
S.-Y. LIN AND Y.-Y. LIN: ACTION RECOGNITION WITH THE AUGMENTED MOCAP DATA 1

Action Recognition with the Augmented
MoCap Data using Neural Data Translation
Shih-Yao Lin
mike.lin@ieee.org

Tencent America
Palo Alto, CA, USA

Yen-Yu Lin
yylin@citi.sinica.edu.tw

Academic Sinica
Taipei, Taiwan

Abstract

This study aims at generating reliable augmented training data to learn a robust deep
model for action recognition. The prior knowledge inferred from few training data is
not sufficient to well represent the real data distribution, which makes action recogni-
tion quite challenging. Inspired by the recent advances in neural machine translation, we
propose a neural data translation (NDT) to tackle the aforementioned issue by directly
learning the mapping between paired data of the same action class in an end-to-end fash-
ion. The proposed NDT is a sequence-to-sequence generative model. It can be trained
with few paired training data, and generates an abundant set of augmented actions with
diverse appearance. Specifically, we adopt stochastic pair selection to compile a set of
paired training data. Each pair consists of two actions of the same class. One action
serves as the input to NDT, while the other acts as the desired output. By learning the
mapping between data of the same class, NDT implicitly encodes the intra-class varia-
tions so that it can synthesize high-quality actions for augmentation. We evaluated our
method on two public datasets, including the Florence3D-action and UCI HAR datasets.
The promising results demonstrate that the actions generated by our method effectively
improve the performance of action recognition with few examples.

1 Introduction
Recognizing human actions has drawn increasing attention for decades due to its wide ap-
plicability to many areas such as surveillance, robotics, health care, and human-computer
interaction. Recent research efforts, e.g., [3, 10, 11, 14, 15, 18, 19, 22, 23, 27, 32], have
successfully applied deep neural networks (DNN) to learn and infer human actions from
videos. Despite the good performance, learning actions with DNN requires a vast amount of
training examples. This requirement may not be satisfied in practice.

Transfer learning such as [20, 25, 31] is one widely adopted solution to learning the neu-
ral networks with limited training data. A DNN model is trained in advance with a large
dataset in the source domain. By learning the transformation from the source to target do-
mains, the DNN model in the target domain can re-use the parameters from that in the source
domain and is fine-tuned with limited training data. However, transfer learning works when
data modalities in the source and target domains are the same, e.g., images. In modern real-
world applications, data can be captured by various emerging or customized devices, such
as accelerometers, gyroscopes, data-gloves, and optical motion-capture systems. Those data
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are device-specific. Most transfer learning schemes are inapplicable in this case where cross-
modality knowledge transfer is required. In addition, compared with popular modalities such
as RGB videos and audio, collecting a large set of such device-specific training data is even
more difficult.

Neural machine translation (NMT) [4, 6, 9, 28, 33, 34] has been an active research topic.
NMT is an end-to-end trainable model for automated text translation. NMT typically con-
tains two main components, namely an encoder network and a decoder network. On the
other hand, variational recurrent auto-encoder (VRAE) [5, 7, 8, 17, 24] works on source and
target data of the same modality, and learns the mapping from source data to the latent repre-
sentation. Unlike VRAE, the encoder network in NMT transforms the source sentences into
a list of vectors, and the decoder network produces the output sentences for those vectors.
Although the structures of the source and output sentences may be diverse, they have similar
semantic meaning. NMT can learn the implicit representation within the source and target
sentences.

Inspired by the mapping power of NMT, we aim to leverage it to explore the intra-class
variations so that the generated actions are good enough for effective data augmentation. We
present a neural data translation (NDT) model, which is recurrent neural networks (RNN)-
based auto-encoder, and can perform action to action mapping. Specifically, we adopt a
stochastic pair selection scheme, with which a set of paired actions are collected. Each pair
contains two actions of the same class. NDT takes one of them as the input, and considers
the other the desired output. Learning NDT in this way can encode the implicit structure of
the actions and translate actions of the same class. It turns out that high-quality actions are
generated by using the learned NDT.

For learning and inferring human actions, we leverage a deep residual bidirectional RNN
working with both the original and generated training actions. We test our approach on two
public benchmarks for action recognition, including the Florence3D-action and UCI HAR
datasets. The experimental results show that the generated actions significantly improve the
recognition performance of the learned classifier.

2 Our Approach
In this section, a brief review of RNN is firstly given. The proposed neural data translation
(NDT)and a deep residual bidirectional RNN classifier are then depicted, respectively.

2.1 Recurrent Neural Networks
RNN is a neural network with self-connected recurrent connections for modeling the sequen-
tial data. To build a deep RNN, we stack the layers of RNN. A conventional stacked RNN
contains a set of hidden state representation h = {h1, ...,ht} and an optional output y which
operates on an input sequence x of an arbitrary length. The output response hl

t and yt can be
updated by

hl
t = σ(Wl

1hl−1
t +Wl

2hl
t−1 +bl) (1)

h0
t := xt (2)

yt = σ(VhL
t +by) (3)
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where t ∈ [1,T ] and l ∈ [1,L] represent time steps and layers, respectively. σ denotes a
non-linear activation function in the hidden layer. It can be the sigmoid function or the
hyperbolic tangent function. Wl

1, Wl
2, V are the mapping weight matrices from the previous

hidden layer hl−1
t to the current hidden layer hl

t , from the previous hidden state hl
t−1 to the

current hidden state hl
t , and from the hidden layer to output yt , respectively. bt and bh are the

bias vectors.

2.1.1 Bidirectional RNN

Bidirectional RNN extends the unidirectional RNN by integrating the forward hidden con-
nection hl

F,t with another backward hidden connection hl
B,t . The direction of hidden to hidden

state connection of hl
B,t is in opposite temporal order. The output response hl

F,t , hl
B,t and yt

can be computed by:

hl
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+Wl
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2hl
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)
, and

yt = σ(V([hL
F,t ,h

L
B,t ])+by)

(4)

2.1.2 RNN with Long-Short-Term Memory

Due to the vanishing and exploding gradient effects, RNN has the problem of learning long-
range dependencies. To solve it, RNN with long-short-term memory (LSTM) [13] has been
designed to combat the vanishing and exploding gradient problems, and learns the long-
range contextual information of a time series data. Except for the hidden output ht , each
LSTM neuron includes an input gate it , a forget gate ft , an internal memory cell ct , and an
output gate ot . With these three gates, the LSTM neuron can choose when to write, read or
reset the memory cell at each timestamp. The above scheme allows LSTM to memorize and
access information many timesteps ago. Those can be computed by:

it = σ

(
Wl

1,ih
l−1
t +Wl

2,ih
l
t−1 +bl ,i

)
ft = σ

(
Wl

1, f hl−1
t +Wl

2, f hl
t−1 +bl , f

)
ot = σ

(
Wl

1,ohl−1
t +Wl

2,ohl
t−1 +bl ,o

)
gt = σ

(
Wl

1,ghl−1
t +Wl

2,ghl
t−1 +bl ,g

)
ct = ft � ct−1 + it �gt
ht = ot �φ (ct)

(5)

where the operation � denotes element-wise multiplication.

2.2 Neural Data Translation (NDT) Network
A tiny-scale dataset of N action sequences is given, D = {(xi,yi)}N

i=1, where each action
instance xi is temporally normalized and consists of Ti time stamps or frames, xi,t ∈ Rd , i.e.,
xi = {xi,1,xi,2, ...,xi,Ti}. yi ∈ Y is its class label. Y is the class label set. With our stochastic
pair selection, M training pairs of the same categories are randomly selected from {xi,x j|xi 6=
x j,yi = y j}, where xi and x j present the source action and the target action, respectively. In
our pair selection scheme, a source action may be paired with several different target actions.
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Figure 1: The architecture of our neural data translation (NDT). Our NDT contains two prin-
cipal components, a encoder network on the left and a decoder network on the right, where
xi, x̃ j, and x j denotes the source action, the decoded output, and the target action, respec-
tively. Ti and Tj expresses the length of source action xi,t and target action x j,t , respectively. z
is an internal reparameterization vector. ε , and µ denote the parameter sets of the conditional
prior distribution. σ presents a noise sampled by a Gaussian distribution.

The common neural machine translation (NMT) is an RNN-based sequence-to-sequence
learning framework [4, 33], which can translate a sentence from one language to another
language and make translated sentence retains the meaning of the original one. Inspired by
NMT, our approach aims at learning a translation mapping from an input action sequence
xi (source action) to another one x j (target action). Yet, unlike the general encoder-decoder
framework, our proposed neural data translation (NDT) is a variational model [34] which
maps an source action xi to a continuous distribution of latent variables z. The scheme can
explicitly model underlying semantics of the action pairs. The conditional probability of x j
can be formulated as

p(x j|xi) =
∫
z

p(x j|z,xi) p(z|xi)dz (6)

Follow the derivation of [8], the variational lower bound of our NDT can be formulated as
follows:

L(θ ,φ ;x j,xi) =−DKL
(
qφ (z|xi,x j) ||pθ (z|xi)

)
+Eqφ (z|xi,x j) [log pθ (x j|z,xi)] , (7)

where DKL(p|q) denotes the Kullback-Leibler divergence between distribution p and q.
pθ (z|xi) is the prior model, qφ (z|xi,x j) is the posterior approximator, and pθ (x j|z,xi) is
the decoder with the guidance from latent variable z.

According to Eq. 7, our NDT can be divided into two principal components, a encoder
network, a decoder network. Each of them can be modeled by multi-stacked LSTMs, as
shown in Fig. 1. We leverage eight encoder layers and eight decoder layers. In the bottom
of encoder layer, we adopt a bidirectional-LSTM. The encoder network learns the internal
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Figure 2: Architecture of the deep residual bidirectional-LSTM. x denotes the input action
and y expresses the output action label. In our model, we utilize a residual connections be-
tween stacked bidirectional-LSTM to forward the underlying information to the upper layer.
Our model contains six residual-layers, where each residual layer has two bidirectional-
LSTM.

distributed representation of the source actions. The decoder network models pθ (x j|z,xi).,
and the variational inference models pθ (z|xi) and qθ (z|xi,x j). To generate the augmented
training actions, we adopt the trained parameters of the decoder network to achieve it.

2.3 Deep Residual Bidirectional-LSTM Classifier

Deeper recurrent neural networks are generally difficult to train. To avoid the gradient van-
ishing problem, we leverage a residual bidirectional-LSTM [12] to learn and infer human ac-
tions. The residual connections between stacked LSTM cells act as highways for gradients,
which can forward underlying information directly to the upper layer. Fig. 2 demonstrates
the architecture of our residual bidirectional-LSTM model. Our classifier is built by using
stacked bidirectional LSTM cells and residual LSTM cells for every stacked layer. Each
residual layer has two bidirectional LSTMs, i.e., four unidirectional LSTM cells.

3 Experimental Results

This section first presents the setting of the conducted experiments, including the used
datasets and evaluation metrics. The experimental results and the analysis are then described.
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3.1 Datasets for Evaluation
Out method is evaluated on two public datasets, including Florence3D Action [26] and UCI
HAR datasets [1].

3.1.1 The Florence3D Action dataset

This dataset is a small-scale dataset with only 215 action instances, which were captured by
a Microsoft Kinect sensor. This dataset contains 9 daily actions performed by 10 subjects.
The action classes are wave, drink from a bottle, answer phone, clap, tight lace, sit down,
stand up, read watch, and bow. The 3D locations of 15 body joints are provided. Difficulties,
such as large intra-class variations and high inter-class similarity, are present and make this
dataset challenging.

3.1.2 The UCI HAR dataset

This dataset include 6 actions performed by 30 subjects. It contains 10,299 actions. The ac-
tion categories contain walking, walking upstairs, walking downstairs, sitting, standing, and
laying. Each subject performed and wore a waist-mounted smartphone which is embedded
an accelerometer and a gyroscope sensors on their waists. Each training example has 128
frames. Each frame is with the three signals, each of which at each time stamp is in form of
a 3-dimensional vector.

3.2 Evaluation Metrics
For the Florence3D action dataset, each action is represented by the absolute 3D body joint
locations in the skeletal stream. Each action example consists of T = 35 skeleton frames
which are uniformly sampled from each action. The normalization process in [29] is adopted
for making the skeletons invariant to the absolute location of actors. We adopt cross-subject-
testing [26], where half of the subjects are used for training and the rest are used for testing.
We then switch their roles and report the average performance. For the UCI-HAR dataset,
we adopt cross-subject-testing where 70% of the subjects are randomly selected and used for
training, while the rest subjects are used for testing.

3.3 Setting of Data Augmentation
For Florence3D action dataset, we apply two common data augmentation schemes for in-
creasing the diversity of human poses. We generate three types of augmented data, which
will be introduced in the following.

First, we mirror the human pose horizontally for each original action data to obtain ex-
tra 215 mirrored action examples, and we term them mirrored actions. The second type of
augmented data are constructed based on the motion variation of human actions. We ran-
domly add Gaussian noise to each body joint locations of the original action examples and
the mirrored actions to obtain a total of 215×2 = 430 synthesis action instances. The origi-
nal action and mirrored action with added Gaussian noise are named them noisy actions and
noisy mirrored actions. By leveraging our basic data augmentation, the original dataset has
then been augmented with 860 action examples. More examples of our augmented action ex-
amples with our basic data augmentation scheme can be found in our supplementary video:
https://sites.google.com/view/action-recognition-ndt/.
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Figure 3: The examples of the generated waving-hand action by our NDT, and its source
and target actions. The first and second rows illustrate the source and target actions within a
selected pair. The bottom of the row shows the generated action by our NDT. The action style
and speed of our generated action is certainly different to the source and target actions. More
importantly, our generated action still belongs to the waving-hand action category, same as
the source and target actions.

Moreover, we generated 215 training examples by using our NDT. Figure 3 illustrates
some examples of the generated waving-hand actions by our NDT and its source and target
action. In this case, we take the source action as input to our NDT. The generated actions
can then be obtained by our NDT. As shown in Figure 3, the generated action is like neither
the source nor target action. It performs different motion styles and speeds to the source
and target actions. More importantly, the generated action still belongs to the waving-hand
action category, the same as the source and target actions. More experimental results can be
found in our supplementary videos.

For the UCI HAR dataset, we generated 1,000 augmented training examples by using
our NDT. The training examples generated by our NDT are termed NDT actions.

3.4 Evaluation Results

For the Florence3D action dataset, we chose seven existing approaches for comparison
with the proposed NDT, including, Multi-Part Bag-of-Poses [26], Elastic Functional Cod-
ing [2], Skeletons Lie group [30], ConvESN-MSMC [22], Tensor Representations [16], the
approach by Vemulapalli et al. [29], and approach by Luvizon et al. [21]. Moreover, we
implemented variants of LSTM-based methods including Two-recurrent-layers RNN (Deep-
StackedLSTM), Two-recurrent-layers bidirectional RNN (DeepStackedBirLSTM), and Resid-
ual bidirectional LSTM (ResDeepStackedBirLSTM).

The recognition accuracy of all methods on the Florence3D action dataset is shown in Ta-
ble 1. Our ResDeepStackedBirLSTM achieves the recognition rate of 95.0%, and performs
favorably against the other RNN-based methods we implemented. We think the reason is that
the network can train deeper by using residual connection. In addition, the state-of-the-art
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Table 1: Results on the Florence3D-Action dataset.

Method Accuracy (%)
Multi-Part Bag-of-Poses [26] 82.0
Elastic Functional Coding [2] 89.6
Skeletons Lie group [30] 90.7
ConvESN-MSMC [22] 91.7
Vemulapalli et al. [29] 91.4
Luvizon et al. [21] 94.3
Tensor Representations [16] 95.2

Our DeepStackedLSTM 91.2
Our DeepStackedBirLSTM 93.3
Our ResDeepStackedBirLSTM 95.0

Our ResDeepBirLSTMs with noisy actions 95.2
Our ResDeepBirLSTMs with mirrored actions 96.2
Our ResDeepBirLSTMs with noisy mirror actions 96.5
Our ResDeepBirLSTMs with NDT actions 96.4
Our ResDeepBirLSTMs with mirrored + NDT actions 96.8

Table 2: Results on the UCI HAR database.

Method Accuracy (%)
MC-SVM [1] 89.0
MC-HF-SVM [1] 89.3
DeepStackedLSTM 91.0
DeepBirLSTM 92.3
ResDeepBirLSTM 94.0

ResDeepBirLSTMs with NDT actions 95.3

method [16] reaches the recognition rate of 95.2%, which still outperforms all the existing
methods. As shown in Table 1, we found that our ResDeepStackedBirLSTM trained on
original training examples with NDT actions achieve recognition rate of 96.4%. The im-
provement in recognition rate of 1.4%(= 96.4%− 95.0%) is gained when comparing with
the case where only the original data are used.

Besides, our ResDeepStackedBirLSTM trained with generated mirrored actions achieves
the recognition rate of 96.2%. Yet, our model trained with the noisy actions only gains minor
improvement. We think the reason is that the human motion generated in the NDT actions
and the mirrored actions have rich variations, and the noisy actions only provide restricted
variation of the original training data. Our model trained with the NDT and mirrored actions
achieves the recognition rate of 96.7%. Yet, the experimental results by training our classifier
with the NDT and noisy mirrored actions dose not lead to a performance improvement.

For the UCI HAR dataset, we chose five existing methods including multiclass SVM
(MC-SVM [1]), multiclass Hardware-Friendly SVM (MC-HF-SVM [1]), DeepStackedL-
STM, DeepBirLSTM, and ResDeepBirLSTM. The recognition results of all the evaluated
approaches on the UCI HAR dataset are shown in Table 2. The results indicate that our Res-
DeepBirLSTM gains the recognition rate of 94.0% which is more favorable than those by
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all the competing methods. On the other hand, ResDeepBirLSTM trained with NDT actions
improves the recognition rate by 1.3%(= 95.3%− 94.0%). The experimental results show
that the classifier trained with our generated data can raise the recognition performance.

4 Conclusions
In this study, we present a sequence-to-sequence generative model, named neural data trans-
lation (NDT), which explores the intra-class variations and discovers the intrinsic data struc-
tures so that it can generate high-quality training data from few training action examples.
We tested our method on two public action datasets. The experimental results demonstrate
that the classifier for human action recognition can be greatly enhanced and lead to signifi-
cant performance gains by training it with both the original actions and those generated by
our method. For future work, we plan to enhance and apply the proposed method to more
computer vision applications where collecting training data is expensive.
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