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Abstract
In life science and material science, it is often desirable to segment a volumetric data

set in such a way that multiple materials (phases) are segmented and a tetrahedral mesh
representation is obtained for each segment for downstream applications. Unfortunately,
obtaining a mesh, typically from CT or MRI scan, is challenging, especially in 3D. This
paper proposes a novel approach for volume segmentation using a tetrahedral mesh. Our
method employs a deformable model that minimizes the Mumford-Shah energy function.
We apply our method to several CT data sets in order to demonstrate its advantages:
multi-phase support, robustness to noise, and adaptive resolution outputs. Our method
is based on the Deformable Simplicial Complex (DSC) method for tracking deformable
interfaces which is designed specifically to deal with topology changes.

1 Introduction
In recent years, it has become an increasingly important concern to build simulation meshes
from data acquired using one of the many CT or MRI based scanning modalities. Generally,
tetrahedral meshes for finite element or geometric analysis are required, and very often the
objects being scanned are heterogeneous, leading to the need for a multi-phase segmentation
of the scanned object.
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Figure 1: Common work flow in volumetric segmentation for material analysis

An example we use in this paper is concerned with segmenting three phases in the scan
of a solid oxide fuel cell. Characterization of the fuel cell, and simulation of its operation, re-
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quires a precise description of interfaces between materials, including the triple phase bound-
ary. Another example is segmentation of fibre bundles in composite material which can be
used for estimating the material’s overall stiffness and strength. The most common workflow
for such analysis is illustrated in Fig. 1. The process is split into two parts: a segmentation
that operates at the voxel level and mesh generation which produces the desired result from
the segmentation.

In this paper, we propose to go directly from the initial volumetric data to a mesh-based
representation of the segmentation as illustrated with the blue box in Fig. 1. The pivotal idea
is to represent the entire domain as an irregular tetrahedral mesh where each tetrahedron is
assigned a label corresponding to the material (or phase) to which it belongs. This simplifies
dealing with multiple interfaces since the interface between two materials is simply the set
of triangular faces shared by tetrahedra with corresponding labels. Moreover, we surmise
that for further processing, typically simulation, it is a significant advantage that the internal
representation is also the desired output representation.

Related ideas for two-phase segmentation are well researched in the literature named
deformable model, a model that is strong against noise and artifacts and suitable for data with
homogeneous regions representing materials [43]. First introduced by Terzopoulos et al.
[17, 36, 37] this has become one of the most successful approaches to image segmentation.
In deformable model, we are concerned with the curves/surfaces representation and the force
model.

The force models were proposed initially [11, 12, 15, 17, 21, 37, 38, 42]. Despite the
variety, all those models use local differential properties of image edges, hence the segmen-
tation often sticks to local minima. User-driven forces may be required to achieve desired
segmentation [17]. To overcome the above issue, many authors utilize a global energy func-
tion proposed by Mumford and Shah [25], one of the most popular model in deformable
model with many applications [3]. This paper shall focus on deformable models that mini-
mize the Mumford-Shah energy functional.

Minimizing the Mumford-Shah functional using an implicit representation (e.g. level set
method) is popular due to the ease with which topology changes (e.g. splitting and merging)
are handled. Deformable models using an implicit representation is based on curve evolution
[28, 33, 34]. Solving it has been studied in depth with many proposals [1, 4, 5, 6, 7, 8, 18, 22,
32, 35, 39, 40]. Perhaps, the most popular model is the active contour without edge, a two-
phase segmentation [8, 9]. For multi-phase, implicit representations have problems in phase
overlapping [45]; or are limited to fixed number of phases [40]; or suffer from ill-conditioned
equations [20].

In contrast to implicit representations, explicit representations have advantage in repre-
senting multi-phase as the interfaces are literally defined. However, the difficulty in handling
topological changes is a significant obstacle. Perhaps an effortless approach to overcome this
issue is to borrow techniques from explicit interface tracking researches, which leads to many
proposals to deal with topological changes. [44] explicitly resolve each intersection, [23, 41]
generate new mesh based on an underlying fixed grid, and [10] utilize element deletion
technique. Unfortunately, these methods do not support multi-phase yet. For multi-phase,
[14] use collision technique, and [31] use Delaunay mesh generation. These two methods
only maintain a surface triangle mesh. [24] utilize a tetrahedral mesh and detect topologi-
cal changes using neighbor information. Among all of these methods, [23, 31] have been
applied to image segmentation, but their force models are local. Very few researches accom-
modate the Mumford-Shah energy function with 3D explicit mesh, and they are limited to
segmenting a single region e.g. [16].
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In [26] the authors have utilized the interface tracking technique in [24] to minimize
the Mumford-Shah energy function for 2D problem and showed improvement in accuracy
compared to other deformable models. The current paper extends the method to 3D and
inherits the advantages: multi-phase support; higher accuracy; automatic resolve junction
vertices; and output is an adaptive tetrahedral mesh. Beyond generalizing the method to 3D,
the contributions in this paper include:

• a scheme for computation of triangle-based forces with Gaussian quadrature formula
(Sec. 3.2),
• a generalization that enables the method to work with various input model beside

intensity (Sec. 5),
• and a new mesh adaptation scheme, in which parameters are geometric-based and can

be invisible to user (Sec. 4).

2 The Deformable Simplicial Complex (DSC) Method
DSC [24] is an explicit interface tracking method. The DSC method uses a tetrahedral mesh
and labels each tetrahedron according to its phase (or material). The interface is defined by
triangles whose coboundary tetrahedra have different labels (Fig. 3). DSC takes interface
vertex displacements as input, deforms the mesh, and resolves topological changes automat-
ically. An implementation of the DSC in C++ is publically available [2].

(a) Three-phase DSC (b) Vertices move inside their stars (c) After refinement

Figure 2: The DSC algorithm illustrated in 2D. Red arrows denote desired displacements

The DSC algorithm (Fig. 2) includes two steps. First it moves interface vertices as far
as possible inside their stars (neighbor tetrahedra). At this stage, the mesh is still valid (i.e.
no self intersection or inverted tetrahedron) but contains downgraded entities. In the second
step, the DSC refines the mesh to remove low quality entities. The refinement involves mesh
smoothing, edge collapse and edge split. Because the displacement is limited by the star of a
vertex, the DSC may requires some iterations to move the interface to the desired destination.

3 Method
Given an image I : Ω→R, we want to find a piecewise constant function u(x) = ci if x ∈Ωi
(where Ωi denotes a disjoint phase of constant intensity ci) that minimizes the Mumford-
Shah functional

E(u) =
N

∑
i=1

∫
Ωi

(I− ci)
2dΩ+α‖∂u‖ (1)

where ‖∂u‖ denotes the area of the interface, α is the smoothing coefficient, and N is the
number of phases.
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(a) A synthetic 3D image (b) Three-phase mesh (c) with cross section (d) Dark phase is hidden
Figure 3: A piecewise constant function defined on a tetrahedral mesh. Green triangles are
internal triangles. Blue/red edges are boundary/junction edges, respectively

We define a piecewise constant function on a tetrahedral mesh by labeling the tetrahedra
with a labeling function {li} : {ti} → Z, li ∈ [1,N]. Faces that have coboundary tetrahedra
with different labels define the interface (Fig. 3). Edges and vertices on the interface are
interface edges and interface vertices.

In our method, the unknowns are the positions of interface vertices {pi}, phase intensities
{ci} and the labeling function {li}. The function we want to find is u = u({pi},{ci},{li}).
We treat the minimization problem independently for these unknowns, leading to three min-
imization problems

1) min
{ci}

E(u) 2) min
{pi}

E(u) 3) min
{li}

E(u) (2)

3.1 Minimize E with respect to {ci} and {li}

Phase intensities We find ci by setting the partial derivative of E with respect to ci equal
to zero

∂E
∂ci

=
∂

∂ci

∫
Ωi

(ci− I)2dΩ = 2ci

∫
Ωi

dΩ−2
∫

Ωi

IdΩ = 0 =⇒ ci =

∫
Ωi

IdΩ

Volume(Ωi)
(3)

meaning ci is the mean intensity of the image in phase Ωi.

Labeling function We find the optimal label of a tetrahedron by choosing the phase that
minimizes the energy (Eq. 1) inside the tetrahedron. Note that changing the label also
changes the interface, which must be included in computation of the internal energy. For
external energy, we approximate the volume integral with Riemann sum and discretize the
tetrahedron to a set of sampling points with size of one voxel.

3.2 Minimize E with respect to interface vertices

We move interface vertices in the gradient descent direction. Consider an interface vertex
with position pi, it will be displaced by δpi = ∇piEdt, where dt is the time step. We separate
the two terms in Eq. 1 to external energy Eext = ∑

N
i=1
∫

Ωi
(I− ci)

2dΩ and internal energy
E int = α‖∂u‖. The gradient of the two energy functions are called the external force Fext

and the internal force Fint, respectively.
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Compute internal force The area of the interface can be computed explicitly as a sum of
the areas of all interface triangles. The gradient of the internal energy with respect to a vertex
vi is

Fint
i =

∂

∂pi
E int = α ∑

f∈Ni

∂

∂pi
Area( f ) = α ∑

f∈Ni

‖p1−p2‖h (4)

where f denotes an interface triangle; Ni denotes the neighbor of vi; p1,p2 are the positions
of the two other vertices in f ; and h is the normalized height vector corresponds to pi (See
Fig. 4c).

Ω1

Ω2

fj

δpi

vi
dA

vi

δpi

δ

Ω1

Ω2

fj

p1

p2

p1

p2

pi

h

1

(a) Vertex vi moves by δpi (b) Triangle integration (c) Triangle area derivative
Figure 4: Illustration for computing forces on vi. (a) Volume covered by triangles displace-
ment changing intensity from c2 to c1 (b) Integration over volume covered by displacement
of triangle f j (c) Derivative of triangle area with respect to a vertex

Compute external force Local displacement of a vertex vi only changes the piecewise
constant function u in the volume covered by the displacement of neighbor interface triangles
(See Fig. 4a). Assuming that the displacement δpi is small, the image intensity on the
interface triangles can be considered unchanged, and integration over the volume can be
approximated with integration over the surface. The external energy change caused by the
displacement of vi is

∆Eext
i = ∑

f∈Ni

∫
f

(
(I− c1)

2− (I− c2)
2
)

δdA = ∑
f∈Ni

(c1− c2)
∫

f
(2I− c1− c2)δdA (5)

where δ denotes the orthogonal displacement of the small area dA (See Fig. 4b), and δdA
represents a small volume.

We approximate the integration with Gaussian quadrature formulas for triangles [13],
which discretizes a triangle to a set sampling points with area coordinate {ξ j,η j,ζ j}. At
a sampling point we have the image intensity I j, and the orthogonal displacement is δ =
ξ jδpi · n f , where δpi · n f ) is the dot product that represents the projection of δpi on the
normal direction n f of triangle f , and ξ j is the coordinate correspond to the vertex vi. We
obtain the energy change

∆Eext
i = ∑

f∈Ni

(c1− c2)A f ∑
point j

ω j(2I j− c1− c2)ξ jδpi ·n f (6)

where ω j is the weight of the sampling point, and A f is the triangle area.
In Eq. 6 we can see that δpi only appears in the dot product δpi · n. Replacing the

gradient of a dot product: ∂

∂p (p ·n) = n, we obtain the final external force

Fext
i = ∇piE

ext = ∑
f∈Ni

{
n f A f (c1− c2) ∑

point j
ω jξ j(2I j− c1− c2)

}
(7)
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3.3 Implementation
In our experiments, the image intensity is scaled to the range [0 : 1]. We transform image
coordinate to continuous coordinates by linear interpolation. Our algorithm starts with an
uniform mesh with average edge length ε . We utilize Otsu threshold method [29] to initialize
the labeling function. In each iteration, we first compute the forces on interface vertices and
then deform the mesh using the DSC method. In the second step, we execute adaptive
resolution mesh algorithm in Sec. 4. This step can be performed once per 1-5 iterations.
Finally, we stop the segmentation if vertex displacements are smaller than 0.01.

To boost the performance, we use sum table to compute {ci} and adaptive time step.
Adaptive time step is applied for each interface vertex. We first estimate initial time step for
all vertices so that maximum displacement is 0.4ε . In the following step, we scale the time
step individually by 1.1 if a vertex moves in the same direction as its previous displacement;
and by 0.9 if it moves on the inverse direction. The time step is bounded at [0.1 : 3]. If a
vertex is affected by topological events, we reset its time step. We utilize [27] to keep track
of modified vertices.

4 Adaptive Resolution Meshes
Adaptivity is important not only for a compact representation but also for memory efficiency
and performance in computation. There are two approaches for adaptive mesh: subdivision
and coarsening. Perhaps subdivision (start with a sparse mesh then locally subdivide where
needed) is more intuitive, but it requires parameters for subdivision criteria. Though these
parameters can be useful [26], tuning them can be difficult in 3D. In this paper, we follow
the second approach that starts with a dense mesh then locally coarsen where needed.

We utilize edge collapse for mesh coarsening. The criteria for choosing collapsing edge is
based on geometric information and in such a way that we deem user tweaking of parameters
to be unnecessary. Our algorithm includes internal edge collapse and interface edge collapse
described below.

Internal edge collapse does not modify the interface. For each internal vertex v, we
choose shortest edge neighboring to v as the potential collapsing edge. We utilize volume-
length ratio to measure the tetrahedron quality [30] and only collapse if the qualities of new
tetrahedra are larger than 0.3. This 0.3 threshold is independent to input data set.

Interface edge collapse modifies the interface, hence we only collapse an edge on flat
surface (mean curvature at removing-vertex smaller than a 0.03). For each interface vertex
v, we also pick shortest edge neighboring to v as the potential collapsing edge. We utilize
triangle angles to measure triangle quality and only collapse if qualities of new interface
triangles are larger than 10◦.

5 Generalization
In many cases, intensity alone cannot distinguish features in an image. Methods like dic-
tionary, filtering, etc. [19] are efficient approaches that output probability maps {Pi : Ω→
R, i = 1 : N} of voxels belong to phases. We apply our method for probability input by
modifying the energy function to

Eprob(u) =
N

∑
i=1

∫
Ωi

(1−Pi)
2dΩ+α‖∂u‖ (8)
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Minimizing Eprob is similar except that the external force in Eq. 7 now becomes

Fext
i = ∑

f∈Ni

{
n f A f ∑

point j
ω jξ j(2−P1−P2)(P1−P2)

}
(9)

6 Result and Discussion

Accuracy Our method, and deformable models in general, is strong against noise. We
tested our method on a three-phase synthetic data set with a variable level of Gaussian noise
(See Fig. 5). In Tab. 1, one can see that our results are consistent while the noise level
increases. In another example with CT data in Fig. 6, the result is visually accurate compared
to a photograph of the real object.

(a) 3D slices (b) Noise 0.003 (c) Noise 0.1 (d) Segmentation

Figure 5: Segmentation of synthetic data. Volume size 100×100×100 voxels. (d) Segmen-
tation result with noise variance 0.1

Table 1: Experiment with noisy synthetic data. (a) Variance of the Gaussian noise (using
imnoise in Matlab). (b) Mean squared difference between noisy volume and the ground
truth. (c) Voxel-based mean squared difference between our result and the ground truth (d)
Correct segmented voxels.

(a) 0.003 0.01 0.05 0.1

(b) 0.002 0.007 0.03 0.06
(c) 0.0019 0.0018 0.0024 0.003
(d) 99% 99% 98.1% 97%

Multi-phase support is the most important property of our method. We demonstrate the
segmentation of two (Fig. 6), three (Fig. 7) and five (Fig. 8) phases, but the number of phases
can be arbitrary. It is also noteworthy to mention that the shared interfaces between phases
are defined explicitly without fuzziness.

Segmentation with probability input Fig. 8a shows a scan of composite material, where
carbon fibers are grouped into bundles characterized by different orientations. By applying
an orientation filter [19], we obtain five probability maps (Fig. 8b) of voxels belong to four
bundle orientations or the resin. For this task our method takes probability input. The result
of five-phase segmentation is shown in Fig. 8.
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(a) Volume slices (b) Interface triangles (c) Interface surface (d) Photograph

Figure 6: Segmentation of micro CT scan of a plastic figure

(a) Cement scan (b) Cement volume (c) Fuel cells scan (d) Fuel cells volume

Figure 7: Segmentation of cement scan and fuel cells scan. The third phase (the air) is hidden

(a) A slice of fiber scan (b) Orientation filter (c) Our segmentation (d) 90◦, red

Figure 8: Fiber bundle segmentation, utilizing fiber orientation filter. Color codes: red is 90◦

bundle, green is 45◦, blue is 0◦, yellow is −45◦, and pink is the resin. We demonstrate the
mesh of phase 1 (90◦ orientation) in (d)

Comparison with 2D slice segmentation Using 3D information can improve the segmen-
tation accuracy. In Fig. 9, it is difficult to segment the center slice unless we start with
a good initialization that requires manual input. On the other hand, our method can still
automatically segment that small region because we use support from other slices.
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(a) Test data surface (b) Center slice (c) with noise (d) Our segmentation

Figure 9: Segmentation contain slices with small features. Noise is Gaussian with variance
0.1. Volume size 100×100×80.

Output is an adaptive mesh is an advantage of our method over implicit representation.
Adaptivity is an integral part of the algorithm, and it helps reduce the mesh size from initial
mesh to final output up to 70% while still maintains a good quality mesh (mean dihedral
angle is around 45◦ and smallest dihedral angle is acceptable in Tab. 2). This quality is
sufficient for visualization and measurement. For procedures that require higher quality, we
can tweak the threshold in the adaptivity algorithm and the DSC, which also leads to a less
adaptive output.

Table 2: Mesh statistic. All numbers in (c,d) are in thousands. (a) min/max dihedral angle
(b) Dihedral angle histogram [0◦ : 180◦] (high peaks at 45◦ and 90◦ are tetrahedra at the
boundary of the domain) (c) # init tetrahedra / # final tetrahedra / # final interface traingles
(d) # voxels

Fig. 6 Fig. 7a Fig. 7c Fig. 8

(a) 4.9◦ - 176◦ 3.4◦ - 179◦ 1.8◦ - 179◦ 2.8◦ - 178◦

(b)
(c) 317 / 92 / 9.4 257 / 220 / 61 260 / 140 / 27 421 / 185 / 31
(d) 5584 1000 2250 8000

Two parameters are important for our method: the edge length ε at initialization and
the smoothing coefficient α . Choosing ε is straightforward as it represents the size of the
smallest feature we want to segment. Choosing α requires some trial and error. Fig. 10 shows
the effect of α: If α is too small, we segment noise while a large α tends to over-smooth. In
our experience, the best α is often in the range from 0.01 to 0.5 (Tab. 3).

Table 3: Experiment detail. The computation time is separated to forces computation and
meshing

Data set Volume size
Edge
length

α
#
iters

Computation
time [sec]

Energy (int/ext)

Fig. 6 170×150×219 5 0.03 50 64 - 114 11000 / 1000
Fig. 7a 100×100×100 3 0.01 60 91 - 205 7600 / 3900
Fig. 7c 150×150×100 4 0.03 28 59 - 74 3040 / 4983
Fig. 8 200×200×200 5 0.1 70 175 - 595 340000 / 25900
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(a) 0.01 (b) 0.5 (c) 0.01 (d) 0.8

Figure 10: Smoothing effect. (a)(b) fiber bundle phase 1, reference to Fig. 8d. (c)(d) syn-
thetic data, reference to Fig. 5b

In conclusion, this paper proposes a volume segmentation method using a deformable
model based on a tetrahedral mesh. Our method minimizes the Mumford-Shah functional,
which is a global, noise resilient energy function.

Our method is based on DSC which is an explicit (or Lagrangian) method for interface
tracking that is still volumetric in the sense that the entire domain is partitioned into labeled
tetrahedra. It is this approach which allows us to easily handle multiple materials while also
resolving topological changes during segmentation.
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