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Abstract

This paper addresses the problem of motion segmentation of articulated rigid bodies
from a single-view RGB-D data sequence. Current methods either perform dense motion
segmentation, and consequently are very computational demanding, or rely on sparse 2D
feature points, which may not be sufficient to represent the entire scene. In this paper,
we advocate the use of 3D semi-dense motion segmentation which also bridges some
limitations of standard 2D methods (e.g. background removal). We cast the 3D motion
segmentation problem into a subspace clustering problem, adding an adaptive spectral
clustering that estimates the number of object rigid parts. The resultant method has few
parameters to adjust, takes less time than the temporal length of the scene and requires
no post-processing.

1 Introduction
The estimation of articulated objects’ kinematic structure is an important research topic in
computer vision and robotics. This is due to the fact that kinematic structures provide a
compact representation regarding skeleton structure and motion about an object, which can
be relevant for high level tasks, such as: human activity recognition [1], robotics manipula-
tion [17] and kinematic structure correspondences learning [3]. To accomplish this, several
methods have been proposed based on motion segmentation [5, 19] and combining skeleton
information [2]. In particular, subspace clustering methods (e.g., [4, 10]) have demonstrated
state-of-the-art performance in the context of 2D motion segmentation tasks. In this work,
we propose to investigate whether such methods could be extended for 3D motion segmen-
tation of rigid bodies based on RGB-D input. For instance, 3D reconstruction became fea-
sible in real-time due to RGB-D sensors, bridging some limitations of 2D camera sensors
(e.g. background removal) [7, 12]. In this sense, we cast the problem of 3D motion segmen-
tation of articulated rigid bodies as a subspace clustering problem. In particular, we adopted
the sparse subspace clustering method [4], due to its empirical success and theoretical guar-
antees. Moreover, we propose the addition of self-tuning spectral clustering [21], in order
to automatically estimate the number of segments, without relying on prior knowledge or
other heuristics. Consequently, the proposed method is a complete pipeline that does not
rely on prior object models and the number of constituent rigid body segments, having few
parameters to adjust.
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The rest of the paper is organized as follows: in Section 2, other motion segmentation
methods based on 2D and 3D points are discussed; the proposed method is presented in
Section 3, which relies on applying subspace clustering and self-tuning spectral clustering on
captured 3D semi-dense point trajectories; in Section 4, quantitative and qualitative results
obtained are shown; a final conclusion of our work is discussed in Section 5, as well as
current limitations and topics of future research.

2 Related Work
Several motion segmentation and kinematic structure learning approaches have been pro-
posed over the last years. Yan and Pollefeys [19] developed a factorisation-based approach
that not only estimates rigid articulated segments, but can also recover non-rigid parts from
RGB video sequences. It is capable of estimating the trajectories’ rank and also the number
of segments, through a recursive two-way spectral clustering. However, it is very dependent
on the rank estimation, which is highly prone to noise. Ross et al. [16] presented motion
segmentation and kinematic structure estimation as a probabilistic fitting model problem,
associating a set of 2D feature point trajectories to a segment. Similarly, Sturm et al. [17]
also proposed a probabilistic framework for kinematic structure learning, using a motion
capture system for noise-free input data. Their method required the number of segments to
be estimated and it was used in several robotics applications. Fayad et al. [5] proposed a si-
multaneous motion segmentation and 3D reconstruction approach, based on multiple model
assignment corresponding to each body part, which was capable of dealing with outliers and
complex structures. Ochs and Brox [14] proposed a variational optical-flow approach for
point tracking, which was robust against occlusion and long term video analysis. Pairwise
affinities between each trajectory were computed in order to perform spectral clustering and
a spatial regularity energy minimization was proposed to automatically detecting the num-
ber of objects. Although they focus on 2D object segmentation, they provide insightful ideas
for dealing with occlusion and long term video analysis. Following these ideas, Keuper et
al. [8] formulated trajectory segmentation as a variant with minimum cost multicut, instead
of using a spectral clustering method. A recent kinematic structure learning approach was
proposed by Chang and Demiris [2], where they could estimate highly complex articulated
structures and achieve state-of-the-art performance. However, they focused only on 2D im-
age sequences, combining motion and skeleton information.

With the introduction of depth sensors, RGB-D data acquisition became feasible in real-
time and some kinematic structure estimation approaches were proposed, taking this pro-
vided additional information into account. In [7, 12], an interactive segmentation and kine-
matic modelling method is proposed based on RGB-D data. The method could estimate
the kinematic structure of the object, as well as its constraints (i.e. determine revolute or
prismatic joints). However, it still relied on 2D features for point tracking, which is not
suitable for large video sequences. Also, only objects with two or three body parts were
analysed. More recently, motion segmentation from point cloud sequences has garnered at-
tention. Zhang et al. [22] proposed a kinematic structure estimation method for complex
articulated objects, based on point cloud sequences obtained by depth data. They rely on
a two-step non-rigid matching between point clouds based on the Markov Random Field
Deformation Model, where each consecutive frame is matched to the first frame, making
it very computationally demanding. Although the authors claim this avoids the propaga-
tion of tracking errors, there are still significant error fluctuations in the measured segment
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length and a proper initial frame must be enforced. Yuan et al. [20] proposed a space-time
co-segmentation method that propagates and merges all segmentation models that were es-
timated based on each individual frame. The authors propose the acquisition of point cloud
sequences from depth data and achieved impressive results. However, they rely on a rela-
tively high time interval between frames for tractability reasons, which makes the algorithm
sensitive to large displacements. Lu et al. [11] also presented an unsupervised articulated
structure estimation method based on point cloud sequences from a single depth camera.
They rely on two distinct expectation-maximization optimizers (i.e. one for non-rigid point
set registration and the other for structured joint estimation) and a constrained motion-based
clustering for articulated structure generation. Although they achieve better overall perfor-
mance compared to other methods, they rely on a selected initial point cloud for registration.
Tzionas and Gall [18] presented an approach to reconstruct articulated models from RGB-D
data. They focused on tracking points based on deformable mesh motion and then applied
spectral clustering to the trajectories obtained. To the best of our knowledge, they have pro-
vided the only dataset suitable for evaluation of 3D motion segmentation of rigid bodies, to
which we report our results.

3 Methodology
Given a set of complete point trajectories from sequential frames, the goal of this work is
to estimate the corresponding 3D articulated kinematic structure. In contrast to previous
subspace clustering based motion segmentation methods, where 2D sparse feature points are
tracked [4], we consider the case of semi-dense 3D points provided directly by an RGB-
D sensor. To this end, a sub-sampled point cloud is generated from raw RGB-D data and
the respective point displacements between two consecutive frames are estimated based on
the scene flow computed [6]. Then, given complete point trajectories, the task of motion
segmentation consists of separating them according to their underlying motions, where it
is assumed that a motion exists for each associated body part. Therefore, in this context,
the problem of motion segmentation is cast as clustering data into a union of subspaces [4].
Also, the number of subspaces (i.e. body parts, segments) is not assumed to be given; thus,
it is an unknown parameter to be estimated using self-tuning spectral clustering [21]. An
overview of the algorithm is described in Algorithm 1.

Algorithm 1 3D Motion Segmentation of Rigid Bodies
Input: Set of 3D point trajectories X.
Output: Number of segments c, set of points belonging to each segment S and respective
center positions M.

1: Solve sparse optimization program (2), with Y = X and the affine constraint 1>C = 1>.
2: Compute affinity matrix as in Eq. (3).
3: Compute symmetric normalized Laplacian matrix L as in Eq. (6).
4: Find c and respective rotation matrix R by applying self-tuning spectral clustering to the

eigenvectors V of L.
5: Find c segments g by clustering rows of VR using K-means, with prior initialization

from non-maximum suppression on the rows of VR.
6: Compute center position mg of each segment, averaging all points belonging to it.
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3.1 Notations
The ith point of frame f is defined as x f

i ∈ R3, where i = 1, . . . ,N, f = 1, . . . ,F . The gth

segment estimated S f
g ∈ R3×ng is composed of a subset of points s f

g ∈ R3×ng at frame f and
the corresponding center position is m f

g ∈ R3, where g = 2, . . . ,c. N is the number of points
considered in each frame, F is the number of frames of the sequence of images and ng is the
number of points belonging to segment g.

3.2 Initial formulation
Given a set of point trajectories, corresponding to an image sequence of a rigid articulated
object, that are arranged such that

X =


x1

1 x1
2 . . . x1

N
x2

1 x2
2 . . . x2

N
...

...
. . .

...
xF

1 xF
2 . . . xF

N

 ∈ R3F×N (1)

is the data matrix, the objective of motion segmentation is to separate each point trajectory
according to their underlying motion. Similar to 2D motion segmentation [19], where the
point trajectories of c rigid motions lie in a union of c low-dimensional subspaces of R2F [4],
3D point trajectories also lie in a union of low-dimensional subspaces of R3F . Thus, the 3D
rigid body part motion segmentation may be cast as a subspace clustering problem.

3.3 Subspace clustering based motion segmentation
Sparse subspace clustering [4] relies on the self-expressiveness property of the data to find a
sparse representation, solving the convex optimization problem

min‖C‖1 +λe‖E‖1 +
λz

2
‖Z‖2

F

s. t. Y = YC+E+Z, diag(C) = 0.
(2)

C ∈ RN×N is the sparse representation matrix of the data matrix Y ∈ RD×N , E ∈ RD×N

represents sparse outlying entries, Z ∈ RD×N represents occurring noise and diag(C) ∈ RN

corresponds to the vector of its diagonal elements. Once the optimization program is solved,
a sparse representation of the data C is obtained. Then, a similarity graph with N nodes
representing the data points is created, where the weights on the edges (i.e. affinity matrix)
are computed as

W = |C|+ |C|>. (3)

This is done to ensure that if a given data point yi is written as a linear combination of other
data points including y j (i.e. ci j > 0), both are connected even if the sparse representation
y j is not written as a linear combination that includes yi (i.e. c ji = 0). Ideally, the similarity
matrix has c connected components associated to each one of the c subspaces, i.e.

W =


W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . Wc

 , (4)
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where Wl corresponds to the similarity matrix of data points belonging to subspace l.
In the context of the present work, Y = X ∈ R3F×N and the objective is to find a sparse

representation C, solving the optimization program (2) with an additional constraint that cap-
tures the affine structure of the motion segmentation problem, i.e. 1>C = 1>. As suggested
in [4], it was assumed that there are not sparse outlying entries (i.e. without the E term, since
only complete point trajectories are considered). However, noisy point trajectories are ex-
pected (e.g. due to noisy sensor measurements and consequent innacuracies on scene flow
estimation), which are handled by the Z term and

λz = 800/µz, µz = min
i

max
j 6=i
|y>i y j|. (5)

3.4 Self-tuning spectral clustering
Applying spectral clustering [13] to the similarity graph created follows, in order to cluster
the data into subspaces. Firstly, a symmetric normalized Laplacian matrix of the graph
L ∈ RN×N is computed, i.e.

L = D−
1
2 WD−

1
2 , (6)

where D ∈ RN×N is a diagonal matrix with its elements given by

dii =
N

∑
j=1

wi j. (7)

Then, c eigenvectors of L are found corresponding to the associated c largest eigenvalues,
forming the matrix V ∈ RN×c by stacking the eigenvectors column-wise. Lastly, K-means
may be employed treating each row of V as a point, in order to cluster them into c clusters.1

However, it is not assumed that the number of clusters c is given as input. A first at-
tempt to estimate c could consist of performing eigenvalue decomposition of L and counting
the number of eigenvalues above a given threshold, which would determine the number of
clusters to segment. Although intuitive, this approach introduces an additional parameter to
tune, which may be dependent on the initial data matrix. Therefore, determining the number
c based on the eigenvalues may be infeasible for general applications.

Another approach was introduced in [21], where a self-tuning spectral clustering algo-
rithm is proposed based on eigenvector analysis, instead of eigenvalues. The main idea is to
find a rotation R ∈Rc×c which best aligns the stacked eigenvector matrix V with the canoni-
cal coordinate system, while computing its cost for every c = 2, . . . ,N. The number c∗ which
minimizes the cost is selected as the number of clusters to segment. The algorithm follows
by performing non-maximum suppression on the rows of VR∗, where R∗ ∈ Rc∗×c∗ is the
rotation matrix that minimized the cost of alignment.

In the context of this work, the self-tuning spectral clustering algorithm [21] was adopted
to estimate the number of segments c of the kinematic structure. For computational ef-
ficiency, the upper bound on range values of c was heuristically constrained to cupper =
dlog2 Ne. Also, the clusters obtained from non-maximum suppression on the rows of VR∗
were used to initialize K-means algorithm, as suggested in [21] to accommodate for highly
noisy data. In the end, a subset of points Sg belonging to each segment g is obtained, where

1Note that the Laplacian could also be computed as L = I−D−
1
2 WD−

1
2 , as it appears more frequently in spec-

tral graph theory. The only change between these two formulations is concerned with the respective eigenvalues,
i.e. from λi to 1−λi.
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N = n1 + · · ·+ nc. The respective center positions m f
g are obtained by averaging all points

belonging to the associated segment, for each frame.

4 Experiments and Results
The proposed method was evaluated on the dataset provided by [18], which consists of five
RGB-D videos of different articulated objects: "donkey", "lamp", "pipe 1/2", "pipe 3/4" and
"spray". Since the method requires complete point trajectories, only points that are tracked
throughout the whole sequence are included in the set of point trajectories, as in Eq. (1).2

All experiments were performed using a PC with an Intel Core i7-8700k CPU @ 3.7Ghz
(x6) and 32GB of RAM.

4.1 Quantitative Results

Five metrics were evaluated, namely: execution time, number of segments obtained, pre-
cision, recall and f-measure. As described in [14], the last three metrics for each pair of
segment estimated Si and ground-truth segment SGT

j are defined as follows, respectively:

Pi j =
|Si∩SGT

j |
|Si|

Ri j =
|Si∩SGT

j |
|SGT

j |
Fi j =

2Pi jRi j

Pi j +Ri j
. (8)

These metrics try to capture a trade-off between measuring false positives and misses. The
Hungarian method [9] is applied, in order to find the best allocation of segments to ground-
truth segments. Empty segments are introduced in the case where there are fewer segments
estimated than ground-truth segments (i.e. recall is zero and precision is defined to be one).

The proposed method is deterministic and only a few parameters require adjustment,
namely: parameter λz (i.e. parameter that balances the noise term in Eq. (2)), the upper
bound on range values of number of segments to be estimated cupper and the number of
initial sub-sampled points to be tracked Ninit. Parameter λz is studied in [4] in the context of
2D motion segmentation. As shown in [4], the resultant clustering error is not significantly
affected for a large range of values; thus, we followed the suggested value, as presented in
Eq. (5). The upper bound on range values for estimating the number of segments cupper
only affects the size of the search space for the optimal value c∗. In this sense, the proposed
search constraint (i.e. cupper = dlog2 Ne) is merely suggestive, as the only observable effect
was the computational time. This means that, depending on the knowledge of the problem
at hand, one could be more conservative by setting the lowest upper bound possible (e.g. if
a given body is not expected to have more than 10 segments, one could set cupper = 10).
Nevertheless, the point to be made is that the method could be applied to other problem, even
without changing the upper bound. Therefore, only the effect of the number of initial sub-
sampled points Ninit will be studied. As the proposed method is deterministic, for equal initial
conditions, equal results are obtained. Thus, in order to test the robustness and reliability of
the method, a randomly selected subset of points is sub-sampled, where its size is determined
by Ninit.

2In [4], two approaches are described to deal with missing entries in the data matrix (i.e. incomplete point
trajectories). However, both only work properly when a small fraction of entries is missing, which may not occur
in the context of the present work, mainly due to sensor measurement errors.
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Figure 1: Quantitative results concerning five metrics: time (first row), number of segments estimated
(second row), precision, recall and f-measure (third, fourth and fifth rows, respectively). These results
were obtained by varying the number of initial randomly sub-sampled points across one hundred trials
per number. The mean is represented by the solid line and the standard deviation is represented by the
surrounding shaded area.
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Donkey Lamp Pipe 1/2 Pipe 3/4 Spray Average

SSC [4]

Time per point
(msec) 1.03 1.14 0.80 1.32 2.39 1.34

# of segments 2.41/4 2.77/3 2/2 2.00/2 1.93/2 -
Precision 88.03% 89.68% 96.21% 93.07% 56.04% 84.61%
Recall 52.53% 80.34% 98.58% 98.46% 75.59% 81.10%
F-Measure 65.80% 84.75% 97.38% 95.69% 64.37% 82.82%

LRR [10]

# of segments 2.80/4 1.54/3 1.49/2 1.27/2 1.69/2 -
Precision 60.33% 67.48% 67.13% 70.77% 75.97% 68.34%
Recall 43.06% 17.32% 53.06% 50.44% 56.16% 44.01%
F-Measure 50.25% 27.56% 59.27% 58.90% 64.58% 52.11%

Table 1: Summary of average results obtained.

Donkey Lamp Pipe 1/2 Pipe 3/4 Spray Average
Time per point
(msec) 1.14 1.03 1.00 1.32 2.36 1.37

Table 2: Summary of average processing time per point obtained considering 2F frames.

Figure 1 shows the quantitative results obtained over one hundred trials for a range of
values of Ninit. The following conclusions can be made:

- Computational time: as the number of sub-sampled points increases, so does the exe-
cution time of the proposed method, as expected.

- Number of segments estimated: besides the case of the "donkey" object, the number
of segments estimated converges to the ground-truth for all other objects. Also, the asso-
ciated standard deviation decreases as the number of initial sub-sampled points increases,
suggesting that tracking more points improves the reliability of the method.

- Precision, recall and f-measure: besides the "spray" object, increasing of the number
of sub-sampled points exhibit slight improvements, both in terms of higher expected values
and lower associated variability, for the three metrics.

- There should be a compromise w.r.t. the number of point trajectories considered. The
results obtained suggest that 1000 initial points considered might be a good compromise,
since no significant improvements are observed for higher values, whilst the computational
time still increases. Further discussion about the different results obtained for "donkey" and
"spray" objects, concerning number of segments estimated and precision, respectively, will
be done considering the qualitative results as well.

In Table 1, a summary of the quantitative results is provided, using sparse subspace
clustering (SSC) [4] and low rank representation (LRR) [10] methods to build the affinity
matrix W. As shown, higher performance is obtained when the affinity matrix is computed
based on SSC, which also corroborates the choice of using it. The computation time for LRR
is not provided, since the respective author’s code in MATLAB was used, whereas a version
of SSC was implemented in C++.3 It is interesting to note that if 1000 points were tracked the
average computation time would be 1.34 seconds. Considering that every video takes more
than 3 seconds, this means that the actual computation is faster than the video sequence,
suggesting that a real-time online approach relying on this method would be feasible. This
topic will be considered in future research.

The influence of the number of frames to be processed on the overall computational time
was also evaluated and the results are reported in Table 2, where the length of each sequence

3Code available: https://github.com/ImperialCollegeLondon/3DKSL.
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was doubled, i.e. each sequence was considered forward and then backward. As presented,
the average processing time per point is identical, comparing both the original sequence
length and the doubled one (i.e. comparing each sequence with F and 2F frames, respec-
tively). This suggests that the number of frames to be processed does not affect significantly
the overall computational cost of the proposed method. Indeed this is true, since in practise
we are solving the optimization program (2) via an Alternating Direction Method of Multi-
pliers (ADMM) and we are only considering complete point trajectories for each sequence
(i.e. without E term). For a more detailed discussion, please refer to the supplementary
material provided.

4.2 Qualitative Results
In Fig. 2, qualitative results are shown (bottom row), as well as the respective objects and
ground-truth segmentation. As shown by the quantitative results, for the "lamp", "pipe 1/2"
and "pipe 3/4" objects, the method achieves an average f-measure performance above 84%.4

However the results obtained are lower in the case of the "donkey" and "spray" objects.
Concerning the "donkey" object, it is observable that a significant portion of the segmented
body is not filled with points. This is due to the fact that severe occlusions occur during the
video, in particular between the tip of the arms and the body, and between the head and the
body. This means that a significant number of point trajectories are discarded, which could
be important for better overall performance. In the case of "spray" object, the associated
motion might not exhibit sufficient evidence for a correct motion segmentation (as may be
observed in the lower right corner image in Fig. 2). This means that the proposed method
is not able to accurately segment subtle motions, which may occur in real-life scenarios,
either due to noisy sensor measurements or errors during point tracking. This observation
is corroborated by the fact that the precision results obtained for "spray" object (third row
of first column, Fig. 1) decrease for higher numbers of initial sub-sampled points, since the
ratio of correctly segmented points decreases. These two issues will also motivate further
research.

5 Conclusion and Future Work
A complete method for 3D motion segmentation of articulated rigid bodies based on RGB-D
data was proposed in this paper. Given a set of complete point trajectories, the method esti-
mates automatically 3D motion segments by solving a sparse optimization program and then
applying adaptive spectral clustering to the resultant affinity matrix, in order for the number
of body segments to be estimated. The method is deterministic and achieves lower computa-
tional time than the duration of the image sequence, depending on the number of points con-
sidered. The method was evaluated on a public dataset, achieving consistent results. It has
few parameters to adjust, making it suitable for automatic motion segmentation of rigid bod-
ies in a wide range of scenarios. Such scenarios may include visual self-exploratory learning
for lifelong autobiographic memories [15]. In this case, it is reasonable to assume that each
learning sequence has a relative short duration and severe occlusion does not occur, whereas
computational processing and time may be crucial performance indicators. Nevertheless,
evaluating the proposed method in more scenarios will be the focus of future research, as

4The method could also segment body parts that did not belong to the object, i.e. "left hand" in the "pipe 3/4"
object sequence. Nevertheless, only the motion segmentation of the actual object was evaluated.
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Figure 2: Qualitative results obtained with the same parameters (i.e. λz as given by Eq. (5), cupper =
dlog2 Ne, Ninit = 1000). The first row of images illustrates the articulated object, from which the
motion segments are to be estimated. The second row exemplifies the motion segmentation ground
truth, where each colour represents one segment. The third row shows the corresponding obtained
motion segments; the black dots correspond to the center coordinates of each segment. Figure best
viewed in colour.

well as tackling some of its current limitations, since the proposed method is not capable of
handling occlusions or segments entering/exiting the scene.
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