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Abstract

We propose a novel deep neural network architecture for the challenging problem of
single image dehazing, which aims to recover the clear image from a degraded hazy
image. Instead of relying on hand-crafted image priors or explicitly estimating the
components of the widely used atmospheric scattering model, our end-to-end system
directly generates the clear image from an input hazy image. The proposed network
has an encoder-decoder architecture with skip connections and instance normalization.
We adopt the convolutional layers of the pre-trained VGG network as encoder to exploit
the representation power of deep features, and demonstrate the effectiveness of instance
normalization for image dehazing. Our simple yet effective network outperforms the
state-of-the-art methods by a large margin on the benchmark datasets.

1 Introduction
Images captured in the wild are often degraded in visibility, colors, and contrasts caused by
haze, fog and smoke. Recovering high-quality clear images from degraded images (a.k.a.
image dehazing) is beneficial for both low-level image processing and high-level computer
vision tasks. Dehazed images are more visually appealing to generate for image processing
tasks. Dehazed images can improve the robustness of vision systems that often assume clear
images as input. Typical applications that benefit from image dehazing include image super-
resolution, visual surveillance, and autonomous driving. Image dehazing is highly desired
because of the increasing demand of deploying visual system for real-world applications.

Image dehazing is a challenging problem. The effect of haze is caused by atmospheric
absorption and scattering that depend on the distance of the scene points from the camera. In
computer vision, the hazy image is often described by a simplified physical model, i.e., the
atmospheric scattering model [15, 23, 26, 28],

I(x) = J(x)t(x)+A(1− t(x)), (1)
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where I(x) is the observed hazy image, J(x) is the scene radiance (clear image), t(x) is the
medium transmission map, and A is the global atmospheric light. When the atmosphere
is homogeneous, t(x) can be further expressed as a function of the scene depth d(x) and
the scattering coefficient β of the atmosphere as t(x) = exp(−βd(x)). The goal of image
dehazing is to recover clear image J(x) from hazy image I(x). Single image dehazing is
particularly challenging. It is under-constrained because haze is dependent on many factors,
including the unknown depth information that is difficult to recover from a single image.

The atmospheric scattering model (1) has been extensively used in previous methods
for single image dehazing [4, 6, 10, 11, 15, 27, 38, 40]. These works either separately or
jointly estimate the transmission map t(x) and the atmospheric light A to generate the clear
image from a hazy image. Due to the under-constrained nature of single image dehazing, the
success of previous methods often relies on hand-crafted priors such as dark channel prior
[15], contrast color-lines [11], color attenuation prior [50], and non-local pior [4]. However,
it is difficult for these priors to be always satisfied in practice. For example, dark channel
prior is known to be unreliable for areas that are similar to the atmospheric light.

More recent works learn convolutional neural networks (CNNs) to estimate components
in the atmospheric scattering model for image dehazing [5, 22, 24, 29, 44, 45]. These meth-
ods are often trained with limited (synthetic) images, and use only a few layers of convo-
lutional filters. The learned shallow networks have limited capacity to represent or process
images, making them difficult to surpass the prior-based methods. In contrast, training deep
neural networks with large-scale data has made significant progress and achieved state-of-
the-art performance in many vision tasks [16, 21, 37]. Moreover, the deep features extracted
by a pre-trained deep network are used as powerful image representation in many applica-
tions, such as domain invariant recognition [8], perceptual evaluation [49], and characteriz-
ing image statistics [12]. More recently, the architecture of CNNs itself has been recognized
as a prior for image processing [42]. In this paper, we study how to release the power of deep
network for single image dehazing.

We propose an encoder-decoder architecture as an end-to-end system for single image
dehazing. We exploit the representation power of deep features by adopting the convolu-
tional layers of the deep VGG net [37] as our encoder, and pre-train the encoder on large-
scale image classification task [33]. We add skip connections with instance normalization
between the encoder and decoder, and then train decoder with both `2 reconstruction loss and
VGG perceptual loss [49]. We show that the recently proposed instance normalization [41],
which is designed for image style transfer, is also effective in image dehazing. The proposed
method effectively learns the statistics of clear images based on the deep feature represen-
tation, which benefits the dehazing process on the input image. Our approach outperforms
the state-of-the-art results by a large margin on a recently released benchmark dataset [23],
and performs surprisingly well in several cross-domain experiments. Our method depends on
neither the explicit atmospheric scattering model nor the hand-crafted image priors, and only
exploits the deep network architecture and pre-trained models to tackle the under-constrained
single image dehazing problem. Our simple yet effective network can serve as a strong base-
line for future study in this topic.

2 Related work
Traditional methods focus on representing human knowledge as priors for image process-
ing. Tan [38] assumes higher contrast of clear images and proposes a patch-based contrast-
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maximization method. Fattal [10] assumes the transmission and surface shading are locally
uncorrelated, and estimates the albedo of the scene. Dark channel prior (DCP) [15] assumes
local patches contain low intensity pixels in at lease one color channel and hence estimates
the transmission map. Fast visibility restoration (FVR) [40] is a filtering approach by at-
mospheric veil inference and corner preserving smoothing. Meng et al. [27] uses boundary
constraint and contextual regularization (BCCR), and Chen et al. [6] uses gradient resid-
ual minimization (GRM) to surpress artifacts. Tang et al. [39] combines priors by learning
with random forests model. Color attenuation prior (CAP) [50] assumes a linear model of
brightness and the saturation and then learns the coefficients. Berman et al. [4] assumes each
color cluster in the clear image becomes a line in RGB space, and proposes non-local image
dehazing (NLD).

There is an increasing interest in applying convolutional neural networks (CNNs) for im-
age dehazing. DehazeNet [5] and multi-scale convolutional neural networks (MSCNN) [29]
are trained to estimate the transmission map. AOD-Net[22] estimates a new variable based
on the transformation of the atmospheric scattering model. Zhang and Patel [45], Zhang et al.
[48] and Li et al. [24] estimate transmission map and atmospheric light by separate CNNs.
Yang et al. [44] adversarially train generators for components of the atmospheric scattering
model. Ren et al. [30] train network to fuse three derived inputs from an original hazy image.
These methods use relatively small CNNs and do not exploit the pre-trained deep networks
for image representation. A few days before our submission, we notice a preprint [7] that
also uses the pre-trained deep networks. The proposed method is quite different from [7]:
we use encoder-decoder with skip connections, while Cheng et al. [7] only use feature maps
extracted from one layer of the pre-trained network as input; we study instance normaliza-
tion and demonstrate its effectiveness; we train an end-to-end system from hazy image to
clear image, while Cheng et al. [7] estimate transmission map and atmospheric light; we can
generate impressive results without explicitly applying the atmospheric scattering model.

Deep neural networks can be used as “priors” for image generation and image process-
ing. The architecture of CNNs itself can be a constraint for image processing [42] and image
generation [14, 20]. A pre-trained deep networks can be used as general purpose feature
extractors [8] and perceptual metric [49]. The second-order information of the features ex-
tracted by a pre-trained network describes the style of images [12]. Instance normalization
layers that effectively change the statistics of deep features are widely used for image style
transfer [9, 13, 17, 41, 43]. Image translation tasks with adversarial networks are often
trained with batch normalization and batch size one [19, 46, 47], which may suffer from the
statistics mismatch between training and testing.

3 VGG-based U-Net with instance normalization
We propose an end-to-end encoder-decoder network architecture for single image dehazing,
as shown in fig. 1. The input is a hazy image, and the output is the desired clear image. We
introduce different components of the network in the following paragraphs of this section.

Encoder. Our encoder uses the convolutional layers of the VGG net [37] pre-trained
on Imagenet large-scale image classification task [33]. VGG net contains five blocks of
convolutional layers, and we use the first three blocks and the first convolutional layer of the
forth block. Each block contains several convolutional layers, and each convolutional layer
is equipped with ReLU [21] as activation function. The width (number of channels) and size
(height and width) of convolutional layers are shown in fig. 1. There is a maxpooling layer
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Figure 1: The proposed network: encoder-decoder with skip connections and instance
normalization (IN); convolutional layers of pre-trained VGG [37] are used as encoder; `2
reconstruction loss and VGG perceptual loss are used for training decoder and IN layers.

of stride two between blocks, which enlarges the receptive field of higher layers. The width
of convolutional layer is doubled after the subsampling of feature maps by maxpooling.

The pre-trained VGG net is a powerful feature extractor for perceptual metric [49] and
image statistics [12]. Our encoder is deep and wide, and the extracted deep features are
capable to capture the semantic information of the input image. We fix the encoder during
training to exploit the power of pre-trained VGG net as “priors”, and avoid overfitting from
relatively small number of samples in image dehazing dataset.

Decoder and skip connection. Our decoder is designed to be roughly symmetric
to the encoder. The decoder also contains four blocks, and each block contains several
convolutional layers. The last layer of the first three blocks of the decoder uses transposed
convolutional layer to upsample the feature maps. We use ReLU activation for convolutional
and transposed convolutional layers except for the last layer, where we use Tanh as activation
function.

We add skip connections from the output of the first convolutional layer of encoder block
1,2,3 to the input of decoder block 4,3,2 by concatenating (cat) the feature maps, respectively.
Hence our deep encoder-decoder network has a U-Net [19, 31] structure except that our skip
connections are based on blocks instead of layers . We use trainable instance normalization
for skip connections, and have instance normalization before each convolutional layer in
decoder except the first one. Our deep encoder-decoder network has large capacity, and skip
connections make the information smoothly flow to easily train a large network [16, 25].

Instance normalization. We briefly review instance normalization [41], and dis-
cuss our motivation in applying instance normalization for single image dehazing. Let
x ∈RN×C×H×W represent the feature map of a convolutional layer from a minibatch of sam-
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ples, where N is the batch size, C is the width of the layer (number of channels), H and W
are height and width of the feature map. xnchw denotes the element at height h, width w of
the cth channel from the nth sample, and instance normalization layer can be written as,

IN(xnchw) = γnc

(
xnchw−µnc

σnc

)
+βnc, where

µnc =
1

HW

H

∑
h=1

W

∑
w=1

xnchw, σnc =

√
1

HW

H

∑
h=1

W

∑
w=1

(xnchw−µnc)2 + ε,

(2)

γnc,βnc are learnable affine parameters, ε is a very small constant, and µnc,σ
2
nc represent the

mean and variance for each feature map per channel per sample.
If we replace instance level variables γnc,βnc,µnc,σ

2
nc with batch level variables

γc,βc,µc,σ
2
c that are estimated for all samples of a minibatch, we get the well-known batch

normalization layer [18]. We show instance normalization is preferred than batch normal-
ization for single image dehazing in our experimental ablation study.

The learnable affine parameters γnc,βnc of instance normalization shift the first and sec-
ond order statistics (mean and variance) of the feature maps. Instance normalization is ef-
fective for image style transfer, and the style of images can be represented by learned affine
parameters [9]. Shifting the statistics of deep features extracted by pre-trained networks has
achieved impressive results for arbitrary style transfer [17]. Shifting the statistics of images
is intuitive for dehazing, however, it can be difficult to decide the exact amount to change
because haze depends on the unknown depth. The deep features extracted by a pre-trained
VGG net contain semantic information to effectively infer depth for haze, and hence the
learned affine parameters effectively shift the statistics of images. We apply instance nor-
malization on the deep features extracted by pre-trained VGG net for single image dehazing.

Training loss. Our network is trained with both reconstruction loss and VGG perceptual
loss. Denoting the training pairs of hazy image and clear image as (In,Tn),n = 1, . . . ,N, we
use the mean squared loss,

min
F

1
N

N

∑
n=1
‖F(In)−Tn‖2 +λ‖g(F(In))−g(Tn)‖2, (3)

where F represents the trainable instance normalization and decoder layers in our network,
g represents the perceptual function, and λ is a hyperparameter. We set λ = 1 , and use the
features extracted by the first convultional layer of the third block from the pre-trained VGG
net as perceptual function.

4 Experiments
In this section, we conduct various experiments on both synthetic and natural images to
demonstrate the effectiveness of the proposed method. The atmospheric scattering model
is widely used to synthesize images for both training and testing. The hazy images are
synthesized from groundtruth clear images and grountruth depth images [3, 23], or estimated
depth images [34].

We train our model on the recently released RESIDE-standard dataset [23]. RESIDE-
standard contains 13,990 images for training, and 500 images for testing. These images are

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Dumoulin, Shlens, and Kudlur} 2017

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{Ancuti, Ancuti, and Deprotect unhbox voidb@x penalty @M  {}Vleeschouwer} 2016

Citation
Citation
{Li, Ren, Fu, Tao, Feng, Zeng, and Wang} 2017{}

Citation
Citation
{Sakaridis, Dai, and Vanprotect unhbox voidb@x penalty @M  {}Gool} 2017

Citation
Citation
{Li, Ren, Fu, Tao, Feng, Zeng, and Wang} 2017{}



6 Z. XU, X. YANG, X. LI, X. SUN: STRONG BASELINE FOR DEHAZING

Table 1: Quantitative results on RESIDE-standard dataset [23].

DCP [15] FVR [40] BCCR [27] GRM [6] CAP [50]
PSNR 16.62 15.72 16.88 18.86 19.05
SSIM 0.8179 0.7483 0.7913 0.8553 0.8364

NLD [4] DehazeNet [5] MSCNN [29] AOD-Net [22] Ours
PSNR 17.29 21.14 17.57 19.06 27.79
SSIM 0.7489 0.8472 0.8102 0.8504 0.9556

generated by existing indoor depth datasets, NYU2 [36] and Middlebury stereo [35]. The at-
mospheric scattering model is used, where atmospheric lights A is randomly chosen between
(0.7, 1.0) for each channel, and scattering coefficient β is randomly selected between (0.6,
1.8).

We also apply our model trained on RESIDE-standard for cross-domain evaluation on D-
Hazy [3], I-Haze [1] and O-Haze [2] dataset. D-Hazy dataset [3] is another synthetic dataset,
which contains 23 images synthesized from Middlebury and 1449 images synthesized from
NYU2, with atmospheric lights A = (1,1,1) and scattering coefficient β = 1. Though D-
Hazy dataset use the same clean images as RESIDE-standard, the generated hazy images
are quite different. I-Haze [1] and O-Haze [2] are two recent released datasets on natural
indoor and outdoor images, respectively. I-Haze contains 35 pairs of indoor images and O-
Haze contains 45 pairs of outdoor images, where the hazy images are generated by using a
physical haze machine.

We compare our results quantitatively and qualitatively with previous methods. We com-
pare with prior-based methods, DCP [15], FVR [40], BCCR [27] , GRM [6], CAP [50] and
NLD [4] . We also compare with learning-based methods DehazeNet [5], MSCNN [29] , and
AOD-Net [22]. We have provided a brief review of these baseline methods in section 2. We
use peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) as metrics for quan-
titative evaluation. For the benchmark evaluation on RESIDE-side, all the learning-based
methods are trained on the same dataset. For cross-domain evaluation on D-Hazy, O-Haze
and I-Haze, we use the released best pre-trained model for the learning-based baseline meth-
ods.

We train our model by SGD with minibatch size 16 and learning rate 0.1 for 60 epochs,
and linearly decrease the learning rate after 30 epochs. We use momentum 0.9 and weight
decay 10−4 for all our experiments. We will release our Pytorch code and pre-trained models
1.

4.1 Quantitative evaluation on benchmark dataset

We present the performance of our network and baseline methods on the RESIDE-standard
benchmark dataset [23] in table 1. Our network and the learning-based baselines [5, 22,
29] are trained on the provided synthetic data, and evaluated on the separate testing set.
We evaluate our results by metrics provided by [23], and compare with the baseline results
reported in [23]. The learning-based methods perform slightly better than the prior-based
method. CAP [50] performs best in prior-based method, which has a learning phase for the
coefficients of the linear model. DehazeNet [50] performs best in baseline methods, which
uses a relatively small network to predict components.

1https://github.com/nightldj/dehaze_release
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Hazy Clear NA-NA IN-IN IN-IN-Percep

Figure 2: An example of qualitative results in ablation study. We zoom in the bottom left
corner of the images to show more details in the second row.

Table 2: Ablation study on RESIDE-standard dataset.

Skip NA BN IN NA BN
Dec NA NA NA BN BN

PSNR 18.24 25.67 26.00 25.99 26.38
SSIM 0.7945 0.9442 0.9414 0.9385 0.9519
Skip IN NA BN IN Perceptual
Dec BN IN IN IN loss

PSNR 26.89 26.57 27.67 27.75 27.79
SSIM 0.9535 0.9381 0.9543 0.9549 0.9556

Our approach outperforms all the baseline methods on both PSNR and SSIM by a large
margin. The synthetic data for both training and testing are generated by the atmospheric
scattering model, and the baseline methods explicitly use the atmospheric scattering model.
In contrast, our approach only uses instance normalization to transform the statistics of deep
features . The superior performance of our network on the benchmark dataset demonstrate
the effectiveness of deep networks and instance normalization for single image dehazing.

4.2 Ablation study

We provide more discussion on the proposed network. We verify the effectiveness of in-
stance normalization with ablation study on network structures, as shown in table 2. We
use no normalization (NA), batch normalization (BN), or instance normalization (IN) for
skip connections and decoders, respectively. The normalization layers are added before each
convolutional layer of the decoder except for the first layer. All the results in table 2 are
obtained by only using reconstruction loss (λ = 0 in loss function (3)) except for the last
one, where IN and combined loss (λ = 1) are used. We train and evaluate our network on
the RESIDE-standard dataset.

First, comparing the NA results in table 2 with previous best results in table 1, our
encoder-decoder only achieves competitive results. Second, adding normalization to either
skip connections or decoder significantly improves the performance of our network. The
normalization layers for decoder are implicitly applied to the features from the skip connec-
tions, which makes the result of only normalizing decoder slightly better than only normal-
izing skip connections. Third, instance normalization works better than batch normalization,
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Table 3: Quantitative results for cross-domain evaluation.

D-Hazy-NYU [3] D-Hazy-MB [3] I-Haze [1] O-Haze [2]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [15] 11.56 0.6695 12.13 0.6752 13.41 0.4930 17.01 0.4875
CAP [50] 13.29 0.7266 14.36 0.7526 15.27 0.5603 16.68 0.4810

DehazeNet [5] 13.02 0.7256 13.78 0.7342 16.73 0.6263 17.90 0.5514
MSCNN [29] 13.67 0.7413 13.97 0.7488 15.93 0.5896 16.27 0.4947
AOD-Net [22] 12.44 0.7147 13.48 0.7470 15.00 0.5828 16.22 0.4142

Ours 18.11 0.8268 15.63 0.7338 16.04 0.6332 17.46 0.5337

which demonstrates the effectiveness of shifting the mean and variance of deep features at
instance level.

Finally, the perceptual loss only helps a little for quantitative evaluation, but it can help
generate more visually appealing output images. We show an qualitative example in fig. 2,
where the hazy input, the groundtruth clear image, outputs of our network without normal-
ization layers and no perceptual loss (NA-NA), our network with instance normalization
and no perceptual loss (IN-IN), and our network with instance normalization and perceptual
loss (IN-IN-Percep). We enlarge the bottom left corner of the results to show more details.
The results of IN-IN look much better than NA-NA. The enlarged area of the result with
perceptual loss (IN-IN-Percep) looks sharper and clearer.

4.3 Cross-domain evaluation

In this section, we focus on the cross-domain performance by evaluating our network trained
on RESIDE-standard [23] on the cross domain datasets, D-Hazy [3], I-Haze [1] and O-
Haze [2]. We compare with baseline methods that have publicly available code, and these
are strong baselines according to benchmark evaluation in table 1. For learning-based meth-
ods DehazeNet [5], MSCNN [29], and AOD-Net [22], we use the best model the authors
have released. MSCNN [29] and AOD-Net [22] are trained with synthetic images similar to
RESIDE-standard, while DehazeNet [5] is trained with patches of web images.

We present the quantitative results in table 3, where we use bold to label the best results
and underline to label the second best results. Our approach achieves best results, or close to
the best results for all the cross-domain evaluations. Our first observation is that the learning-
based methods [5, 22, 29], including ours, generalize reasonably well and perform equally
or better than the prior-based methods [15, 50].

Our network performs well on the cross-domain D-Hazy dataset [3]. Particularly, our
approach outperforms all baseline methods by a large margin on the images synthesized
from NYU depth dataset. D-Hazy dataset is synthesized by the same clear images as our
training data RESIDE-standard, but uses different parameters of the atmospheric scattering
model. Our trained network has effectively captured the statistics of the deep features of the
desired clear images.

I-Haze [1] and O-Haze [2] images look quite different from our training images, and our
network may have difficulty to infer the exact statistics of deep features for these images.
DehazeNet [5] may have gained some advantage on these two datasets because it is trained
on patches of web images. Our approach still produces competitive results compared with
DehazeNet [5], and outperforms all the other baselines. Notice again that our network does
not use the powerful atmospheric scattering model, and is only trained on a limited number
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of indoor synthetic images. The cross-domain evaluation further demonstrates the power of
deep features and instance normalization in our approach.

4.4 Qualitative evaluation

Hazy Clear DCP CAP DehazeNet MSCNN AOD-Net Ours

Figure 3: Qualitative evaluation on cross-domain dataset. The four examples are from D-
Hazy-NYU [3], D-Hazy-MB [3], I-Haze [1] and O-Haze [2], respectively. Best viewed in
color and zoomed in.

We present qualitative results from cross-domain evaluation in fig. 3. The images are
from D-Hazy-NYU [3], D-Hazy-MB [3], I-Haze [1] and O-Haze [2], respectively. We
show the hazy image and groundtruth clear image, and compare our results with DCP [15],
CAP [50], DehazeNet [5], MSCNN [29], and AOD-Net [22]. We use the best released model
for the learning-based baselines [5, 22, 29], and train our network on RESIDE-standard [23].

Our network makes the best efforts to remove haze and recover the real color of images,
as shown in fig. 3. The results of baselines still have a large amount of undesired haze
and look blurry (row 2,3,4). Particularly, the baselines have difficulty in dark areas of the
image, and DCP also has difficulty in area of white and blue walls (row 1,3). For the outdoor
image (row 4), our network produces a little artifact due to the significant domain difference
between the desired images and the training indoor images. Use regularizers such as total
variation [32] may help reduce these artifacts, and we plan to investigate it in the future. Our
simple yet effective network has generated visually appealing results, without depending on
extra constraints like the atmospheric scattering model.

5 Discussion
We proposed a simple yet effective end-to-end system for single image dehazing. Our net-
work has an encoder-decoder architecutre with skip connections. We manipulated the statis-
tics of deep features extracted by pre-trained VGG net and demonstrated the effectiveness
of instance normalization for image dehazing. Moreover, without explicitly using the atmo-
spheric scattering model, our approach outperforms previous methods by a large margin on
the benchmark datasets. Notice that both the training and testing data are generated by the
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atmospheric scattering model, and the baseline methods all explicitly use the model. Our
network effectively learns the transformation from hazy image to clear image with limited
synthetic data, and generalizes reasonably well.

The atmospheric scattering model is powerful and has been successfully deployed for im-
age dehazing in the past decade. However, the atmospheric scattering model, as a simplified
model, also constrained the learnable components to be “linearly” combined by element-
wise multiplication and summation, which may not be ideal for training deep models. Our
study sheds light on the power of deep neural networks and the deep features extracted by
pre-trained network for single image dehazing, and encourages the rethinking on how to ef-
fectively exploit the physical model for haze. How will physical model help when training
powerful deep networks? It is still an open question, and our approach serves as a strong
baseline for future study.

Our network outperforms state-of-the-art methods by a large margin on the benchmark
dataset, and achieves competitive results on cross-domain evaluation. The key idea of our
approach is to apply instance normalization to shift the statistics of deep features for image
dehazing. For cross-domain evaluation, it may be difficult to effectively infer the desired
statistics of deep features of clear images that is quite different from the training data. Our
generalization ability can be significantly improved by training from large-scale natural im-
ages. In the future, we will explore adversarial training to use unpaired hazy and clear images
that are easier to collect from the web.
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