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Abstract
We hypothesize that end-to-end neural image captioning systems work seemingly

well because they exploit and learn ‘distributional similarity’ in a multimodal feature
space by mapping a test image to similar training images in this space and generating
a caption from the same space. To validate our hypothesis, we focus on the ‘image’
side of image captioning, and vary the input image representation but keep the RNN
text generation component of a CNN-RNN model constant. Our analysis indicates that
image captioning models (i) are capable of separating structure from noisy input repre-
sentations; (ii) suffer virtually no significant performance loss when a high dimensional
representation is compressed to a lower dimensional space; (iii) cluster images with simi-
lar visual and linguistic information together. Our findings indicate that our distributional
similarity hypothesis holds. We conclude that regardless of the image representation used
image captioning systems seem to match images and generate captions in a learned joint
image-text semantic subspace.

1 Introduction
Image description generation, or image captioning (IC), is the task of automatically gener-
ating a textual description for a given image. The generated text is expected to describe, in
a single sentence, what is visually depicted in the image, for example the entities/objects
present in the image, their attributes, the actions/activities performed, entity/object inter-
actions (including quantification), the location/scene, etc. (e.g. “a man riding a bike on
the street”). Significant progress has been made with end-to-end approaches to tackling this
problem, where parallel image–description datasets such as Flickr30k [34] and MSCOCO [3]
are used to train a CNN-RNN based neural network IC system [15, 28, 31]. Such systems
have demonstrated impressive performance in the COCO captioning challenge1 according
to automatic metrics, seemingly even surpassing human performance in many instances (e.g.
CIDEr score > 1.0 vs. human’s 0.85) [3]. However, in reality, the performance of end-to-end
systems is still far from satisfactory according to metrics based on human judgement2. Thus,
despite the progress, this task is currently far from being a solved problem.
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1http://cocodataset.org/#captions-challenge2015
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In this paper, we challenge the common assumption that end-to-end IC systems are able
to achieve strong performance because they have learned to ‘understand’ and infer semantic
information from visual representations, i.e. they can for example deduce that “a boy is play-
ing football" purely by learning directly from mid-level image features and the corresponding
textual descriptions in an implicit manner, without explicitly modeling the presence of boy,
ball, green field, etc. in the image. It is believed that the IC system has managed to infer
that the phrase green field is associated with some ‘green-like’ area in the image and is thus
generated in the output description, or that the word boy is generated because of some CNN
activations corresponding to a young person. However, there seems to be no concrete evi-
dence that this is the case. Instead, we hypothesize that the apparently strong performance
of end-to-end systems is attributed to the fact that they exploit the distributional similarity
property in a multimodal feature space. To our best knowledge, our paper gives the first
empirical analysis on visual representations for the task of image captioning.

What we mean by ‘distributional similarity’ is that IC systems essentially attempt to find
images from the training set that are most similar to a test image, and generate a caption from
the most similar training instances (or generate a ‘novel’ description from a combination of
training instances, for example by ‘averaging’ the descriptions). Previous work has alluded
to this observation [14, 28], but it has not been thoroughly studied. This phenomenon
could also be in part attributed to the fact that the datasets are repetitive and simplistic,
with an almost constant and predictable linguistic structure [5, 16, 28]. Thus, while IC
systems perform very well at the task of matching images to captions at surface-level, they
do not truly understand images or language and use this understanding to generate image
descriptions. Such misconception can deter true progress in the field. This paper aims to
draw attention to this issue and to the importance of understanding how IC systems work
and with that support work towards progress in the field that goes beyond optimizing for
metrics to achieve state-of-the-art performance.

It is worth noting that we are interested in demonstrating the phenomenon of distribu-
tional similarity in IC, rather than achieving or improving state-of-the-art performance. As
such, we do not resort to fine-tuning or extensive hyperparameter optimization or ensembles.
Therefore, our model is not comparable to state-of-the-art models such as Vinyals et al. [28],
which optimize IC by fine-tuning the image representations, exploring beam size, scheduled
sampling, and using ensemble models. Instead, we vary only the image representation to
demonstrate that end-to-end IC systems utilize distributional similarity on the image side to
generate captions, regardless of the image representation used.

Our main contributions are:

(a) An IC experiment where we vary the input image representation but keep the RNN text
generation model component constant (Section 3). This experiment demonstrates that
regardless of the image representation (a continuous image embedding or a sparse, low-
dimensional vector), end-to-end IC systems seem to utilize a visual-semantic subspace
for IC.

(b) The introduction of pseudo-random vectors derived from object-level representations
as a means to evaluate IC systems. Our results show that end-to-end models in this
framework are remarkably capable of separating structure from noisy input representa-
tions.

(c) An experiment where IC models are conditioned on image representations factorized
and compressed to a lower dimensional space (Section 4.1). We show that high di-
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mensional image embeddings that are factorized to a lower dimensional representation
and used as input to an IC model result in virtually no significant loss in performance,
further strengthening our claim that IC models perform similarity matching rather than
image understanding.

(d) An analysis of different image representations and their transformed representa-
tions (Section 4.2). We visualize the initial visual subspace and the learned joint visual
semantic subspace and observe that the visual semantic subspace has learned to clus-
ter images with similar visual and linguistic information together, further validating our
claims of distributional similarity.

(e) An experiment where the IC model is tested on an out-of-domain dataset (Section 4.3),
which has a slightly different image distribution. We observe that models show better
performance on test sets that have a similar distribution as the training. Their perfor-
mance deteriorates when the distributions are even slightly different.

Overall, our study demonstrates that end-to-end IC models implicitly learn and exploit
multimodal similarity spaces rather than performing actual image understanding.

2 Model setting
For the experiments in Section 3, we base our implementation on the end-to-end approach
by Karpathy and Fei-Fei [15]. We use the LSTM [12] based language model as described
in Zaremba et al. [35], which is conditioned on the image information. For that, we first
perform a linear projection of the image representation followed by a non-linearity:

Im f eat = σ(W ·Im) (1)

Here, Im ∈ Rd is the d-dimensional initial image representation, W ∈ Rn×d is the linear
transformation matrix, σ is the non-linearity. We use Exponential Linear Units [4] as the
non-linear activation in all our experiments. Following Vinyals et al. [27], we initialize the
LSTM based caption generator with the projected image feature.

Training and Inference The image caption generator is trained to generate sentences con-
ditioned on the image representation by minimizing a cross-entropy loss, i.e., the sentence-
level loss corresponds to the sum of the negative log likelihood of the correct word being
generated at each time step:

Pr(S|Im f eat ;θ) = ∑
t

log(Pr(wt |wt−1..w0; Im f eat)) (2)

where Pr(S|Im f eat ;θ) is the sentence-level loss conditioned on the image feature Im f eat and
Pr(wt) is the probability of the word at time step t. This is trained with standard teacher
forcing as described in Sutskever et al. [25] where the correct word information is fed to the
next state in the LSTM.

Inference is typically performed with approximation techniques like beam search or sam-
pling [15, 27]. In this paper, as we are mainly interested in studying the effect of different
image representations, we focus on the language output that the models can most confidently
produce. Therefore, unless stated otherwise we generate captions using a greedy argmax ap-
proach.
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3 Image captioning with different image representations
In this section, we verify our hypothesis that a ‘distributional similarity’ space exists in
end-to-end IC systems. Such systems attempt to match image representations in order to
condition the RNN decoder to generate captions that are similar to the closest images, rather
than actually understanding the image in order to describe it. We keep the IC model constant
(Section 2) across experiments and vary only the image representation used. The different
representations we experimented with are described in what follows.

3.1 Lower-bound image representation
Random: We condition the LSTM on a 300-dimensional vector comprising random values
sampled uniformly between [0,1)3. This feature essentially gives us a worst-case image
feature and thus provides an artificial lower bound.

3.2 Representations from image-level classification
We compare two CNNs – VGG19 [24] and ResNet152 [11] – both pre-trained on the ILSVRC
challenge data [23]. We explore various representations derived from these CNNs:

Penultimate layer (Penultimate): Most previous attempts to IC use the output of the
penultimate layer of a CNN pre-trained on ILSVRC. Previous work motivates using ‘off-
the-shelf’ feature extractors in the framework of transfer learning [6, 20]. Such features
have often been applied to image captioning [7, 9, 15, 18, 27, 31] and have been shown to
produce state-of-the-art results. Therefore, we extract the fc7 layer from VGG19 (4,096D)
and the pool5 layer from ResNet152 (2,048D) for each image.

Class prediction vector (Softmax): We also investigate higher-level image representations
where each element in the vector is the estimated posterior probability of an object category
appearing in that image. Note that the categories may not directly correspond to the captions
in the dataset. While there are alternative methods that fine-tune the image network on a new
set of object classes extracted in ways that are directly relevant to the captions [8, 30], we
study the impact of off-the-shelf prediction vectors on the IC task. The intuition is that cat-
egory predictions from pre-trained CNN classifiers may also be beneficial for IC, alongside
the standard approach of using mid-level features from the penultimate layer. Therefore, for
each image, we use the predicted category posterior distributions of VGG19 and ResNet152
for 1,000 object categories.

Object class word embeddings (Top-k): Here we experiment with a method that utilizes
the averaged word representations of top-k predicted object classes. We first obtain Softmax
predictions using ResNet152 for 1,000 object categories (synsets) per image. We then se-
lect the objects that have a posterior probability score > 5% and use the 300-dimensional
pre-trained word2vec [19] representations4 to obtain the averaged vector over all retained
object categories. This is motivated by the observation that averaged word embeddings can
represent semantic-level properties and are useful for classification tasks [2].

3We also tried using 1,000-dimensions, which yielded similar but slightly poorer results.
4https://code.google.com/archive/p/word2vec/
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3.3 Representations from object-level detections

We also explore representing images using information from object detectors that identify
instances of object categories present in an image, rather than a global, image-level classifi-
cation. This can potentially provide for a richer and more informative image representation.
For this we use:

• ground truth (Gold) region annotations for instances of 80 pre-defined categories pro-
vided with MSCOCO. It is worth noting that these were annotated independently of
the image captions, i.e. people writing the captions had no knowledge of the 80 cate-
gories. As such, there is no direct correspondence between the region annotations and
image captions.

• a state-to-the-art object detector YOLO [21], pre-trained on MSCOCO for 80 cate-
gories (YOLO-Coco), and on MSCOCO and ILSVRC for over 9,000 categories (YOLO-
9k). We use YOLOv2.

We explore several representations derived from instance-level object class annotations
or detectors above:

Bag of objects (BOO): We represent each image as a sparse ‘bag of objects’ vector, where
each element represents the frequency of occurrence for each object category in the image
(Counts). We also explore an alternative representation where we only encode the presence
or absence of the object category regardless of its frequency (Binary) to determine whether it
is important to encode object counts in the image. These representations help us examine the
importance of explicit object categories and in a sense interactions between object categories
(e.g. dog and ball) in the image representation. We investigate whether such a sparse and
high-level BOO representation is actually sufficient for generating image captions. It is also
worth noting that BOO is different from the Softmax representation above as it encodes the
number of object occurrences, not the confidence of class predictions at image level. We
compare BOO representations derived from the Gold annotations (Gold-Binary and Gold-
Counts) and both YOLO-Coco and YOLO-9k detectors (Counts only).

Pseudo-random vectors: To further probe the capacity of the model to discern image
representations in an image distributional similarity space, we propose a novel experiment
in which we examine a type of representation where similar images are represented us-
ing similar random vectors, which we term as pseudo-random vectors. We form this rep-
resentation from BOO Gold-Counts and BOO Gold-Binary. More specifically, Im f eat =

∑o∈Objects f × φo, where φo ∈ Rd is an object-specific random vector and f is a scalar rep-
resenting counts of the object category. In the case of Pseudorandom-Counts, f is the
frequency counts from Gold-Counts. In the case of Pseudorandom-Binary, f is either 0 or
1 based on Gold-Binary. We use d = 120 for these experiments. Intuitively, these pseudo-
random vectors appear random and noisy in the representational space as a result of the
composition of (random) object category vectors, more specifically the multiplication of ob-
ject category vectors by their frequency of occurrence and the addition of vectors across
multiple object categories. We use these vectors to demonstrate that end-to-end IC models
are capable of separating structure from noise, and thus exploit the distributional similarity
property in a multimodal feature space.
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3.4 Datasets and experimental setup
Dataset We evaluate image captioning conditioned on different representations on the
most widely used dataset for IC, MSCOCO [3]. The dataset consists of 82,783 images
for training, with at least five captions per image, totaling to 413,915 captions. We perform
model selection on a 5000-image development set and report the results on a 5000-image
test set using standard, publicly available splits5 of the MSCOCO validation dataset as in
previous work [15].

3.5 Image captioning results
We report results of IC on MSCOCO in Table 1, where the IC model (Section 2) is con-
ditioned on the various image representations described in Section 3.1. As expected, using
random image embeddings clearly does not provide any useful information and performs
poorly. The CNN softmax representations with the same set of 1,000 object classes (VGG19
and ResNet152) have very similar performance. We note that the posterior distribution may
not directly correspond to words in the captions, i.e. many words and concepts are not con-
tained in the set of object classes. Our results differ from those by Wu et al. [30] and Yao
et al. [32] where the object classes have been fine-tuned to correspond directly to the caption
vocabulary.

Representation B-1 B-2 B-3 B-4 M C S

Random 0.48 0.24 0.11 0.07 0.11 0.07 0.03

Softmax
VGG19 0.62 0.43 0.29 0.19 0.20 0.61 0.13

ResNet152 0.62 0.43 0.29 0.19 0.20 0.62 0.12

Penultimate
VGG19 (fc7) 0.65 0.46 0.32 0.22 0.21 0.69 0.14

ResNet152 (pool5) 0.66 0.48 0.33 0.23 0.22 0.74 0.15

Embeddings Top-k 0.62 0.42 0.28 0.19 0.20 0.63 0.13

BOO

Gold-Binary 0.65 0.47 0.32 0.22 0.22 0.75 0.15
Gold-Counts 0.67 0.48 0.33 0.23 0.22 0.81 0.16
YOLO-Coco 0.65 0.46 0.32 0.22 0.22 0.75 0.15

YOLO-9k 0.64 0.45 0.31 0.21 0.20 0.68 0.13

Pseudo-random
Pseudorandom-Binary 0.65 0.46 0.31 0.21 0.21 0.73 0.14
Pseudorandom-Counts 0.67 0.48 0.34 0.23 0.22 0.80 0.15

Table 1: Results on the MSCOCO test split, where we vary only the image representation
and keep other parameters constant. The captions are generated with beam = 1. We report
BLEU (1-4), Meteor, CIDEr and SPICE scores.

The performance of the pool5 image representations shows a similar trend for VGG19
and ResNet152, with ResNet152 achieving slightly better scores than VGG19. We posit that
the representations from the image network trained on object classes are able to capture more
fine-grained image details.

The performance of the averaged top-k word embeddings is similar to that of the Softmax
representation. This is interesting, since the averaged word representational information is
mostly noisy: we combine top-k synset-level information into one single vector; however, it
still performs competitively.

The performance of the BOO sparse 80-dimensional annotation vector is better than all
other image representations judging by the CIDEr score. We note again that this occurs de-
spite the fact that the annotations may not directly correspond to the semantic information in

5http://cs.stanford.edu/people/karpathy/deepimagesent
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Method B-1 B-2 B-3 B-4 M C S

PCA 0.66 0.48 0.34 0.24 0.22 0.75 0.15
ICA 0.66 0.48 0.34 0.24 0.22 0.74 0.15

PPCA 0.66 0.48 0.34 0.24 0.22 0.76 0.15

FULL 0.66 0.48 0.33 0.23 0.22 0.74 0.15

Table 2: Performance of compressed Pool5
representations.

Model B-1 B-2 B-3 B-4 M C

Pool5 0.60 0.41 0.26 0.17 0.14 0.29
SC 0.62 0.42 0.28 0.18 0.17 0.35

TDBU 0.60 0.40 0.26 0.17 0.17 0.34

Table 3: Performance of models on
Flickr30k.

the captions or the images. The sparse representational information is indicative of the pres-
ence of only a subset of potentially useful objects. We notice two distinct patterns, a marked
difference with Binary and Count representations. This takes us back to the motivation that
image captioning requires information about objects, as well as interactions between objects
and their attributes. Although our representation is really sparse on the object interactions, it
captures the basic concept of the presence of more than one object of the same kind, and thus
provides extra information. A similar trend was observed by Wang et al. [29], who further
explored encoding the geometric and size information of objects into the representation, and
by Yin and Ordonez [33], who learn interactions using a specified object-layout RNN.

We also notice that using predicted objects using YOLOCoco performs better than using
YOLO9k. This is probably expected as YOLOCoco was trained on the same dataset hence
producing better object proposals. We also observed that YOLO9k had a significant number
of objects predicted for the test images that had not been seen in the training set (around
20%).

The most surprising result is the performance of the pseudo-random vectors. We notice
that both the pseudo-random binary and pseudo-random count vectors perform almost as
well as the Gold objects. This suggests that the conditioned RNN is able to remove noise
and learn some sort of a common ‘visual-linguistic’ semantic subspace.

4 Analysis of distributional similarity in IC

In what follows we present further analyses on the different image representations to gain
a better understanding of such representations and demonstrate our distributional similarity
hypothesis.

4.1 Factorizing representations

In Section 3.5 we observed encouraging results from the bag of objects representation despite
it being sparse, low-dimensional, and only partially relevant to captions. Interestingly, us-
ing pseudo-random vectors derived from a bag of objects also resulted in good performance
despite the added noise. This leads to the question: are high-dimensional vectors necessary
or relevant? To answer this question, we evaluate whether the performance of the model is
significantly poorer if we reduce the dimensionality of the initial high dimensional repre-
sentation. We experiment with three exploratory factor analysis-based methods – Principal
Component Analysis (PCA) [10], Probabilistic Principal Component Analysis (PPCA) [26]
and Independent Component Analysis (ICA) [13]. In all cases, we obtain 80-dimensional
factorized representations from ResNet152 pool5 (2048D), which is commonly used in IC.
We summarize our results in Table 2. We observe that the representations obtained by all

Citation
Citation
{Wang, Madhyastha, and Specia} 2018

Citation
Citation
{Yin and Ordonez} 2017

Citation
Citation
{Halko, Martinsson, Shkolnisky, and Tygert} 2011

Citation
Citation
{Tipping and Bishop} 1999

Citation
Citation
{Hyv{ä}rinen, Karhunen, and Oja} 2004



8 MADHYASTHA ET AL.: IMAGE CAPTIONING EXPLOITS DISTRIBUTIONAL SIMILARITY

of the factored models seem to retain the necessary representational power to produce ap-
propriate captions, equivalent to the original representation. This seems contradictory, as
we expected a loss in information content when compressing it to arbitrary 80-dimensions.
This experiment indicates that the model is not explicitly utilizing the full expressiveness of
the full 2048-dimensional representations. The model is able to learn from seemingly weak,
structured information and can achieve performance that is close to that achieved using the
full representation.

→

(a) Pool5

→

(b) Softmax

→ ...

(c) Bag of objects

→

(d) Pseudo-random

Figure 1: Visualization of the t-SNE projection of initial representational space (left)
vs. the transformed representational space (right). Please see https://github.com/
sheffieldnlp/whatIC for original images.

4.2 Analyzing transformed image representations
Considering our earlier hypothesis as proposed in Section 3.5 whereby the conditioned RNN
is learning some sort of a common ‘visual-linguistic’ semantic space, we explore the dif-
ference in representations in the initial representational space (Im in Equation 1) and the
transformed representational space (Im f eat in Equation 1). The transformation matrix W
(Equation 1) is learned jointly as a subtask of the image captioning. We posit that image
representations in the 256-dimensional transformed space will be more semantically coher-
ent with respect to both images and captions. To visualize the two representational spaces,
we use Barnes-Hut t-SNE [17] to compute a 2-dimensional embedding over the test split.
In general, we found that images are initially clustered by visual similarity (Pool5) and se-
mantic similarity (Softmax, BOO). After transformation, we observe that some linguistic
information from the captions has produced different types of clusters. Figure 1 highlights
some interesting observations regarding the changes in clustering across three different rep-
resentations. For Pool5, images seem to be clustered by their visual appearance, for example
snow scenes in Figure 1a, regardless of the subjects in the images (people or dogs). After
transformation, separate clusters seem to form for snow scenes involving a single person,
groups of people, and dogs. Interestingly, images of dogs in fields and snow scenes are
also drawn closer together. Softmax (Figure 1b) shows many small, isolated clusters before
transformation. After transformation, bigger clusters seem to be created – suggesting that

Citation
Citation
{Maaten and Hinton} 2008

https://github.com/sheffieldnlp/whatIC
https://github.com/sheffieldnlp/whatIC


MADHYASTHA ET AL.: IMAGE CAPTIONING EXPLOITS DISTRIBUTIONAL SIMILARITY 9

the captions have again drawn related images together despite being different in the Soft-
max space. For bag of objects (Figure 1c), objects seem to be clustered by co-occurrence
of object categories, for example toilets and kitchens are clustered since they share sinks.
Toilets and kitchens seem to be further apart in the transformed space. We perform a sim-
ilar analysis on the pseudorandom representations (Figure 1d). We observe that the initial
representations have very little explicit information and do not cluster well, indicating that
the pseudorandom vectors are indeed noisy. The projected representations, however, form
clusters that mimic the projected space of the BOO cluster, demonstrating that the model is
able to factorize the noisy representations in the visual-semantic projection space guided by
information from the captions. Enlarged versions of the images in Figure 1 are also provided
in the Appendix.

4.3 Domain dependency
We now demonstrate that end-to-end models are heavily reliant on datasets that have a similar
training and test distribution. We posit that an IC system that performs similarity matching
will not perform well on a slightly different domain for the same task. Demonstrating this
will further validate our hypothesis that IC systems perform image matching to generate
image captions.

We evaluate several models trained on MSCOCO on 1000 test image samples from the
Flickr30k [34] dataset 6. Like MSCOCO, Flickr30k is an image description dataset; how-
ever, unlike MSCOCO, the images have a different object distributions and the captions are
slightly longer and more descriptive.

We evaluate the captions generated by our model with ResNet152 pool5 representation
and by two other state-of-the-art models pretrained on MSCOCO: (a) Self-Critical (SC) [22],
based on self critical sequence training that uses reinforcement learning, and (b) Bottom Up
and Top Down (TDBU) [1], based on top-down and bottom-up attention using object region
proposals. Both state-of-the-art models are much more complex than the image-conditioned
RNN language model. The results are summarized in Table 3.

We observe that the scores drop by a large margin. A similar observation was made
by Vinyals et al. [28], and they alluded the drop in scores to the linguistic mismatch between
the datasets. However, the out of training vocabulary words in the Flickr30k test set is
only 8.6%. This suggests that there is more to the issue than a mere vocabulary mismatch.
Typical sentences on Flickr30k are structurally different and generally longer, and the model
is unable to generate good bigrams or even unigrams as is evident from B-1 and B-2 scores
in Table 3.

5 Conclusions
We hypothesized that IC systems essentially exploit a distributional similarity space to ‘gen-
erate’ image captions by attempting to match a test image to similar training image(s) and
generate an image caption from these similar images. Our study focused on the image side
of image captioning: We varied the image representations while keeping the text generation
component of an end-to-end CNN-RNN model constant. We found that regardless of the
image representation, end-to-end IC systems seem to match images and generate captions in
a visual-semantic subspace for IC. We conclude that:

6the test split is obtained from http://staff.fnwi.uva.nl/d.elliott/wmt16/splits.zip
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(a) End-to-end IC models are remarkably capable of separating structure from noisy input
representations, as demonstrated by pseudo-random vectors;

(b) End-to-end IC models suffer virtually no significant loss in performance when a high
dimensional representation is factorized to a lower dimensional space;

(c) End-to-end IC models can learn a joint visual-textual semantic subspace by clustering
images with similar visual and linguistic information together;

(d) End-to-end IC models rely on test sets having a similar distribution as the training set
for generating good captions.

The observations above strengthen our distributional similarity hypothesis – that end-to-end
IC models perform image matching and generate captions for a test image from similar
image(s) from the training set – rather than performing actual image understanding. Our
findings provide novel insights into what end-to-end IC systems are actually able to do,
which previous work only suggests or hints at without concretely demonstrating. We believe
our findings are important for the community to further advance work on image captioning
in a more informed manner.

There is much scope for future work from the findings of this paper. One could examine
the hidden states of the RNN model to better understand its behaviour and to further validate
our distributional hypothesis. Understanding the theoretical formulation of the CNN-RNN
architecture could also further help quantitatively confirm our hypothesis. Another useful
direction would be to ascertain whether the distributional hypothesis also holds for more
complex architectures, such as [1, 31]; our intuition is that the hypothesis would remain
valid even for such models.
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References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen

Gould, and Lei Zhang. Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE Conference on Computer Vision
& Pattern Recognition (CVPR), pages 6077–6086, 2018.

[2] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline
for sentence embeddings. In Proceedings of the International Conference on Learning
Representation (ICLR), 2016.

[3] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Pi-
otr Dollár, and C. Lawrence Zitnick. Microsoft COCO captions: Data collection and
evaluation server. arXiv preprint arXiv:1504.00325, 2015.

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289,
2015.

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018

Citation
Citation
{Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, and Bengio} 2015



MADHYASTHA ET AL.: IMAGE CAPTIONING EXPLOITS DISTRIBUTIONAL SIMILARITY 11

[5] Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey
Zweig, and Margaret Mitchell. Language models for image captioning: The quirks and
what works. In Proceedings of the Association for Computational Linguistics (ACL),
pages 100–105, 2015.

[6] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual
recognition. In Proceedings of the International Conference on Machine Learning
(ICML), pages 647–655, 2014.

[7] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convo-
lutional networks for visual recognition and description. In Proceedings of the IEEE
Conference on Computer Vision & Pattern Recognition (CVPR), pages 2625–2634,
2015.

[8] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K. Srivastava, Li Deng, Piotr Dol-
lar, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick,
and Geoffrey Zweig. From captions to visual concepts and back. In Proceedings of
the IEEE Conference on Computer Vision & Pattern Recognition (CVPR), pages 1473–
1482, 2015.

[9] Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu. Are you
talking to a machine? Dataset and methods for multilingual image question answer-
ing. In Advances in Neural Information Processing Systems (NIPS), pages 2296–2304,
2015.

[10] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert. An algo-
rithm for the principal component analysis of large data sets. SIAM Journal on Scientific
computing, 33(5):2580–2594, 2011.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision &
Pattern Recognition (CVPR), pages 770–778, June 2016.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[13] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis,
volume 46. John Wiley & Sons, 2004.

[14] Andrej Karpathy. Connecting Images and Natural Language. PhD thesis, Department
of Computer Science, Stanford University, 2016.

[15] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE Conference on Computer Vision & Pattern
Recognition (CVPR), pages 3128–3137, 2015.

[16] Remi Lebret, Pedro Pinheiro, and Ronan Collobert. Phrase-based image captioning.
In Proceedings of the International Conference on Machine Learning (ICML), pages
2085–2094, 2015.



12 MADHYASTHA ET AL.: IMAGE CAPTIONING EXPLOITS DISTRIBUTIONAL SIMILARITY

[17] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research (JMLR), 9:2579–2605, 2008.

[18] Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. Deep
captioning with multimodal recurrent neural networks (m-RNN). In Proceedings of the
International Conference on Learning Representation (ICLR), 2015.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems (NIPS), pages 3111–3119, 2013.

[20] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
features off-the-shelf: An astounding baseline for recognition. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) Workshops, pages 806–813,
2014.

[21] Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. In Proceedings
of the IEEE Conference on Computer Vision & Pattern Recognition (CVPR), pages
6517–6525, 2017.

[22] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel.
Self-critical sequence training for image captioning. arXiv preprint arXiv:1612.00563,
2016.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision, 115(3):211–252, 2015.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In Proceedings of the International Conference on Learning
Representation (ICLR), 2015.

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems (NIPS), pages
3104–3112, 2014.

[26] Michael E Tipping and Christopher M Bishop. Probabilistic principal component anal-
ysis. Journal of the Royal Statistical Society, 61(3):611–622, 1999.

[27] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Proceedings of the IEEE Conference on Computer
Vision & Pattern Recognition (CVPR), pages 3156–3164, 2015.

[28] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell:
Lessons learned from the 2015 MSCOCO image captioning challenge. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 39(4):652–663, 2017.

[29] Josiah Wang, Pranava Swaroop Madhyastha, and Lucia Specia. Object counts! Bring-
ing explicit detections back into image captioning. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 2180–2193, 2018.



MADHYASTHA ET AL.: IMAGE CAPTIONING EXPLOITS DISTRIBUTIONAL SIMILARITY 13

[30] Qi Wu, Chunhua Shen, Lingqiao Liu, Anthony Dick, and Anton van den Hengel. What
value do explicit high level concepts have in vision to language problems? In Pro-
ceedings of the IEEE Conference on Computer Vision & Pattern Recognition (CVPR),
pages 203–212, 2016.

[31] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan
Salakhutdinov, Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neu-
ral image caption generation with visual attention. In Proceedings of the International
Conference on Machine Learning (ICML), volume 14, pages 77–81, 2015.

[32] Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and Tao Mei. Boosting image caption-
ing with attributes. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 4904–4912, 2017.

[33] Xuwang Yin and Vicente Ordonez. Obj2Text: Generating visually descriptive language
from object layouts. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 177–187, 2017.

[34] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descrip-
tions to visual denotations: New similarity metrics for semantic inference over event
descriptions. Transactions of the Association for Computational Linguistics, 2:67–78,
2014.

[35] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regu-
larization. arXiv preprint arXiv:1409.2329, 2014.


