accuracy on the public RSSC datasets.
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