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Abstract

Knowledge Matters: Importance of Prior Information for Optimization [6], by
Giilgehre et. al., sought to establish the limits of current black-box, deep learning tech-
niques by posing problems which are difficult to learn without engineering knowledge
into the model or training procedure. In our work, we solve the previous Knowledge
Matters problem with 100% accuracy using a generic model, pose a more difficult and
scalable problem, All-Pairs, and advance this new problem by introducing a new learned,
spatially-varying histogram model called TypeNet which outperforms conventional mod-
els on the problem. We present results on All-Pairs where our model achieves 100% test
accuracy while the best ResNet models achieve 79% accuracy. In addition, our model
is more than an order of magnitude smaller than Resnet-34. The challenge of solving
larger-scale All-Pairs problems with high accuracy is presented to the community for
investigation.

1 Introduction

Deep neural networks are powerful functional approximators, allowing for the learning of
complex tasks that were not solvable by traditional machine learning methods. Recently, [6]
suggested that there exist problems that neural networks would not be able to solve without
the guidance of human insight; they define and study the Pentomino problem as an example
of this class of problems. For the Pentomino problem, we demonstrate that extra knowledge
is not necessary by solving the problem with a small, deep neural network (DNN). Having
found a solution to Pentomino, we introduce a new, scalable problem and present progress
toward its solution.

To understand the limits of weakly supervised learning applied to generic models, we
divide the task of solving a problem into the application of known techniques and the
engineering of the system (the model plus training data and procedure). The palette of known
techniques is constantly improving and is what enables solving the Pentomino problem with
current techniques. The incorporation of explicit knowledge into an engineered solution can
be estimated by how many problem specifics can be inferred/discovered by an inspection
of the model architecture and the training procedure. Common deep-learning techniques
are a codification of knowledge into reusable components which require minimal insight
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to select. For instance, batch norm [10] speeds convergence and reduces hyper-parameter
sensitivity, jump connections [7, 27] enable deeper models, convolutions [13, 14] are useful
in spatially-invariant vision problems, and sparse activations [25, 29] reduce overfitting by
restricting the flow of information. Even simple observations, like these, allow the practitioner
to select components suitable for the problem. These techniques are all excellent examples of
knowledge refined into heuristically selectable, generic techniques.

We lack ready-to-apply techniques for some problems and much of the research in the
field moves us toward more turn-key application of learning algorithms; for example, the
latest AlphaGo [23] is trained without expert human examples. Some examples of the work
done to engineer problems with human knowledge are engineering model sub-components
to include problem details and adding sub-goal labels or objective functions. Successful
engineering of a solution for a particular problem can lead to either a specific solution only
applicable to the problem studied or, more usefully, to broadly reusable techniques or insights.
The later outcome is our goal in presenting the following contributions:

1. demonstration of solving the Pentomino problem from Knowledge Matters [6] with
conventional techniques (both model and training)

2. new, scalable challenge problem, All-Pairs, with (effectively) infinite data [9]
3. sampling of existing techniques’ performance on All-Pairs as baselines
4. new, generic model, TypeNet [9], which out-performs the baselines on All-Pairs.

The All-Pairs dataset generator and TypeNet reference code are available:
https://github.com/apple/ml-all-pairs.

2 Related Work

Our work spans two distinct areas of machine learning: learning under weak supervision and
extracting relational information from high-dimensional data. By weak supervision, we mean
that our model is required to solve a high-level task such as the binary classification proposed
on the left of Figure 1 by observing only raw pixels.

Prior work in weak supervised learning (WSL) in the image domain has focused on
image segmentation by classifying them with a standard multi-class loss objective [18] or by
utilizing an alternate loss such as a score-based [3] objective. Unsupervised representation
learning can also be used to aid the model in learning the end objective. The recent work of
Learning to Count [17] proposed a method for representation learning in an unsupervised
setting by using a pre-trained network to learn counting of visual primitives. This method
works well when the features extracted from the pre-trained network are semantically relevant
to the current learning objective. Our work differs from this and the WSL objective in the
amount of supervision provided to the model. We focus on supervised tasks where a model is
not provided with sub-problem class labels (or any other structured, supervised information)
and needs to learn a high-level representation of the visual scene using few binary labels for
each whole image.

Extracting relational information with neural networks has been studied in many settings
from text-based relationships [2, 30] to visual query answer (VQA) models such as the recent
work of Relational Networks [21] and Show-Tell-Attend [32]. Relational Networks have been
used to learn relationships between objects in a scene given a rich textual query, such as the
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CLEVR dataset [11], which provides input in the form of an image coupled with a textual
query. Despite having a pair-wise structure that we intuitively think is useful for our All-Pairs
problem, a Relational Network [21] does not solve our proposed dataset (Section 4). To solve
our problem, we introduce a model called TypeNet which aggregates channel-wise statistics
and solves the overall task by combining these statistics.

Our TypeNet model takes inspiration from winner-take-all (WTA) strategies [15, 26]
and can build a set of problem-related, local statistics to combine for predicting the end
objective. We demonstrate empirically that TypeNet outperforms state-of-the-art models such
as ResNet18, Resnet34 [7], VGG19 & VGG16 with batch norm [24], and InceptionV3 [28]
on the proposed All-Pairs problem.

3 Solving the Pentomino Problem

TypeNet
fc + elu + BN + Adam

Accuracy

False Label True Label
I 'm . lm I —
0.5
f ; 106 107 108 10°
Pentomino Sprltes Total Training Samples Used (epochs x batch_size)

Figure 1: Left: The Pentomino sprites and two examples illustrating the frue and false classes.
Right: Test accuracy (median and inner quartiles, 10 trials) on the Pentomino problem with
and without modern training advances. Note, log-scale of x-axis.

Knowledge Matters [6] explores the extent to which neural networks are able to learn
problems given minimal supervised information. Their formulation has a fully defined loss
function; however, the gradient of the loss with respect to the parameters provides no direct
information about potentially useful subtasks such as segmentation, object classification, or
counting. They concluded that the networks and training methods they tested converged to a
local minima.

The Knowledge Matters demonstration utilized the Pentomino dataset, which is formed
from a set of sprites [5] shown in Figure 1. The dataset is generated by placing three sprites
onto a canvas C € R®*%*_Each sprite undergoes a random rotation (0°, 90°, 180°, or 270°)
and integer scaling (1x or 2x). The goal of the neural network is to predict a 1 if the rotated
and scaled sprites in an image are the same and O otherwise. One possible solution to the
Pentomino problem is to learn to segment, classify, and count the number of underlying
objects in the image. The challenge (claimed impossible in [5]) is to find a solution using a
generic network given only the binary label for each image.

Giilcehre et. al [6] observed that “black-box machine learning algorithms could not
perform better than chance on [the Pentomino problem].” Decomposing the problem into
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two stages however, made the task easily solvable. The first stage in the decomposition
was a classification step, where extra label information was provided to the model. Given
the predicted classes, the second stage projected this output to the Bernouili log-likelihood
objective. Using some of the recent advances in DNN training, we are able to solve the
original problem with 100% accuracy as demonstrated in Knowledge Matters; we do so
without the requirement of an intermediary model or the addition of extra information. We
also experimented with a reproduction of the model proposed in the paper and found that
given enough time (over 1000 epochs) the model does make progress on the Pentomino
problem, as shown in Figure 1 in gray. This observation is in line with recent insights of [8]
that discuss the effects of training duration and batch size.

The fully-connected (fc) model presented in [6] was composed of layer sizes [2050, 11,
1024] and trained with ADADelta [33] and weight regularization. The 11-unit layer served
as a bottleneck to bring structural information into the network. We leverage four recent
advances to solve the Pentomino problem: Batch Normalization (BN) [10], Exponential
Linear Units [1], the Adam optimizer [12], and Xavier initializations [4]. In constrast to
the large model employed in [6], we use a fully-connected network with layer sizing of
[32,64,12,32,8]; this translates to a 98.5% reduction of the total number of model parameters.
Comparable in size to the largest training sets used in [6], 486k samples were used for training
and 54k samples were held out for testing.

Giilgehre et. al [6] were only able to train black-box (generic), fully-connected models to
achieve 50% accuracy on the Pentomino dataset. Their best model, after significant hyper-
parameter search, resulted in a 5.3% training and 6.7% test error on the 80k Pentomino training
dataset. This performance was achieved via a two-stage network that induced structural
information into the neural network. On the same training set, we achieved a 1% error using
a black-box neural network with the 5-layer network described above. Figure 1 shows the
training accuracy for the original Knowledge Matters network (gray), our modification (blue),
and our TypeNet model (green, see Section 5.1) on the Pentomino problem (note the log scale
on the x-axis).

4 The All-Pairs Problem

Figure 2: All-Pairs examples from 2-2 on the left to 8-8 on the right. The bottom row is true
and the top row is false.

4.1 Definition and Examples

Extending the ideas in the Pentomino problem, we use anti-aliased white symbols on a black
background to construct the following new problem. The N-K All-Pairs problem contains
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2N symbols from an alphabet of K choices. Each example is true if each of its symbols pairs
with a symbol of the same type without reuse, and false otherwise. Symbols are positioned
randomly with no overlap. Symbols are of similar scales, ranging from 10-18 pixels across,
and have differing symmetries (for instance, some are rotationally invariant, while others
are not). The exact structure and variations of each symbol are given by the generator code
supplied online [9].

Each symbol is shown below with the number of unique ways it can appear, as configured
in our experiments. In contrast, the Pentomino problem used 8 variations for each symbol.
The symbols are used in the order given, so the 4-4 All-Pairs problem will use circle, line,
cross, and angle. For this work a 76x76 image is used for N < 6 and a 96x96 image is used
for larger V.

id name examples cardinality  id name examples cardinality
1 circle SjiTE=IE 165 10 box FERAERE 480
2 line EENNS 174 11 box-diagonal BEERE 518
3 cross HIggNIVS 453k 12 barbell NERHNHE 78
4 angle ﬂ.“ﬂu 39k 13 dot-line HRIEEER 156
5 3-star 1.43M 14 zZ 518
6 theta 20k 15 triangle-lid 1036
7 phi 20k 16 dot-mid-line EHEEDHA 78
8 2-circle 7k 17 hourglass BHEEER 518
9 circle-3star [ENEIRE 7.15M 18 triangle 11.8k

Figure 2 shows a true and a false example for the 2-2 to 8-8 All-Pairs problem. A data
generator for All-Pairs is used to generate on-demand, unique training examples (the 4-4 All-
Pairs problem has approximately 10?® unique images), and a fixed validation set is generated
at the start of training. The separability of the eighteen symbols was confirmed by training a
simple conv-net to 100% test accuracy in 350k training samples.

4.2 Comparison with Conventional Results

Conventional algorithms from the literature have difficulty with the 4-4 All-Pairs problem,
as shown in the following table. Clearly, of the hundreds of conventional, valuable DNN
algorithms, there may exist some that can solve the 4-4 problem. One open challenge is to
identify them and extend training techniques to efficiently solve these types of problems. Of
the runs of each algorithm summarized below, none achieved more than 92% test accuracy
after training on 100M samples. An expert human made one mistake in 100 samples for each
of the All-Pairs problem from difficulty 4-4 to 7-7, taking 8-9 seconds to classify each image.
Humans use sequential attention and working memory to do the All-Pairs task, suggesting the
task as a benchmark for building sequential models. TypeNet consistently achieves 100% test
accuracy in the 4-4 All-Pairs problem using 20k test samples.
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algorithm model size normalized size accuracy std deviation
TypeNet [x10] 918k 1.0 1.000 0.000
Expert Human [x 1] - - 0.990 -
Relational Net [x10] 630k 0.7 0.867 0.078
Inception v3 [x10] 22M 24 0.803 0.079
Resnet-34 [x10] 21M 23 0.788 0.068
Resnet-18 [x10] 11M 12 0.711 0.157
Vggl9 [x6] 139M 151 0.509 0.002
Vegl6 [x3] 134M 146 0.506 0.002

5 Toward an All-Pairs Solution

Algorithm 1: TypeNet algorithm
Data:

Number of layers, N, and Ny.
— Number of type branches, N;, and spatial branches, N;.

Activations, AC, and convolutions, CONV, for feature extraction layers.
— Activations, A, and n 1x1 convolutions, CONV 1x1, for type matching.

Spatial diversity operations, SPATIAL.

Activations, AFC, weights, W, and biases, B, for fully-connected layers.

1 C = IMAGE # convolution block
2 fori=[1—N.)do

3 C = Ac;(Conv;(C))

4 C = BATCHNORM(C)

s T=YM,A(Convix1;(C))

6 Y= CONCATENATE([ Yoo SPATIAL(T) for i = [0 — Ny) ])

=

for i = [0 — Ny) do # fully-connected layers
Y = AFC,‘(VVI'Y+BI')

Y = BATCHNORM(Y)

10 return SOFTMAX(Y)

oo

o

5.1 Type-Net Model

After verifying that a fully-connected model can easily solve the 4-4 All-Pairs problem from
the histogram of symbols in each image, we designed and tested a generic model capable
of learning a similar, whole-image statistic. The resulting model was created using insights
derived from the All-Pairs problem, but does not make use of explicit problem details or
enhanced training data.

We refer to the resulting network as a TypeNet because it estimates the affinity of each
receptive field to n ideal types (via a dot-product) and then aggregates those type-affinities
over the spatial extent. This spatial summation is global for solving the All-Pairs problem,
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but could be spatially restricted to produced learned features similar to histogram of gradients
(HOG) found in [16]. A learned attention mask could also generalize the summation to salient
areas of each image.

Model details can be found in the supplementary material and in the online sample
code found at [9]. The general algorithm for TypeNet is presented in Algorithm 1. The
algorithm begins and ends conventionally with a convolution stack and fully-connected layers,
respectively. Lines 5 and 6 show the key steps for the algorithm:

e line 5, the 1x1 convolution implements a dot-product similarity with a learned kernel,
these are the “types” of TypeNet.

e line 5, the activation, A;, applied was experimentally studied:

— A; = SOFTMAX in the feature dimension, gives a soft N,-hot representation here
which was seen to reduce variance in training times).

— A; = IDENTITY was the most versatile activation and can be seen as creating a
“type” difference operator

e line 5, superposition (via summation) of learned template matching
e line 6, diversify spatially with non-linear operators such as MAXPOOL.

The goal of introducing TypeNet is to expand the palette of techniques available to solve
similar types of problems and decrease the problem specific reasoning required in similar
domains (such as parity, counting, holistic scene understanding, and visual query answer),
which can be solved from a histogram-like summary of local statistics.

5.2 Contrast to Relational Methods

Relational neural learning generally accomplishes it’s goal by learning a functional over (i, j)
tuples in a latent feature space f. In Relational Networks [21] for example, the model learns
two functionals [k, g] (parameterized by deep-neural networks) that exhaustively operate over
all (i, j) pairs in the latent feature space of a deep-convolutional network as shown in the table
below. Memory Networks [30] on the other hand learn a probabilistic relationship between
the input query (embedded into a feature representation) f; and an associated set of memory
vectors M = {my,...m;,my}, followed by a smoothed weighting against an embedded query
vector ¢;.

Relational Networks Memory Networks
gL Xh(fi fi) | pi=softmax(ff,m;) o0;=Y;pici

Relational Networks [21] have high computational complexity when the dimensionality
of the feature-space f is large. Memory-networks on the other hand scale proportionate
to the number of embedded memories dim(M). Our objective with TypeNet is twofold:
relax computational constraints compared to these relational models and incorporate the
probabilistic smoothing of Memory Networks [30].

We reduce the computational complexity by forcing the model to divide the input repre-
sentation through a set of N; branches. This division allows the model to learn a disparate
feature representation per branch. Rather than learning over every (i, j) as in Relational
Networks [21] we approximate this with a spatial sum after our branch-divide strategy.
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During our branching strategy we do a sum across an activated feature space; this can
be interpreted as a probabilistic weighting of the features of each individual branch against
each other. Training TypeNet to convergence is 8-10 times faster than training a comparable
Relational Network and produces more accurate results in the weak-supervised learning
scenario of All-Pairs.

5.3 All-Pairs Result

[
I~

|
6-6 I—{ } |
7-71 | 1 | D—EEl—l
0.92 0.94 0.96 0.98 1.00 25 50 75 100 125 150 175 200
accuracy training samples (millions)

Figure 3: Training results, showing validation accuracy and total number of training sample
for TypeNet on increasingly difficult versions of All-Pairs, from 4-4 to 7-7. Shading shows
the distribution over 10 trials. Note, conventional DNN models cannot solve the 4-4 problem.

As described, the TypeNet for the All-Pairs problem has 1.04M trainable parameters (many
times smaller than the baseline models). Unless otherwise noted, we used the following
training setup for the TypeNet results on the All-Pairs problem: 4 GPUs, batch size 600,
Adam with learning rate = 0.001 and no weight decay, cross-entropy loss, test results reported
every 50k training samples, and 100M total training samples. A 100M sample training run
typically takes 20 hours on 4xP100 GPUs.

The main hyper-parameters and architecture-variations explored are the feature activation,
number of branches (k), and number of features (n). Details of those studies can be found
in the supplementary material. We concluded that £k = 2 and n = 64 performed well on
the All-Pairs problem. In the case of the 4-4 problem (see Figure 7.2), we observed that
the utilizing only 1 branch resulted in requiring approximately 10M more samples to reach
convergence. Increasing the number of features to 96 results in slightly lower training times,
at a cost of a larger model. All options explored reached 100% accuracy.

The TypeNet approach cannot easily solve every All-Pairs problem; Figure 3 shows results
for the 4-4 to 7-7 All-Pairs problem. We see an increase in the magnitude and variance of the
number of samples needed for convergence. The plot shows the results of 10 training runs
for each difficulty level; TypeNet can solve the first 3 of these challenges to 100% validation
accuracy. No model and training methodology has been found that solves the 7-7 problem to
100% accuracy. An inspection of the errors made by the best 7-7 solution shows that they are
systematic, unambiguous errors.
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Figure 4: Training the TypeNet on 4-4 All Pairs with 100M samples drawn from a fixed-size
training set.

5.4 Training Set Size

In Figure 4, we show the effect of reducing the cardinality of the training data from effectively
infinite to sizes smaller than the total number of training samples presented. A training set
cardinality of 100k is minimal for 90% test accuracy and 500k is minimal for some trials to
reach 100% test accuracy. The increased variance in both train and test accuracy at cardinality
30k is interesting. We hypothesize this is due to sampling noise for these small sizes leading to
significantly different train and test distributions. For larger cardinality, both sets consistently
represent the same distribution; for smaller sets, learning is limited enough that distribution
differences are not apparent.

To avoid the overhead of datasets on disk, varying the training set cardinality is accom-
plished using an array of seeds for the data generator. Each seed is used to generate 1k
samples. When each seed in the list has been used once, the list is shuffled and the process
starts back at the beginning of the list.

5.5 Other Applications

TypeNet was evaluated on other datasets to determine its applicability to common classifica-
tion problems. The following table presents results for the test accuracy from four training
runs. For training, each dataset was augmented by random original-size crops (padding of 4),
random rotations from 0° to 4°, and normalized by subtracting 0.5. CIFAR10 and Fashion
MNIST [31] were also augmented with random horizontal flips. A detailed discussion and
comparison with a simple convolutional net can be found in Supplement 7.4.

ConvNet TypeNet
dataset accuracy # parameters accuracy # parameters
MNIST | 0.9953 £+ 0.0002 2M 0.9971 £ 0.0006 1M
Fashion-MNIST | 0.9409 £ 0.0005 2M 0.9346 + 0.0011 1M
CIFAR10 | 0.7773 £ 0.0013 2.5M 0.8820 + 0.0080 1M
4-4 All-Pairs | 0.8080 £ 0.0925 9.9M 1.0000 £ 0.0000 1M
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For these classification tasks, adding more spatial information via two parallel pathways
branching from the similarity step (algorithm line 5) and joining at the concatenation step
(line 6) was useful. One of these extra pathways has a MAXPOOL3X3 and the other has
AVGPOOL3x3 after the similarity step. This enhanced model also solves the All-Pairs
problem and has 10% more parameters than the simpler TypeNet presented as a minimal
version for All-Pairs.

6 Conclusion

In this work, conventional training methods and model features have been demonstrated
to solve a previously unsolved task by training a black-box model to solve the Pentomino
problem. The All-Pairs problem is introduced as a challenge to the research community by
measuring the limits of conventional model performance, introducing a model advancement
(TypeNet) to solve such problems, and measuring the limits of TypeNet on the All-Pairs and
conventional image classification benchmarks.

Future work will aim at improving sample complexity of learning in WSL environments.
Most existing gradient based WSL models (including TypeNet) require millions of samples
(see Figure 3 (right)). Humans on the other hand, learn from very few labels; paralleling this
is quintessential for the progress in the domain. The following extensions to the TypeNet
model and its training may prove useful or generate further insights: (1) filtering the data
generator output to study supervised and unsupervised curriculum learning, (2) generating
multi-scale statistics before the final fully-connected layers, (3) annealing a so ftmax-type
activation during training to help the network seek better minima, and (4) using the TypeNet
structure in a residual architecture by adding the post-superposition block of features back to
the conv block. The hope is to direct research toward valuable investigations and to promote a
methodology of falsifiable scientific claims both by falsifying previous claims and by making
further claims which, if we believe Popper [19], are likely to be false.
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