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Abstract

Variational Autoencoder (VAE) has achieved promising success since its emergence.
In recent years, its various variants have been developed, especially those works which
extend VAE to handle sequential data [1, 2, 5, 7]. However, these works either do not
generate sequential latent variables, or encode latent variables only based on inputs from
earlier time-steps. We believe that in real-world situations, encoding latent variables at a
specific time-step should be based on not only previous observations, but also succeeding
samples. In this work, we emphasize such fact and theoretically derive the bidirectional
Long Short-Term Memory Variational Autoencoder (bLSTM-VAE), a novel variant of
VAE whose encoders and decoders are implemented by bidirectional Long Short-Term
Memory (bLSTM) networks. The proposed bLSTM-VAE can encode sequential inputs
as an equal-length sequence of latent variables. A latent variable at a specific time-step
is encoded by simultaneously processing observations from the first time-step till current
time-step in a forward order and observations from current time-step till the last time-
step in a backward order. As a result, we consider that the proposed bLSTM-VAE could
learn latent variables reliably by mining the contextual information from the whole input
sequence. In order to validate the proposed method, we apply it for gesture recognition
using 3D skeletal joint data. The evaluation is conducted on the Chal.earn Look at People
gesture dataset and NTU RGB+D dataset. The experimental results show that combining
with the proposed bLSTM-VAE, the classification network performs better than when
combining with a standard VAE, and also outperforms several state-of-the-art methods.

1 Introduction

Because of its great success, Variational Autoencoder (VAE) has been extensively adopted
in the communities of computer version and natural language processing. One of its major
strengths is that it is trained to robustly encode latent variables based on input samples.
During training, latent variables are encoded by combining means and variances sampled
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from the input data, especially, variances are weighted by a random noise. Thus, the VAE
is noise-resistant. During testing, sampled variances are eliminated so that encoding is only
based on sampled means. From a signal decomposition point of view, the mean and variance
are considered as the "low-frequency" approximation part and "high-frequency" detailed part
of the original signal, respectively. Thus, latent variables encoded from sampled means could
be considered as a robust generalization of the original data.

However, a critical assumption of VAE is that the input data should be independent and
identically distributed (i.i.d.), which impedes its further applications in time series analysis.
In recent years, several works have been proposed to eliminate such assumption [1, 2, 5]. For
example, in [1, 5], encoders and decoders are implemented by Recurrent Neural Networks
(RNNSs), and latent variables are encoded based on the output of RNN at the last time-step.
However, in this case, only one hidden variable is encoded based on the global context
of the given sequence. Moreover, [2] considered encoding sequential latent variables. In
[2], latent variables at a specific time-step are encoded based on observations from the first
time-step till current time-step. However, sampling hidden variables at a specific time-step
only based on early observations may lose useful contextual information from succeeding
samples of the sequence. Based on such concern, we derive the bidirectional Long Short-
Term Memory VAE (bLSTM-VAE) which could encode latent variables by forwardly tracing
previous observations and backwardly tracing later observations.

Similar to the standard VAE, the proposed bLSTM-VAE also contains a mean encoder,
a variance encoder, and a decoder, which are theoretically derived to be implemented by
bidirectional Long Short-Term Memory (bLSTM) networks. Thus, bLSTM-VAE retains the
VAE’s feature of encoding robust latent variables based on sampled means from the input
data, and further endowed by bLSTM to learn the global contextual information from the
whole sequence. As a result, the proposed bLSTM-VAE could be an effective tool to extract
features from data with high variations, e.g. human 3D skeletal joint data.

Human 3D skeletal joint data is one of the most important modalities for human behavior
modeling and analysis because of its various advantages. For example, it is a scene-invariant
representation of the body which is the object of the analysis interest. However, there are
still two main difficulties for effectively utilizing such data. On one hand, skeletons extracted
by Kinect are not always reliable since which could be distorted or even not extracted from
the body. On the other hand, as a geometric representation, skeletons have subject variations
because different subjects may have different characters of joints (e.g. lengths). Thus, there
is a concern that the proposed bLSTM-VAE can effectively handle such sequential data with
large variations. For verification, we further develop an end-to-end model for skeleton based
gesture recognition. The proposed model consists of a bLSTM-VAE feature learning network
for encoding skeletons into a latent space, and a multi-layer bLSTM gesture classification
network whose inputs are encoded latent sequences. This model is evaluated on Chalearn
Look at People (LAP) 2014 gesture dataset [4] and NTU RGB+D action dataset [19].

This work makes following contributions. 1) we derive the bLSTM-VAE under the theo-
retical framework of VAE; 2) we propose a skeleton based gesture recognition method which
jointly encodes features using bLSTM-VAE and recognizes gestures with a bLSTM classifier;
3) we conduct extensive experimental evaluations on two large scale gesture databases.

The rest of the paper is organized as follows. Section 2 reviews recent advances of VAE
and related works for skeleton based gesture analysis. Section 3 introduces the proposed
bLSTM-VAE. Section 4 presents the experimental results of the proposed method on two
large scale gesture recognition datasets and comparisons with related methods. Section 5
discusses and concludes the results of this paper.
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2 Related Work

Variational Autoencoder [11, 18] is proposed to approximate an intractable true posterior
P(z]x) with a constructed distribution Q(z|x) by minimizing the Kullback-Leibler (KL) di-
vergence between them. In computer vision community, VAE has been used in many tasks,
such as hand pose estimation [25], action unit intensity estimation [21], and video trajec-
tory prediction [24]. However, VAE assumes input samples should be i.i.d. which cannot
be fulfilled by time series data. In recent years, researchers attempted to extend VAE to
handle sequential data. In [5] and [1], latent variables are encoded based on the last output
of the encoding RNN whose input is a sequence. During the decoding phase, a decoding
RNN receives the latent variable at the first time-step and further generates the reconstructed
sequence. In such condition, encoded hidden variables are global respect to the whole in-
put sequence, which makes this model inapplicable for encoding frame-wise features. [2]
is proposed to sequentially encode time-step specific latent variables, i.e. encoding z; from
observation sequence x;., using RNNs, which enables us to encode frame-wise features.
However, a limitation of this work is that z; is encoded only based on previous history ob-
servations. However, sometimes we can encode more accurate z; if associating the future
observations. Based on such concern, we propose a novel variant of VAE to encode latent
variables not only based on previous observations, but also future samples.

Skeleton based gesture analysis is one of most popular tasks in computer vision com-
munity. During the past decade, various handcrafted features have been developed [17, 22,
23, 28, 29]. Moreover, deep neural networks have also been widely used in gesture recog-
nition tasks and achieved inspiring successes, for example Restricted Boltzmann Machines
(RBMs), Recurrent Neural Networks (RNNSs), and LSTMs [3, 13, 14, 15, 20, 26, 27]. How-
ever, except work [14] which considered the unreliability of collected skeleton data, most
other works were mainly general gesture classification methods. In this work, beside de-
riving the theoretical background of bLSTM-VAE, we also conduct experiments to discuss
it from a feature learning point of view to show that bLSTM-VAE as an effective tool for
encoding skeleton features while coping with the data unreliability and temporal variation
caused by different subjects.

3 Proposed method

Figure 1 describes the encoding and decoding processes at time-step ¢. For a given observa-
tion sequence xj.7 whose temporal length is 7', a latent variable z; is encoded by forwardly
processing samples from x; to x; and backwardly processing samples from x7 to x;. In this
section, firstly we derive the proposed bLSTM-VAE as well as its optimization criterion, and
describe how the encoder and decoder can be implemented by bLSTM networks. In addition,
we introduce the detail of the multi-layer bLSTM network.

3.1 Bidirectional Variational Autoencoder

Given a sequential observation x;.7 which is generated by a latent sequence z;.7. Generally
we can define P(z|x;.7), the probability of sampling z, at time-step ¢ which could contribute
to generate x;.7. More concretely, we define the sampling process is performed by two steps:
a). Forwardly tracing observations from x; to x;; b). Backwardly tracing observations from
xr to x;, where x7 indicates the last frame. Then we can rewrite P(z|x.7) as P(z \m ,ﬂ)
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Figure 1: Graphical Representation of the proposed Bidirectional Long Short-Term Mem-
ory Variational Autoencoder (bLSTM-VAE) for encoding latent variables at the time-step 7.
Solid red lines denote the encoding process, in which arrows to the right denote the forward
processing and arrows to the left denote the backward processing. Solid blue lines describe
the decoding process, similar with encoding process, right arrows denote forward processing
and left arrows denote backward processing. Both encoding and decoding processes can be
implemented by bLSTM networks. Besides, arrows with dash lines denote operations are not
active when encoding and decoding variables at current time-step.

Here x15 denotes samples processed in a forward order, and %7 denotes samples processed
in a backward order.

Adopting the philosophy of VAE, one may hope to find a distribution Q(z |x15,%:7) to
approximate P(z|x14,%.7) by minimizing the Kullback-Leibler (KL) divergence between
them. Starting from the definition of KL divergence we can have:

D1 [Q(z|xts, X )| |P(ze |x1s, X7 )]
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From Figure 1 we can see that forwardly generating x;.,—; and backwardly generating
Xt+1.7 do not depend on z;. Thus P(x1y—{,X+1.7|z) is equal to P(X14—{,X+1.7) so that
Equation (1) can be rewritten to

PEST) (0557 PG 557
¢ RE) . ity .
P(x1:—1,X+1:T) 2)

H F
:EZ,NQ(Z,\XItx,T)logP(xt‘ZhXt 1, %+1) —DgL[Q (Zt‘-xltaxt:T)HP(Zt)]y

log

Because log 5 % is composed by the likelihood of samples from the observed
(X] d—12+1: T)

sequence, minimizing Dk [Q (z,|x_1;;,)<ﬁ)||P(zt |m,§ﬁ)] is equivalent to maximizing the
terms right to the equal sign, which is also called as the Variation Lower Bound [11]:

L(X11,%7) = E, o(a 52 57 108 P (%t |20, 51, %11) — D [Q(z ¥, Xer)|[P(z)] - (3)

The second term of the Variation Lower Bound is assumed as a conditional Gaussian dis-
tribution whose mean and variance are y, = ,u(m ,ﬂ) and o; = G(m 75@), respectively.
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1(-) and o(+) can be implemented by any functions, and we use bidirectional LSTM in this
study. Thus we have

Q(Zt\)c_n;,fﬁ)zN(zt;un@). 4)
By assuming P(z;) = N(z:;0,1), the analytical solution of D, [Q(z|X14, %7 )||P(z)] is given
according to [11]:

1J ; .
Dxe[Q(a i, x| P(20)] =g L +og( of ! = (u!)* = (0! %), )

where J indicates the number of dimension of (i, and o;.
Additionally, the first term in Eq. (3) can be solved by sampling L samples for z; such
that

Ez,NQ(z,‘x FXeT )logp(-xtlzhxt—l)?m ZlOgP X[lzt,X[ 17-§m) (6)

2! is sampled from Q(z;|X17,%,.7) by 2/ = W, + 0y 0 €', where &' ~ N(0,1) and o denotes the
element-wise product. In our case, z; and x; are real valued variables, so P(xt\zﬁ,x,_hxtﬂ)
can be assumed as a conditional Gaussian whose mean is fdec(zf,x,,l ,Xr+1) and variance is

I. Thus the analytical form of first term of the Variational LowerBound can be given as:

—
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Finally, based on the analytical form of the two terms, the Variation Lower Bound can
be optimized by stochastic optimization methods, such as Adam [10]. Each of the three
functions u(+), o(+), and fye.(-) can be implemented by a bidirectional LSTM network which
is illustrated in next section.

3.2 Multi-layer bidirectional Long Short-Term Memory

In this study, the bidirectional LSTM is constructed by two multi-layer LSTM networks and
one fully connected layer. One LSTM is a forward LSTM which processes samples from x{
to xr. The other one is a backward LSTM which processes samples from the inversed order.
Finally, the outputs of the two LSTM networks are concatenated together and fed into the
fully connected layer.

Consider a N-layer bidirectional LSTM, the forward pass of the n'" layer of forward
network and backward network are respectively explained by Equations (8)-(10) and (11)-
(13). h,(n_l) represents the output from the (n — 1) (previous) layer at time-step ¢, and h,("_l)
equals to the raw input when n = 1.

i = I ocfi +ifog)s ®
; 2 = ogc otanh (cgcnt) ) 9
i (n) (n)
Gl T2l Wi e
Bl e | el 1] w
Tl L) e |
fi Wex Wi
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The final output y,_rs7a of the bidirectional LSTM at each time-step ¢ will only rely on
the output of the last layer of both forward and backward networks as explained by Equation
(14), where hy\i) and hg) represent the output from the last (the N” hy layer of forward network
and backward network at time-step ¢, respectively.

N)
it

A

yo-rsta = ReLUW | (3| +0) (14)
b

=

4 Experimental results

In this section, firstly we introduce selected datasets in our experiments. Since deep learning
based methods require large amount of data, we use two large scale gesture datasets: the
ChaLearn Looking at People (LAP) gesture dataset [4] and the NTU RGB+D action recog-
nition dataset [19]. Moreover, we develop a skeleton based gesture recognition model which
integrates the proposed bLSTM-VAE and a multi-layer bLSTM classification network, and
make it as our target method. We name our target method as bLSTM-VAE+bLSTM. In order
to validate the effectiveness of the proposed bLSTM-VAE, we also design two baseline mod-
els for comparison: 1) bLSTM, and 2) FC-VAE+bLSTM which is based on the standard VAE.
Implementation details of our target method and the two baseline methods are presented in
section 4.2. Lastly, the experimental results are discussed in section 4.3.

4.1 Datasets
4.1.1 ChaLearn LAP gesture dataset

The ChalLearn LAP gesture recognition dataset is a multi-modal dataset designed for gesture
detection (or spotting) and recognition. This dataset provides RGB videos, depth maps, and
skeletal joint positions. The resolution of RGB videos and depth maps is 640 x 480. For
skeletons, each frame records the position as well as rotation in the real world space and the
position in the screen space of 20 joints including head, left(L)/center(C)/right(R) shoulders,
spine, L/R elbows, L/R wrists, L/R hands, L/C/R hips, L/R knees, L/R ankles, and L/R feet.

This dataset includes 940 sequences for each modality and each sequence contains 10
to 20 Italian cultural gestures. Totally there are 13585 gesture instances from 20 classes.
This dataset officially provides a standard evaluation protocol in which 470 sequences are
pre-allocated for training, 230 for validation and 240 sequences for testing. We follow this
provided protocol in this evaluation.
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4.1.2 NTU RGB+D action recognition dataset

We also use the NTU RGB+D action recognition dataset to evaluate the proposed method.
NTU RGB+D dataset is a large scale multi-modal and multi-view datasets which provides
four modalities including RGB videos, depth maps, infrared frames, and skeletal joint po-
sitions. The RGB video is full HD with the resolution of 1920 x 1080. Additionally, depth
maps and infrared frames are collected with the resolution of 512 x 424. Besides, skeleton
data is collected from 25 joints. Compared with Chal.earn LAP gesture dataset, NTU has
two more joints (HAND TIP, and THUMB) for each hand and one more joint at the neck.

In total, this dataset collects 56880 action sequences from 40 subjects, which are anno-
tated into 60 classes. The provided evaluation protocol is cross-subject evaluation. In this
part of the experiment, we adopted the protocol from [19] which defines action sequences
performed by subjects 1,2,4,5,8,9,13,14,15,16,17,18,19,25,27,28,31,34,35,38 are train-
ing data and the rest are testing data.

4.2 Experiment Implementation
4.2.1 Network specification

Firstly we introduce the target model bLSTM-VAE+bLSTM which consists of two parts:
a bLSTM-VAE for feature extraction; and a 3-layer bLSTM gesture classification network
which receives the learned latent variable from the bDLSTM-VAE as input. Additionally, the
baseline FC-VAE+bLSTM is implemented in the same way as the target model, but the
bLSTM-VAE part is replaced by a standard VAE whose encoder and decoder are imple-
mented by fully connected layers in order to compare the difference between bLSTM-VAE
and standard VAE. Besides, the other baseline model bLSTM is implemented by the same
3-layer bLSTM gesture classification network for comparing the gesture classification result
between using the raw input and using the feature extracted by two different VAEs.

Since the numbers of selected joints are different for the two datasets, the numbers
of neurons for each component of each model are also different. The input dimension of
Chalearn is 36 for 12 selected joints, and the input dimension of NTU RGB+D is 75 since
all 25 joints are selected. As a result, the neuron number of the network when evaluating
the NTU RGB+D is set to be higher than the one used for evaluating the Chal.earn LAP
dataset. Specifically, the dimension of encoders and decoders for evaluating ChalLearn and
NTU are set to 128 and 256, respectively. The neuron number of the 3-layer bLSTM gesture
classification network for each dataset is equally set to 512.

4.2.2 Training Procedures

Training the baseline bLSTM is straightforward. We just simply feed the skeleton sequence
and minimize the classification loss. The learning rate is 0.0005 with a decay factor of 0.999
for each 5 training epochs. The network is trained till the loss converges such that the training
loss and accuracy tend to be stable.

Moreover, training the target model bDLSTM-VAE+bLSTM and the baseline model FC-
VAE+bLSTM requires two steps. Firstly, the VAE feature learning network is solely pre-
trained under an unsupervised condition (labels are not involved), such that all samples are
involved in this phase. The optimization criteria are derived KL divergence and the recon-
struction error. In this step, the learning rate is 0.0005 with a decay factor of 0.999 for each
5 training epochs. After the network is sufficiently converged, the latent variable of VAE is
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Table 1: Recognition Accuracy on ChalLearn LAP Dataset. Accura-
cies of methods 4 and 6 marked with * have used at least RGB frames
and skeletons. Moreover, accuracies of methods 4 and 5 marked with
dagger were developed for gesture detection task which are more
difficult than solely classifying gestures. Besides, accuracy marked
with underline is the best result among selected methods.

Methods ‘ Accuracies
1. Lie Group [23] 79.20%
2. Deep LSTM [8] 82.00%
3. HMM-DBN [26] 83.60%
4. HMM-DBN-ext [27] 86.40%*+
5. ModDrop [16] 93.10%*
6. Baseline 1: bLSTM [6] 90.80%t
7. Baseline 2: FC-VAE [11] + bLSTM 92.46%
8. bLSTM-VAE + bLSTM (ours) 92.88%

treated as extracted features and further fed into the bLSTM classification network for joint
fine-tuning. Now the optimization criterion is only the classification loss. In this stage, only
training samples are involved since the fine-tuning is supervised. The learning rate during
fine-tuning is 0.0002 with a decay factor of 0.999 for each 2 training epochs.

4.3 Experimental Results

Table 1 presents the evaluation results on the Chal.earn LAP dataset. In addition to the
proposed target model and two baseline models, we also select five comparison methods. Lie
Group [23], HMM-DBN [26], and HMM-DBN-ext (multi-modal version) [27] are selected
because they are feature learning related methods which are similar to this work. Moreover,
[8] is compared because LSTM is closely related to our work. Lastly, ModDrop [16] is
selected for comparison because it achieves currently the highest performance on this dataset
based on the authors’ best knowledge.

According to Table 1, the proposed method achieves the recognition accuracy of 92.88%
which outperforms most of listed methods, except the ModDrop [16] which achieves the
highest 93.10%. However, compared with the proposed method which use only the skele-
ton data, ModDrop used multi-modal cues including RGB frames and skeletons. Compared
with baseline 2, FC-VAE + bLSTM which achieves 92.46%, the proposed method does not
provide significant improvement. The main reason could be that the evaluation protocol is
not a subject independent one, so that there are no challenges from the temporal variation of
different subjects. Then different subjects can be learned by the bLSTM classification net-
work, which dilutes the effectiveness of bLSTM-VAE. Moreover, if comparing with baseline
model 2, bLSTM which achieves 90.80%, both two VAE based methods can provide obvi-
ous improvements. As a result, VAE, especially the proposed bLSTM-VAE can effectively
perform a feature learning task and improve the classification model.

Experimental results on NTU RGB+D dataset are presented in Table 2, associated with
as list of selected comparison methods. Firstly, Lie Group [23] and Lie Net [9] are com-
pared because they were also conducted for feature learning. Moreover, HBRNN-L [3],
Deep LSTM [8], Part-aware LSTM [19], ST-LSTM+TG [14] and Temporal Sliding LSTM
networks [12] are compared because they have also used LSTMs.
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Table 2: Recognition Accuracy on NTU RGB+D Dataset. Accuracy
marked with underline is the best result among selected methods.

Methods ‘ Accuracies
1. Lie Group [23], reported [19] 50.08%
2. HBRNN-L [3], reported by [19] 59.07%
3. Deep LSTM [8], reported by [19] 60.69%
4. LieNet [9] 61.37%
5. Part-aware LSTM (dataset baseline) [19] 62.93%
6. ST-LSTM+TG [14] 69.20%
7. Temporal Sliding LSTM networks [12] 74.60%
8. Baseline 1: bLSTM [6] 65.22%
9. Baseline 2: FC-VAE [11] + bLSTM 67.42%
10. bBLSTM-VAE + bLSTM (ours) 71.60%

The experiment results show that our method achieves the recognition accuracy of 71.60%,
which outperforms most of listed methods, except the Temporal Sliding LSTM network [12]
which achieves the accuracy of 74.60%. However, compared with our method which takes
the raw joints as the input and perform end-to-end gesture classification, the Temporal Slid-
ing LSTM network used a series of processing tasks. Firstly it involved a data preprocessing
step to transform skeletons for aligning scales, rotations, as well as translations. Moreover,
rather than using the skeleton joint as the network input, it used the salient motion feature ex-
tracted from the preprocessed data. Unlike the Temporal Sliding LSTM network, our model
is more convenient and can also provide comparable result. Moreover, the proposed method
significantly outperforms the baseline model 2, FC-VAE + bLSTM. This might because the
evaluation protocol is cross-subject so that temporal variations from subjects is not visible
to the classification network. However, the bLSTM-VAE can model the temporal variations,
which is difficult for FC-VAE. Furthermore, the proposed method also significantly outper-
forms the baseline model 1, a sole bLSTM classification network. Thus, the experimental
results show that the proposed bLSTM-VAE is more effective to encode features from data
with high variations and can improve the classification model.

5 Conclusion and future work

In this paper, we derive a variant of VAE, which is called bLSTM-VAE. Compared with the
standard VAE, the proposed one can encode latent sequences based on sequential observa-
tions rather than i.i.d variables. Endowed by the bLSTM, the encoding and decoding pro-
cesses can fully utilize the contextual information from the corresponding sequence. Based
on the evaluation results on two large scale gesture datasets, the proposed bLSTM-VAE is
effective for feature learning from data with high variations.

In the future, we will extend our work to investigate the multi-modal data interaction
under the architecture of Conditional Variational Autoencoder (CVAE), in which the input
sample and the reconstruction are not needed to be the same.
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