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Abstract

This paper presents a long-term object tracking algorithm for event cameras. A first
of its kind for these revolutionary cameras, the tracking framework uses a discriminative
representation for the object with online learning, and detects and re-tracks the object
when it comes back into the field-of-view. One of the key novelties is the use of an
event-based local sliding window technique that performs reliably in scenes with clut-
tered and textured background. In addition, Bayesian bootstrapping is used to assist
real-time processing and boost the discriminative power of the object representation. Ex-
tensive experiments on a publicly available event camera dataset demonstrates the ability
to track and detect arbitrary objects of various shapes and sizes. This is a significant
improvement compared to earlier works that simply track objects as long as they are vis-
ible under simpler background settings. In other words, when the object re-enters the
field-of-view of the camera, a data-driven, global sliding window based detector locates
the object under different view-point conditions for subsequent tracking.

1 Introduction
Standard video cameras struggle to capture crisp images of scenes characterized by high
dynamic range and motion, returning blurred or saturated images. To overcome these lim-
itations, event cameras aim to emulate the important asynchronous property of the human
retina, thus earning themselves the name “silicon retinas”. Hence, an event camera has no
global clock or shutter to record images in the traditional sense. Instead, each pixel individ-
ually adapts and responds to temporal changes in log intensity, and outputs an asynchronous
event with the pixel address which gets a precise timestamp in the order of microseconds.

c⃝ 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 BHARATH ET AL.: E-TLD – LONG-TERM OBJECT TRACKING

An event is characterized by a spatial location (x,y), timestamp t and a binary-valued po-
larity p, i.e., on-events (p= 1) are caused by a positive change in log-intensity and vice-versa
for off-events (p = 0). In both cases, events triggered by brightness changes are likely to oc-
cur at the edges that delineate the structure of the scene, and thus removing redundancy with
a much lower data rate compared to a standard VGA resolution video at 30 fps. Although
redundancy is absent in the event stream, the higher time-resolution should in principle con-
tain all the information of a standard video without bounds on frame-rate and dynamic range.
The image reconstruction from a pure event stream lends support to this idea [8].

Despite object tracking being a major research topic in computer vision, applicability
has been limited by the low camera dynamics of standard vision sensors. Increasing the
frame rate only burdens the computation techniques [28], preventing a dynamic, low-latency
formulation of object tracking. On the other hand, the discontinuous motion information
captured using a standard 30 fps video camera is an obvious disadvantage for frame-based
object tracking algorithms.

This paper introduces a simple and efficient object tracking framework, consisting of a
local tracker and a global detector, by taking advantage of the sparsity and higher temporal
resolution of the event camera. In other words, the position of the object in the field-of-
view of the event camera changes with negligible spatio-temporal discontinuity (5-10 µs).
Therefore, the key idea is to spatially limit the search region of the tracked object while the
temporal limits are imposed by the rate at which events arrive within the search region. In
particular, the tracker search is modeled as a discriminative classification scheme (object vs.
background) using the event-based descriptor proposed in [20]. Therefore, given the initial
location of the object within a short time-interval, the training phase of the tracker learns a
binary classifier. Subsequently, an object detector is learned using the training samples of
the tracker.

The proposed framework is similar in spirit to the Tracking-Learning-Detection (TLD)
system for frame-based cameras [7], nonetheless significantly different in the methods suited
to event-based vision. We term our event-based object tracking framework as e-TLD. In
summary, the objective is to develop a real-time long-term tracking system to achieve:

1. Continuous, long-term robust tracking under background change, illumination change
and scale change.

2. Re-capturing the target after temporally occluded by other objects or when it re-
appears after exiting.

2 Event Cameras
We use the commercial event camera, the Dynamic and Active-pixel Vision Sensor (DAVIS)
[1] shown in Fig. 1(a). It has 240 × 180 resolution, 130 dB dynamic range and 3 microsec-
ond latency, and communicates with a host computer using USB 2.0. It concurrently outputs
a stream of events and frame-based intensity read-outs using the same pixel array. As men-
tioned earlier in Sec. 1, an event consists of a pixel location, a binary polarity value for
positive or negative change in log intensity and a timestamp in microseconds. The event
camera output can be visualized as shown in Fig. 1(b) by accumulating events within a short
time-period (40ms in this case). In our work, polarity of the events are not considered, so
both on-events and off-events are shown in white and the black regions correspond to inactive
pixels. Note that only the event data of the DAVIS is used in this work.
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(a) (b)
Figure 1: (a) The DAVIS event camera used in this work (source:inivation.com) (b) The
accumulated events shown as a single frame, in which the tracker is initialized with the an
arbitrary object position (source: The Event Camera Dataset [17]).

2.1 Related Work
The recent deep learning revolution in computer vision has also influenced neuromorphic
vision with many works primarily in machine learning [5, 12, 18, 19, 25]. Besides learn-
ing, simultaneous localization and mapping (SLAM) is a trending robotics application using
silicon retinas [9, 10, 16, 17, 22, 23]. On a larger front, these revolutionary cameras allow
new perspectives in reformulating traditional vision problems, such as object detection and
tracking, which largely remains an unexplored area of research.

A few works have used the event camera for object tracking with focus on specific ap-
plication scenarios. One of the first object tracking applications demonstrated using the
commercial dynamic vision sensor (DVS) was to track and control the position of a pencil
balanced on a robot arm using a fast event-based Hough transform [2]. Other works focused
on event-based algorithms for traffic monitoring [6, 13] from a static sensor point-of-view,
and consequently, tracking can be treated without background modeling as only dynamic
objects are picked out by the static event camera. Similarly, the robot goalie application [4]
also takes advantage of the stationary DVS camera for tracking multiple balls.

A handful of works have attempted to tackle tracking of objects from a moving event
camera. Using the DAVIS, [14] used a convolutional neural network (CNN) to detect likely
target locations for tracking from a moving platform. However, a hybrid approach with
frames and events naturally loses the advantages of a low-latency, purely event-driven ap-
proach. Nonetheless, general purpose object tracking works [11, 26] using event-based ap-
proaches have been proposed to track incoming blobs of events based on local shape proper-
ties. Although these methods are capable of adapting its shape and position to the distribution
of incoming events, they carry motion assumptions such as a bivariate gaussian distribution.
Thus, the algorithm parameters were defined experimentally according to the target to track,
as acknowledged in [26]. Moreover, the previous systems are not suited to track a set of
patterns/object as a whole. Finally, [11, 26] are not suited for long-term tracking, because
there is no detector to re-initialize the tracker after a failed track.

In contrast to the above works, an object tracking and detection framework has been
recently proposed [21] with the following limitations. As acknowledged by the authors
of [21], their method works only when there is a clean background surrounding the target
object. Secondly, the training phase of the detector in [21] is not data-driven (less reliable in
practice) and uses computationally expensive image processing approaches for locating the
most probable object candidate. Thus, [21] works only for simple shapes, as shown in their
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Figure 2: Tracker and detector flow of the proposed e-TLD framework.

accompanying video results.
In this paper, we propose a general purpose discriminative tracking system using a local

sliding window approach, whose parameters are intuitive and can be easily generalized for
a wide variety of objects having different shapes and sizes in cluttered settings, as shown in
Fig. 1(b). Moreover, we propose a data-driven approach for training the object detector and
a global sliding window method for locating the object, which allows detecting even small
objects, like the drinking can near the monitor in Fig. 1(b).

3 Our method: e-TLD
The proposed e-TLD framework integrates a tracker and detector, as shown in Fig. 2. The
event-based object tracker (Sec. 3.1) is a local search that requires initialization and outputs
smooth trajectories. However, it cannot recover from failure on its own. The event-based
object detector (Sec. 3.2), on the other hand, is a global search that does not assume anything
about the previous position of the object, and is relatively slower compared to the tracker.
However, we can achieve real-time processing by activating the detector only when tracker
failure happens.

During the tracking process, online learning is needed to account for the changes in
object appearance. In particular, the binary classifier used by the tracker is updated when the
region-of-interest (ROI) is classified as the object. Updating the tracker mitigates the drifting
issue and it is updated when the tracking confidence is higher than the mean tracking score.
If tracking failure happens, a higher confidence value is needed to re-activate the tracker. In
other words, the target will be re-tracked only when it can pass both the detector and a more
“strict” tracker. The following subsections describe the e-TLD framework to jointly track
and detect the object.

3.1 Event-based object tracker
Each time a ROI is classified as object, a small padding ensures the search area contains the
object at the next instance of classification, as shown in Fig. 3. The position of the object
is then updated with the candidate ROI with the highest classification score. This process is
extremely simple, but works extremely well in challenging cluttered conditions due to the
high-temporal resolution of the event camera. Note that we set the classification period in
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Figure 3: Local sliding window for object tracking using event cameras. A small padding
ensures the sliding area contains the object in the next instance of classification. As shown
in the example above, a padding of two pixels in x and y directions creates 25 candidate
windows (best viewed on monitor).

terms of the number of events received within the ROI, instead of explicitly choosing a time-
period. In particular, this number is chosen as a small fraction of the bounding box size and
thus allows a dynamic classification rate for different object shapes and sizes.

We employ the feature descriptor proposed in [20], and thus, each event is encoded as a
local descriptor. The notation ei = (xi,yi, ti, pi,xT

i )
T denotes an event with pixel location xi

and yi, timestamp ti, polarity pi and the feature vector xi.
We denote by N the number of candidate windows, and by X j = (x1,x2, · · · ,xni) the

collection of event descriptors contained within a candidate window W j where xl ∈ Rd ,
l = 1,2, · · · ,ni is a descriptor in feature space S.

Inspired by the bag-of-words (BOW) model in computer vision [3], each feature vector
xl is quantized into one of K different visual words that are obtained from the training phase.
The mapping to a visual word vk ∈ S is achieved using a quantization function fk(x) : S 7→
[0,1]. Each quantization function fk(x) is essentially computing the distance of the feature
vector to vk and allowing the assignment if it is minimal.

fk(x) = f (x;vk) = I(||x− vk||= ρ) (1)

where indicator function I(z) outputs 1 when z is true or 0 otherwise; ρ is the Euclidean
distance, argmink||x− vk|| . Given K visual words, or K quantization functions { fk(x)}K

k=1,
a codeword representation is computed as,

hk
j =

1
ni

ni

∑
l=1

fk(xl) (2)

The tracker representation for W j is expressed by the vector,

h j = (h1
j ,h

2
j , · · · ,hK

j ) (3)

Each incoming event in a candidate window W j is then used to update the tracker represen-
tation h j ∈ RK . The scalar-valued discriminant function D(h j) indicates the presence (class
ω1) or absence of the object (class ω2) dynamically,

D(h j)≷ 0 ⇒ h j ∈
{

ω1
ω2

}
(4)
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During the training phase where the user specifies a tight ROI in space-time that contains the
object, all the events including ones outside the ROI are used to obtain the parameters of D,
which is the problem of constructing a classifier for two classes – object vs background.

3.1.1 Training phase

When the user specifies the spatio-temporal position of the object, the first step is create
the visual words {vk}K

k=1 ∈ S, which are the cluster centers generated using k-means clus-
tering of the event descriptors inside and outside the ROI. In other words, the codebook
C = [v1,v2, · · · ,vK ] ∈ Rd×K is an unsupervised learning step. Then the events within the
ROI, represented by the set of descriptors Xω1 = (x1,x2, · · · ,xC1) can be used to generate a
tracker representation hω1 (3). Similarly, the events outside the ROI Xω2 = (x1,x2, · · · ,xC2)
can be used for obtaining hω2 . However, training a classifier with just one sample from each
class (hω1 and hω2 ) is pointless.

To solve the low sample problem, statistical bootstrapping [15] can be used to gener-
ate new subsets of descriptors {Xω1

1 ,Xω1
2 , · · · ,Xω1

n1 } and {Xω2
1 ,Xω2

2 , · · · ,Xω2
n2 }. Specifically,

bootstraping Xω1 is the process of random sampling of a subset out of the C1 descriptors,
one at a time such that all descriptors have an equal probability of being selected, i.e., 1/C1.

However, storing a set of events or descriptors for bootstrapping (Xω1 and Xω2 ) is imprac-
tical for online learning on an event-by-event basis. Thus, we propose bootstrapping to be
interpreted in a Bayesian framework [24] that re-weights the histogram representations (hω1
and hω2 ). Let P ∼U([0,1]) be a uniformly distributed random variable. Mathematically,

hk
1ω1

= ⌊P×hk
ω1
⌋ (5)

Thus, the first bootstrapped histogram representation for the ROI is expressed by the vector,

h1ω1 = (h1
1ω1

,h2
1ω1

, · · · ,hK
1ω1

) (6)

It is to be noted that (6) is not a true bootstrap procedure since the maximum values of hk
1ω1

need not be clipped to the corresponding maxmimum values of hk
ω1

, as seen in (5). However,
the Bayesian bootstrap is operationally and inferentially similar to the true boostrap [24]. Let
N1 and N2 denote the number of samples after bootstrapping belonging to class ω1 and ω2 re-
spectively. Then, the collection of the bootstrapped representations {h1ω1 ,h2ω1 , · · · ,hN1ω1}
and {h1ω2 ,h2ω2 , · · · ,hN2ω2} is used to train a support vector machine (SVM) classifier D(·)
with an efficient additive χ2 kernel [27].

3.1.2 Tracking Phase

The candidate windows {W j}N
j=1 each output a tracker representation h j. The best candidate

window is chosen to be the tracker state Bt when D(h j) is maximized.

argmax
X j∈S

D(h j(X j)) := {X j, j = 1,2, · · · ,N | ∀Y j : D(h j(Y j))≤ D(h j(X j))}. (7)

The number of events for the ROI update (“waiting time” between two instances of classi-
fication) is set as τ × height ×width of the ROI X j, where τ ∈ [0,1] is set to 0.05 in our
experiments. Thus, when the sliding area contains 5% of the events relative to the number
of pixels contained within the ROI, the next instance of classification is triggered (see Fig.
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Algorithm 1 Event-based Object Detection
Input: Image size (h×w), detection matrix M = 0h,w, detect threshold τd , count = 0
Output: Estimated tracker state Bt with ROI width n and height m

1: For each incoming event ei = (xi,yi, ti, pi,xT
i )

T

2: for k = 1 : K do
3: Get fk(xi) using (1)
4: if fk(xi) = 1 and k ∈ Oω1 = {k1,k2, · · · ,ko} then
5: M(yi,xi) = M(yi,xi)+1
6: count = count+1
7: end if
8: end for
9: if (count > τd ×h×w) then

10: Perform global sliding window operation (9) on M to get O ∈ R(h−m+1)×(w−n+1)
+

11: Use highest activation in O to re-initialize the tracker state Bt
12: end if

3). The average SVM score after several instances is used to determine whether the next
instance of tracking is successful. In case, the SVM score falls below the average score, then
the object detector is instantiated to globally search for the object.

3.2 Event-based object detector

Once the tracker has lost the object, detecting the object is the problem of obtaining a can-
didate ROI and continuing the tracking process. Therefore, detection is a global sliding
window search compared to the local sliding window search of the tracker.

3.2.1 Training phase

Similar to the training phase of the tracker (Sec. 3.1.2), the object detector uses the ROI
initialization by the user. Let o denote the number of quantized clusters to which the ob-
ject samples Xω1 are frequently mapped, and the corresponding cluster indices be Oω1 =
{k1,k2, · · · ,ko} where o ≪ K. The objective of the proposed detector training phase is to
obtain Oω1 in a data-driven fashion without relying on ad-hoc threshold parameters.

The main idea is to deduce clusters that are important to Xω1 while rejecting quantiza-
tion results that are common to Xω1 and Xω2 . By making use of the Bayesian bootsrapped
representations, a new vector hdiff

ω1ω2
∈ RK is used to obtain object clusters for the detection

process,

hdiff
ω1ω2

=
N1

∑
l=1

hlω1 −
N2

∑
m=1

hmω2 (8)

The positive values in hdiff
ω1ω2

represent codewords that have been assigned to the object more
times than it has been assigned to background. Therefore, these codewords are simply chosen
to be Oω1 . In the current e-TLD setup, the detector is not updated on-the-fly, as it requires
online dictionary learning, which remains a future direction of research.
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3.2.2 Detection phase

If the event camera output contains h rows and w columns, a detection matrix M ∈ Rh×w
+ is

used to keep track of events that may belong to the object. For every incoming event, the
quantization function (1) determines whether it belongs to the detector clusters {k1,k2, · · · ,ko}
and the corresponding location of the event is used to increment M. The detector threshold
τd ×h×w, where τd ∈ [0,1], determines if enough events have been accumulated within the
detection matrix M. The parameter τd is set to 0.10, meaning at least 10% of the object
events have occurred for the detection process.

A global sliding window process is then performed on M to determine the region with
maximal activation due to the presence of the object (if any). If the previous successful
object state Bt has m rows and n columns, then the size of the activation map after the global
sliding window operation will be h−m+1 rows, and w−n+1 columns.

O(r,s) =
m

∑
k=1

n

∑
l=1

M(r+ k−1,s− l +1) (9)

where r and s varies from 1,2, · · · ,h−m+1 and 1,2, · · · ,w−n+1 respectively. The region
centered at max(O(r,s)) is the new tracker state Bt . Alg. 1 outlines the proposed event-based
object detection approach.

4 Experiments
We recommend viewing our submitted videos1 that clearly show the tracking process better
than still images. We tested e-TLD using a publicly available event-camera dataset [17] and
in-house data processed in real-time on a standard PC. The experimental setup for testing on
the dataset are as follows.

For each object, an ROI was manually specified during the first 300ms of the recording
(training data) and the rest of the recording was used for testing. A small codebook size of
K = 200 was used to model the ROI and the background. The SVM training is performed
with Bayesian bootstrapping that outputs equal number of samples as the initial number of
descriptors. For example, if there are N1 = 840 ROI descriptors at the user initialization
state, N1 samples having N1/2 descriptors in each sample are obtained after bootstrapping.

4.1 Translational camera motion
As shown in Figure 4, e-TLD is able to track and detect objects of various sizes and shapes.
In these results, the overlaid markers indicate the position of the tracked object in the field-
of-view of the event camera.

4.2 6-DOF camera motion
Although the appearance of the object changed considerably during the translational camera
motion, rotation was intentionally kept minimal in these recordings by the authors of the
event camera dataset. Separate recordings of the same scene are available for the general
6-DOF camera motion, which induces drastic view-point change of the object. Figure 5

1https://youtu.be/3cigR9Al23A
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(g) (h) (i)
Figure 4: Tracking of objects having various shapes and sizes. Each each row shows the
tracking of a single object. The marked events represent the tracked position in the field-of-
view of the event camera and the title of each subfigure displays the time (µs) instance of
the track.

shows the tracking of the drone object under drastic view-point variations, showing robust-
ness of the e-TLD system to scale and rotation. Note that quantitative evaluation has not
been possible due to the unavailability of ground truth in the event camera dataset. As the
neuromorphic research field becomes mature, we expect ground truth comparison to play a
vital role in comparison of different object tracking frameworks.

4.3 Real-time testing

Real-time testing was carried out using a DAVIS camera, interfaced and powered by an Intel
ComputeStick running an Intel Core m5-6Y57 vPro processor, on-board an unmanned aerial
vehicle (UAV). The e-TLD framework was implemented in C++ using Visual Studio IDE
for Windows 10. A standard global shutter camera is likely to generate images with motion
blur artifacts while the UAV is constantly in motion. However, the event camera and our
algorithm are able to track the object, as shown in this video2 where all elements are clear.

2https://youtu.be/Fv38sltqis8
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Figure 5: Tracking of the drone object under general 6-DOF camera motion.

5 Conclusion

We believe these are breakthrough results, showing how an event-based tracker and detector
permits the application of an event camera to the important problem of long-term object
tracking in real-time, and hopefully this opens the door to similar approaches for other related
vision problems. It is worth restating that the data rate of the DAVIS event camera used in our
experiments is typically in the order of 150 KB/s while a standard grayscale VGA camera
outputs frames at 30Hz or about 10MB/s. The only information that is important for tracking
and detection is how edges move, and the event camera naturally outputs this information
while sidestepping problems of blur, low-dynamic range and limited motion information that
standard cameras create.
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