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Abstract

In computer vision tasks, the position and size of a target object can be represented
by a rectangle bounding box. Because its efficiency and simplicity, bounding box is
widely used. However, using this simple method cannot deal with the diversity of shape.
An obvious drawback is non-target elements are inevitably included in the box, which
is a crucial issue in object tracking. Tracking-by-segmentation is an effective way of
overcoming the limitation of bounding box. However, related benchmark dataset is still
rare. To address this problem, a dataset of 150 video sequences with fine foreground
mask is presented in this paper. It provides a preciser benchmark for object tracking and
can be also used for video segmentation.

1 Introduction

Object tracking is an important computer vision task. To tackle this problem, many ap-
proaches have been proposed in the past few decades [41]. In most cases, a target object is
represented by a rectangle bounding box. The effectiveness of a tracker is also evaluated by
the overlap between estimated and ground truth bounding boxes. As a simplified represen-
tation method, bounding box provides a rough approximation to the size and position of the
target. Since the image data structure is a two dimensional array, rectangle bounding box,
which is actually a set of array indexes, is computational efficient and very easy to use.

Although in many scenarios, bounding box is sufficient for representing the target, as
shown in Figure 1, a simple rectangle cannot cover the variations of shape. In object tracking,
drift is a fundamental challenge. To successfully track a moving object, an ideal tracker
should be able to do two things: 1) it can effectively discriminate target from background
or other moving objects; 2) its model can be adapted to the appearance change of the target.
Tracker drift is caused by the gradual erosion of the target model during update. Since
the bounding rectangle is usually bigger than the actual contour, non-target elements are
inevitably included in the target model. In other words, the target model is polluted at the
very beginning. Therefore, it is not surprising that it drifts from the real object as the model
updates over time.
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Figure 1: Limitation of bounding box. Non-target elements are inevitably included in both
boundary based (solid rectangles) and torso based (dashed rectangles) bounding box.

The limitation of bounding box has been already recognized in the literature of ob-
ject tracking. Ren and Malik [29] first treat tracking as a repeated foreground/background
segmentation problem. The introduction of segmentation provides a better separation be-
tween target and background. Therefore, tracking-by-segmentation becomes one of the main
stream approaches in object tracking [3, 6, 10, 33, 36, 40]. However, despite a decade’s
efforts on segmentation based tracking algorithms, main evaluation benchmarks are still
bounding box based [18, 32, 37, 39]. To make comparison, target segments have to be
converted into bounding boxes.

According to [18], on a dataset of 305 images, the average overlap between manual
bounding box and the true shape is 0.5679 for torso based bound box (see Figure 1), and for
boundary based bound box the mean overlap is only 0.4875. It leads to a situation that, if
not converted back to bounding box, an ideal segmentation of the target might be judged as a
failure based on the commonly used threshold 0.5. It implies that the quantitative evaluation
in existing tracking benchmarks is an accurate statistic of inaccurate results.

Recently, learning from large-scale dataset by convolutional neural networks (ConvNets)
achieves great success in computer vision and such approach has been successfully adopted
to both tracking [23] and segmentation [20]. Tracking-by-segmentation strategy can achieve
comparable results to the state-of-the-art before ConvNets emerges. However, to our knowl-
edge, no competitive ConvNets based tracking-by-segmentation method has been yet pro-
posed. Lacks of dataset with pixel-level annotation is a possible reason.

To address the above-mentioned issues, a large-scale tracking dataset with pixel-level
annotation is presented in this paper. Extensive experiments and comparisons on this datasets
show that it provides a preciser benchmark for visual tracking. This dataset can also be used
for develop and evaluate video segmentation algorithms.

The remainder of this paper is organized as follows. Section 2 gives a brief review of
related works. In Section 3, we elaborate the details of the proposed dataset. A thorough ex-
perimental evaluation of state-of-the-art object tracking algorithms is presented in Section 4.
We conclude this paper and discuss future work in Section 5.

2 Related Work

2.1 Object Tracking

For quite a long time, evaluations of object tracking algorithms are independently performed
using limited number of self-collected video sequences. Using different datasets makes it
difficult to compare different tracking approaches. This situation has been changed recently
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by introducing large-scale public benchmarks [18, 28, 32, 37].

ALOV++ [32] is a dataset consists of 305 video sequence, including 250 new sequences,
65 sequences from the PETS workshop [1] and several self-collected sequences used in
previous studies. ALOV++ has 64 different types of targets, including human face, person,
ball, octopus, microscopic cells, plastic bag etc. The total number of frames is 89364.

OTB [37, 39] dataset contains 100 video sequence collected from existing studies. It
is mainly composed by sequences of human (36 body and 26 face sequences). Besides the
bounding box, OTB also provides 11 attributes of the sequences: illumination variation, scale
Variation, occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-plane
rotation, out-of-view, background clutters and low resolution.

NUS-PRO [18] dataset provides 365 new video sequences collected from YouTube.
There are four main categories: 1) rigid objects (airplane, boat, car, helicopter and motor-
cycle); 2) face; 3) pedestrians; 4) six kinds of sportsman (basketball, gymnastics, handball,
racing, soccer and tennis). Besides them five long sequences with more than 2,000 frames
are also included. Like OTB, NUS-PRO also provides 12 attributes. A notable feature of
NUS-PRO is additional occlusion status are provided for every frame.

YouTube-BoundingBoxes (YTBB) [28] is the largest publicly available dataset for ob-
ject tracking, which has 240,000 videos and 5.6 million frames are annotated with bounding
boxes. However, this dataset is not originally designed for object tracking. The bounding
box is not densely marked. The interval is one second, which includes around 30 frames.
Moreover, since YIBB is marked by the Amazon Mechanical Turk, the quality is not well
controlled.

All the above-mentioned large datasets are annotated by bounding boxes. And there is
only one target in a video sequence.

2.2 Video Segmentation

Although pixel-level annotation for video is rare in the literature of object tracking, similar
datasets have been already constructed for the purpose of video segmentation research.

DAVIS [7, 26] is the most relevant dataset. The latest release consists 150 sequences in
which 10474 frames are annotated. Similar to OTB, NUS-PRO and YTBB, attributes like
scale variation, background clutter are also provided. Although it is originally designed for
the so called video object segmentation task, it can be also used for evaluating object tracking
algorithms.

Freiburg-Berkeley Motion Segmentation (FBMS) [24] is designed for motion segmen-
tation tasks such as optic flow. It contains 59 sequences with 720 annotated frames. Though
most scenarios are rather simple, FBMS provides segmentation mark for all appearing ob-
jects at an interval of 20 frames. The marked objects are mainly animals.

SegTrack [35] is a small dataset consists of 6 videos of humans and animals, in which
the challenges are background-foreground color similarity, fast motion and complex shape
deformation. Due to the small number, it is insufficient for evaluating object tracking algo-
rithms.

Other datasets for video segmentation include FlyingThings3D [22], KITTI [12] and

Scene Flow [21]. Although point trajectories are available, since no object is separated, they
cannot be used for evaluating object tracking methods.
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gymntics handball helicopter tennis pedestrian o mot(;rcycle
Figure 2: Exemplar annotations (red mask) of the proposed dataset. Best viewed in color.

Table 1: Statistics of the proposed dataset.
Seq. Marked frames

Category No. | Min | Max | Mean

airplane 10 39 41 40.8

boat 10 47 61 56.7

rigid object car 10 47 101 72.5

helicopter 10 61 73 36.9
motorcycle 10 38 73 52

Acces:o;nes 'Cio‘mpressinn artifacts basketball 20 35 70 46.6
& gymnastics 10 62 391 125.9
n sportsman han@ball 5 36 50 43.8

h racing 5 51 84 69
. 4 ~ soccer 5 43 61 50.2
Detal Occlusion tennis 5 45 | 116 | 756
pedestrian 50 35 71 49.42

Figure 3: Detailed issues in
annotation.

3 The Dataset

As discussed in Section 1, although bounding box has obvious limitations, if take computa-
tional cost into consideration, it is still a practical representation method for object tracking
and detection. Considering that quite a number computer vision studies focus on predict-
ing mask from bounding boxes, a dataset with both bounding box and segmentation mask
annotation could be useful in many aspects. Bounding box can be automatically generated
from mask boundaries. However, in such box shape deformation of the real target can cause
dramatic change of the bounding box area. The real outputs of real detector or tracker are ac-
tually not that sensitive. Observing that the torso based bounding box (see Figure 1) provides
a better simulation of real detector or tracker, we build our dataset from NUS-PRO [18]. The
new dataset is referred as BUAA-PRO.

3.1 Dataset Characteristics

The dataset is constructed by marking 150 video sequences in NUS-PRO, which correspond
to the first half of category rigid object, sportsman and pedestrian. The segmentation mask
is manually marked at an interval of five frames. A frame will be skipped if severe or full
occlusion presents. Consequently, totally 8,714 frames are annotated with segmentation
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Figure 4: Temporal full occlusion.

mask. Examples of the mask can be found in Figure 2. Detailed statistics of the dataset are
shown in Table 1.

The key difference between the proposed dataset and video object segmentation datasets
like DAVIS is the occlusion. Specifically, it lies in two asptects. First, inherited from NUS-
PRO, the proposed dataset contains occlusion status annotation, i.e. no occlusion, partial
occlusion and full occlusion, for every frame, which is an important factor that is relevant
to the area change of target mask. Secondly, as can be seen from Figure 4, temporal full
occlusion is common in the proposed dataset. The memory mechanism that maintains the
appearance model of the target and re-detects it in the incoming frame is a basic and nec-
essary element of a tracker. However, this mechanism is not explicitly considered in the
video object segmentation task. Therefore, though sharing some similarities, the problems
are different.

3.2 Data Annotation

The masks of target object are manually achieved according to following criteria:

Details Marking the fine foreground mask of a target object is very time-consuming. As
shown in Figure 3, trivial details like fingers and hairs of a target person bring in a large
amount of annotation work but contribute little to the total evaluation accuracy. Balancing
between efficiency and accuracy, these details are overlook during the annotation process.

Compression Artifacts We found that the block effects caused by video compression are
common in the annotated video sequences. It leads to a dilemma in marking small objects:
some parts of the target deviate from the main body in the image, if following the image fact
the real-world fact will be violated. In this case, we choose to overlook the drifting parts and
complete the whole object by estimation.

Motion Blur Due to fast movement of the target, motion blur also presents frequently.
It leads to a phenomenon that some parts of the object become transparent in a short period.
In this case, we choose to only mark the visible part.

Accessories The accessories on target person can be divided into two categories: 1) those
addicted to target person throughout the whole sequence, such as bags on a pedestrian; 2)
the balls played by sportsman. The former is considered as a part of the target, and the latter
is ruled out from the target.

Propeller In the helicopter sequence, rotating propeller is a special phenomenon. When
the revolving speed is high it becomes transparent, but it is visible when the speed is slow.
Only the visible propellers are marked in this dataset.

Occlusion In NUS-PRO the missing part is completed by estimation in partial occluded
frames. However, as shown in Figure 3, such completion is unfeasible for a fine mark. Thus,
we only annotate the visible part of the target. When severe occlusion, such as the spindrift
in Figure 3, presents, bounding box can be estimated from adjacent frames, but drawing a
fine mask is impossible. Such frames are regarded as full occluded in this dataset (see the
spindrift).



6

A.LIET AL.: BUAA-PRO: A TRACKING DATASET WITH PIXEL-LEVEL ANNOTATION

Table 2: Three criteria for computing the overlap ratio. B denotes the estimated bounding

box and M is the manual mask.

Criterion Occlusion
NA Partial Full
I area(BNM) area(BNM) area(BNM)
area(BUM ) area(BUM) area(BUM)
I area(BNM) area(BNM)
area(BUM ) area(BUM) B
I area(BNM) area(BNM)
area(BUM) area(B) -

Table 3: Evaluated tracking algorithms.

Color-Based Probabilistic Tracking (CPF) [27] Kernel-based Mean-Shift (KMS) [8]

Locally Orderless Tracking (LOT) [25] Fragments-based tracking (Frag) [2]

Incremental Visual Tracking (IVT) [30] On-line AdaBoost (OAB) [13]

Adaptive Structural Local Appearance model (ASLA) [16] Semi-supervised Tracking (SemiT) [14]

Sparsity-based Collaborative Model (SCM) [44] Semi-supervised Tracking with Adaptive Prior (BSBT) [34]
L1 Accelerated Proximal Gradient (LIAPG) [5] Multiple Instance Learning (MIL) [4]

Multi-Task Tracking (MTT) [43] Compressive Tracking (CT) [42]

Local Sparse appearance model with K-Selection (LSK) [19] Track-Learning-Detection method (TLD) [17]

Online Robust Image Alignment (ORIA) [38] Circulant Structure tracking with Kernels (CSK) [15]
Distribution Fields Tracking (DFT) [31] Context Tracking (CXT) [9]

3.3 Evaluation Methodology

Since the original images in our dataset are derived from the NUS-PRO, we adopt the three-
criteria evaluation method introduced in [ 18], which is based on commonly used overlapping
ratio defined in the PASCAL VOC challenge [11] with considerations of three kinds of oc-
clusion status (see Table 2). It should be pointed out that, in partial occluded frames, the
overlap will be much smaller using mask annotation, since missing parts are ruled out from
the segmentation mask. In bounding box based annotation, occluded parts are completed by
estimation.

4 Experiments

An extensive experimental survey of 20 popular trackers, which are summarized in Table 3,
is presented. The implementations of these trackers are based on the publicly available code
library [39] with default parameter settings. Evaluation of them is performed by comparing
the manual segmentation mask with the rectangle mask given by the bounding box using the
described in Section 3.3.

Results in term of the so-called threshold-response relationship (TRR) curves are shown
in Figure 5, corresponding area under curves (AUC) are shown in Figuere 6. As can be seen,
compared with results by bounding box vs. bounding box comparison, the overall overlap
ratio drops but surprisingly not that significant. Considering that the area of corresponding
bounding box is around two times of that of segmentation mask, the curves are expected
much lower than those calculated from box-vs.-box comparison. A possible explanation
is that, in most frames, the evaluated trackers actually failed. There is no difference using
box or mask if a tracker completely drifts from the target. In other words, the difference is
diluted.

We compare the results obtained by box-vs.-box comparison in [18]. With the same
inputs, using fine mask gives different results of ranking. This phenomenon shows that
bounding box based evaluations are not necessarily consistent with mask based evaluations.
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Figure 5: TRR curves of pedestrian, rigid object, sportsman, categories and the whole
database (best viewed on high resolution displays).
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Figure 6: AUC for the TRR curves calculated on pedestrian, sportsman, rigid objects se-
quences and the whole database.

It is interesting that, though the detailed ranks are different, box based AUCs and mask based
AUCs share the same union set of outstanding trackers. Which implies that the general
conclusions are consistent.

The task of object tracking is defined as a general problem for common objects. However,
it is unrealistic to deal with all kinds of challenges by a single tracker. Therefore, Ad Hoc
evaluations for specific problem is more valuable in practice. To this end, attribute based
evaluations for the 20 trackers are also conducted.

Experimental results in TRR curves and corresponding AUCs are shown in Figure 7, 8, 9
and 10 respectively. The general results are similar, a notable phenomenon is for fast back-
ground change the overall overlap by mask is higher than that by box. Since the targets are
mainly rigid cars in this scenario, bounding boxes and mask are comparable in size and area.
Masks bring in smaller intersection but may also reduce the union area.

The CPF, LOT and ALSA methods perform well in handling image sequences with scale
change, shape deformation, partial occlusion and clutter background. For challenging videos
containing flash and similar objects, the top ranked methods are LOT, KMS and CPF. The
correlations can be explained from two aspects, namely, the image data and similarities in
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Figure 7: TRR curves for attribute shadow change, flash, dim light and camera shaking (best
viewed on high resolution displays).
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OO00000O0

algorithmic properties. All the sequences with the challenging flash factor and two thirds of
the videos containing similar objects are in the basketball category. Thus, the reasons why
some methods perform well in dealing with flash and similar objects can be better accounted
for by data correlation. On the other hand, scale change, occlusions and clutter background
are common challenging factors in various categories. Therefore, the tracking results may
be accounted by the similar algorithmic properties of the CPF, ASLA and SCM methods.

5 Conclusion

The essence of object tracking is how to separate foreground target from cluttered back-
ground. Compared with the diversity of shape, simple rectangle bounding box is insufficient
for representing the target object. Its limitation has been recognized and studied in the track-
ing community, however, benchmark dataset for object tracking with pixel-level annotation
is still rare. In this paper, we propose a large-scale dataset with carefully marked foreground
masks , which provides a preciser benchmark for object tracking. It can be also used for
studying the problem of video segmentation. The dataset will be release online in the near
future for research purpose.
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Figure 8: TRR curves for attribute scale change, rotation, shape deformation
occlusion (best viewed on high resolution displays).
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