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Abstract

We present a hybrid deep learning method for modelling the uncertainty of camera
relocalization from a single RGB image. The proposed system leverages the discrimina-
tive deep image representation from a convolutional neural networks, and uses Gaussian
Process regressors to generate the probability distribution of the six degree of freedom
(6DoF) camera pose in an end-to-end fashion. This results in a network that can generate
uncertainties over its inferences with no need to sample many times. Furthermore we
show that our objective based on KL divergence reduces the dependence on the choice of
hyperparameters. The results show that compared to the state-of-the-art Bayesian cam-
era relocalization method, our model produces comparable localization uncertainty and
improves the system efficiency significantly, without loss of accuracy.

1 Introduction
It is now well-established that Convolutional Neural Networks (CNNs) are the method of
choice for extracting a variety of high-level knowledge from images, including classification,
recognition and even regression tasks such as visual geometry (e.g, camera pose). However a
significant disadvantage has remained that it is not straightforward – or even well understood
– how to model the uncertainty of CNN outputs. Exploiting uncertainty in deep neural
networks is therefore an eye-catching topic in the Machine Learning community, because
the probability distribution of the prediction from a deep perception system can be used in a
variety of ways. Most notably for our purposes the distribution over a regression result can
be interpreted as its uncertainty, making the result amenable for use within the standard data
fusion algorithms such as a Kalman Filter. For example in Simultaneous Localization and
Mapping (SLAM) systems, the uncertainty of the pose estimate can be naturally fused with
a state estimate [6] to improve the accuracy of localization over time.

In this paper, we aim to model the uncertainty of the deep structure that regresses the
camera pose directly from a single RGB image. Closely related work has been done in
Bayesian PoseNet [10], the probabilistic version of a learning-based camera relocalization
method, PoseNet [12]. It uses CNN to extract features from an RGB image, and then per-
forms linear regression to estimate the 6DoF pose of a moving camera. Thanks to the dropout
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Figure 1: The pipeline of the GPoseNet. It takes a monocular RGB image as input. The
high-level feature from fc2048 layer of the CNN base is fed to two SVI GPs to perform
probabilistic inference for translation and rotation. Our system outputs a distribution for
camera relocalization. The red dot and pyramid indicate the point estimate of the 6DoF
pose.

layers – i.e, different stochastic connections between neurons – before the regressors, multi-
ple samples of camera pose are obtained during inference. Then the distribution of the 6DoF
pose can be empirically summarized by these samples. The mathematics behind this approx-
imation has been well studied in [8]. However, this distribution-from-samples method is not
very resource-friendly, requiring a separate forward inference per sample.

Gaussian Process Regression (GPR) [18] is a probabilistic model that inherently pro-
vides a tractable predictive distribution for the output. But when one applies GPR to real
world applications that involve large scale datasets, the low efficiency prevents GPR from
being plug-and-play. This arises from four factors. First, the matrix inverse for computing
precision matrices has complexity O(n3), which is prohibitive because n is the size of the
dataset and usually a large number. Second, even with complexity reduction, the training
of sparse GPR still involves all training samples in each optimization step. Third, the high-
dimensional image data is not a straightforward input for GPR’s kernel function. Forth, GPR
is less commonly used for multivariate outputs. A solution to the first two factors is provided
by Stochastic Variational Inference (SVI) [9], which treats the mean and covariance of a
lower dimensional variational posterior as the global parameters, turning the variational GPs
into a “parametric” model. As for the last two factors, the CNN can be an excellent fea-
ture extractor and Coregionalization kernel [2] enables GPR being suitable for vector-valued
functions.

With these motivations, our main contribution is to show how to combine the CNN and
GPR naturally, proposing a probabilistic framework to model the uncertainty in the regres-
sion of 6DoF camera pose based on an RGB image, while overcoming the complexity issues
of naive GPR. We exploit the CNN to extract discriminative features and use the GPR to
perform probabilistic inference. We show that the mean of our predictive pose distribution
has the comparable accuracy to the state-of-the-art pure RGB based method for camera lo-
calization, and meanwhile the covariance is compatible with the uncertainty from Bayesian
PoseNet, but with significant computational resource saving.

To achieve this combination we build an objective function for the whole framework
that aims to minimize two Kullback-Leibler (KL) divergences between distributions. In the
original PoseNet, the importance between rotational and translational penalization are bal-
anced by grid-search over the network hyperparameters. Later, to avoid hyperparameters
tuning, [11] embedded the translation and rotation into a single photometric loss via geo-
metrical transformation and affine projection. However this is not a universal solution for
some other multi-task CNNs that lack of underlying connections between tasks. Our use of

Citation
Citation
{Gal and Ghahramani} 2015

Citation
Citation
{Rasmussen and Williams} 2006

Citation
Citation
{Hensman, Fusi, and Lawrence} 2013

Citation
Citation
{Alvarez, Rosasco, Lawrence, etprotect unhbox voidb@x penalty @M  {}al.} 2012

Citation
Citation
{Kendall and Cipolla} 2017



CAI, SHEN, REID: A HYBRID PROBABILISTIC MODEL FOR CAMERA RELOCALIZATION 3

the KL-divergences not only results in a loss function that permits network optimisation in
an end-to-end fashion, but furthermore, as shown in Section 4, it leads to greatly improved
robustness to the choice of hyperparameters, obviating the need for expensive grid search
during training.

The contribution of this paper includes: (a) We build a hybrid model of two main ma-
chine learning frameworks, CNN and GPR, and design an unified objective function that
drives the model to be trained in an end-to-end fashion. (b) We provide the probability
distribution for the 6DoF camera pose with one-time inference, saving time and resource
compared to Bayesian PoseNet. (c) This work weakens the effect of hyperparameter selec-
tion for multi-task regression by using objectives from the variational sparse GPR. To the
best of our knowledge, this is the first work that combines the CNN and GPR to perform
probabilistic inference for large scale computer vision task.

2 Related work
There are mainly two groups of method for camera relocalization: geometry-based and
appearance-based. The former are predicated on matching (typically hand-crafted) features
such as SIFT [19] and ORB [16]) between a query image and the pre-built map database.
Having established correspondences, the problem of 6DoF camera pose estimation is solved
using the PnP algorithm. Appearance-based methods aim to find the 3D scene coordinates
for all pixels in the image, and typically regress directly from an image to a 6D pose, without
the extraction of local salience features. Examples include [3, 15, 20].

The first work that applies CNNs to regress from a monocular RGB image to 6DoF cam-
era pose is PoseNet by Kendall et al. [12]. The network is a modified GoogLeNet [22] with
an additional fully-connected (fc) layer (2048 units) before the two affine regressors. They
use the Euclidean loss for both translational vector and rotational quaternion to supervise the
learning process. The features from the penultimate layer are a high-level representation of
the whole image, providing robustness to the light, weather and other dynamic changes in
the mainly unchanged scene.

Several work improve the localization accuracy via different techniques, e.g. [24] uses
LSTM units over the features from CNN to enhance it to be more correlated with the re-
localization task, and [11] transfers the translation and rotation into a unified space, using
photometric loss to supervise the training. Since in [11], the geometry (3D points of the
scene) are brought in and the quantity of information for training is considerably increased,
we categorize it to the geometry-based methods.

The dropout layers in PoseNet not only play an important role to prevent over-fitting,
but also provide an alternative interpretation for CNNs with dropout as a Bayesian model
approximation. In [8], Gal and Ghahramani prove that the widely-used dropout technique
can be mathematically viewed as an approximation to the posterior of the deep Gaussian
Process [5]. By running same test point through the model multiple times with the existence
of dropout (which is often deactivated in most deterministic CNN models), the different
connections between neurons lead to a set of Monte Carlo samples from the approximated
variational posterior over the output. The Bayesian PoseNet [10] is a well-demonstrated
application of dropout bayesian approximation. Without changing the training pipeline of
PoseNet, it brings the camera relocalization to a probabilistic level. Whilst it improves
the accuracy of the pose estimation, the uncertainty can be also obtained empirically with
grounded theoretical support from [8].
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Beyond the success of two versions of PoseNet, two problems can be further discussed.
The first one is the computational efficiency of Bayesian PoseNet. To generate a accurate
posteriors for camera pose, one often needs many prediction samples, which results in great
computational cost. The second concerns the network hyperparameter β . It is responsible
for balancing the weights between losses for translation and for rotation (for details, please
refer to Fig. 2 in the PoseNet paper). Experimentally we found that it is heavily scene-
dependent, and the optimal setting takes much effort to find. To this end, we propose to use
the combination of CNN and GPR to improve the efficiency and eliminate hyperparameter
tuning. A comprehensive explanation is given in section 4.

The GPR [18] is a fully Bayesian non-parametric model that elegantly estimates the
posterior distribution of the target function. However, the exact posterior requires O(n3) to
compute, where n is the size of training set. It hinders the efficiency of GPR. A group of
sparse GPs that aim to reduce the complexity of the full GPs are well-researched, such as
DTC [4], FITC [21], PTIC [17], VEF [23] etc. These methods downscale the complexity
to O(nm2), where m is the number of induced pseudo training points. Neverthelss the joint
training of pseudo points and kernel parameters still requires to take all training samples
into consideration, which is intractable for big datasets. To solve this, Stochastic Variational
Inference (SVI) [9] treats the mean and covariance of the variational distribution as global
parameters, making the variational GPs a “parametric” model. The model then can be trained
via the Stochastic Gradient Descend (SGD) based on batch data. We make use of this method
to enable the connection between CNN and GPR in our framework.

3 The Bayesian knowledge revisited
Road to SVI for GPs. We start with introducing GPR for 1-d functions, bringing in the
notation used in this paper. Let {xi,yi}n

i=1 denote the whole dataset. xi ∈X is a sample from
all points X in the feature domain RF , and yi ∈ y is the observation of a function f at point
xi with independent Gaussian noise σ2. GPR assumes a joint smooth Gaussian prior over
the function space. The covariance of the prior, K, is defined by the kernel function k, which
will be discussed later. Given a test point x?, the conditional posterior of the test function f ?

can be inferred via multivariate Gaussian theorem [18]:

p( f ?|y) =N
(

f ?|K?n(Knn +σ
2I)−1y,K??−K?n(Knn +σ

2I)−1Kn?
)
. (1)

To avoid the complexity of (Knn+σ2I)−1 (O(n3)), variational methods [23] are proposed by
Titsias to find a smaller set of points – called inducing points (Z ∈ Rm×F ) – to approximate
the whole set of the training samples. Denote the corresponding inducing variables as u. By
approximating the exact posterior p(u|y) with a variational distribution q(u), the optimal
inducing points Ẑ can be found via maximizing the variational lower bound (ELBO) of the
log of marginal likelihood p(y), which is given as

logp(y)≥ L(q,Z) =
∫

q(u)
{
E<p(f|u)> (logp(y|f))+ log

p(u)
q(u)

}
du, (2)

In [23], Titsias proves the conclusion that the final formulation of the ELBO to logp(y) is

L(Z) = logN
(
y|0,KnmK−1

mmKmn +σ
2I
)
− 1

2σ2 Tr
(
Knn−KnmK−1

mmKmn
)
, (3)
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and the optimal variational posterior q∗(u) is with mean µ = σ−2KmmΣ−1Kmny and covari-
ance Λ = KmmΣ−1Kmm, where Σ = Kmm +σ−2KmnKnm. The complexity is now O(nm2).

Note that when computing L(Z) and q∗(u) during optimization, the existence of Knm (or
Kmn) and y makes the algorithm need to use all training samples. This is disadvantageous for
tasks with large datasets. In SVI for GPs [9], Hensman et al. propose to use a parametric vari-
ational Gaussian posterior for u, such that the mean and covariance of qg(u) = N (u|m,S)
act as the global variational parameters across all training samples. This enables the joint
training of m, S and Z via batch data to perform SGD. The lower bound of the log marginal
likelihood then changes from (2) to

Lsvi(m,S,Z) =
∫

qg (u)
{
E<p(f′|u)>

(
logp

(
y′|f′

))
+ log

p(u)
qg (u)

}
du

= logN (y′|Kn′mK−1
mmm,σ2I)− 1

2σ2 Tr
(
Kn′n′ −Kn′mK−1

mmKmn′
)

− 1
2

Tr
(
SΛ
′−1)−KL(qg(u)||p(u))

(4)

where KL(qg(u)||p(u)) is the KL divergence between the variational posterior and the exact
prior p(u) =N (u|0,Kmm). Note that in equation (4), (·)′ means that it is from/for the batch
data. We use this lower bound as the objective of our GP regressors.

Coregionalization kernel. Matrix K in previous section is the covariance of the function
values in the Gaussian prior. It is built from the kernel function k(xi,x j) that describes the
similarity between two points. The most commonly used kernel in GPR is the Radial Basis

Function (RBF) kernel krb f = σ2
k exp(−‖xi−x j‖2

2l2 ). For 1-d GPR, the output of krb f is a
scalar and the kernel matrix for the whole training points Knn = K(X,X) is a n×n Positive
Semi-definite (PSD) matrix. However in our task, both of the translation and quaternion
are vector-valued functions, and have correlation between their entries. The scalar does not
satisfy the need of storing this interrelationship. [2] reviews the cokriging from geostatistics,
and formally introduces the kernel for the vector-valued function GPs, the Coregionalization
kernel. The key idea of coregionalization is to have a PSD B ∈ RD×D act as a learnable
parameter to represent the correlation between these functions, where D is the dimension of
the output. To ensure the PSD property, a coregionalization kernel is built by B = WWT +
diag(κ), where W∈RD×R and κ ∈RD. R is the rank of B (specified by the user at algorithm
design time). For example, the full kernel matrix for inducing points Z in SVI is given as
Kc

mm =Kc(Z,Z)=B⊗Kmm, where⊗ is the Kronecker product of matrices. In the following,
the superscript c of the coreg-augmented kernel is omitted for brevity.

4 Modelling uncertainty for camera relocalization

Problem formulation. Given an RGB image Ii ∈ I, our goal is to build a probabilistic
model to predict the multivariate distribution of the translational vector t ∈R3 and rotational
quaternion q ∈ R4. Denote the CNN feature extractor as N(Ii,θN). It takes RGB image
Ii as input, and has learnable parameters θN . To model the uncertainty of prediction, we
assume two independent Gaussian priors for {ti}n

i=1 and {qi}n
i=1, and consider the output

from N(Ii,θN) as the shared input features for both of the SVI GP regressors. Based on
the Bayesian knowledge in the previous section, the predictive distribution for translation
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component is

p(t∗) =
∫

p(t∗|u)qg(u)du

=N (t∗|K∗mK−1
mmmt ,K∗∗−K∗mK−1

mmKm∗+K∗mK−1
mmS−1

t K−1
mmKm∗).

(5)

Note in equation (5), K∗∗ = K (N(I∗,θN),N(I∗,θN)) is the kernel matrix built on the features
from the CNN base. Since the priors and likelihoods are all Gaussians, the predictive distri-
bution for translation and quaternion are two multi-variate Gaussians. This distribution has
learnable parameters Zt , mt , St and parameters for the kernel function θk. Similar results for
rotation can be obtained by replacing the subscript t with q.

Architecture. To make a fair comparison between linear regressors in [10][12] and the
SVI GP regressors in our framework, we use the same deep feature encoder as PoseNet. We
remove the last two fc layers of PoseNet and replace them with two SVI GP regressors. They
take the output from the previous fc2048 layer as input, and perform Bayesian inference to
obtain the distribution of translation and rotation for camera pose. The “loss function” of this
framework is the sum of the objectives of two GPs, which will be further addressed in the
next paragraph. We use the coregionalization kernel in our system. Since the main goal of
this work is to compare the capability of this hybrid architecture and the pure CNN structure,
we did not tune the type of kernel function to seek for better performance. We use RBF as
the base kernel function for simplicity, and leave the selection of kernel function to future
work. Fig. 1 illustrates the structure of our framework.

Objective function. To train the whole structure in an end-to-end fashion, we design
a multi-component objective function that combines CNN loss and the ELBOs of two log
marginal likelihoods as follow

L = βgtLsvi(mt ,St ,Zt)+βgqLsvi(mq,Sq,Zq)+βnt

∥∥t̂− t
∥∥

2 +βnq ‖q̂−q‖2 . (6)

Hyperparameters. The main issue of the multi-task CNNs is that the norm-based losses
for these targets are not always at the same scale, therefore they need different weights to
penalize. In the proposed objective function (6), however, the first two components are the
objectives from the SVI GPs. Maximizing the ELBO of logp(y) is mathematically equiva-
lent to minimizing the KL divergence between the exact posterior p(f|y) and the variational
distribution q(f) [23]. We observed that this measure between two distributions can reduce
the dependence on the choice of hyperparameters.

For a clear understanding of this advantage, we replace these two multivariate normal dis-
tributions with two univariate Gaussians over a same random variable, p1(x) =N (x|µ1,σ

2
1 )

and p2(x) =N (x|µ2,σ
2
2 ). The KL divergence between them is KL(p1(x)||p2(x)) = log σ2

1
σ2

2
+

σ2
1+(µ1−µ2)

2

2σ2
2

− 1
2 . It is straightforward to see that (µ1−µ2)

2 and σ2
2 have the same scale. The

scale is canceled out in this equation. It means that the unit of the KL divergence is always
1, hence the choice of the hyperparameters βgt and βgq becomes easier. In the following
experiments, we always keep them equal.

The last two components of equation (6) are the losses from shallower depth of the CNN
base. They supervise the learning of the low-level and middle-level features from the RGB
image (See [12]). We keep these two weights (βnt and βnq ) same as the PoseNet.
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Geometry-based Pure-RGB-based

Scene Spatial
Extent(m)

Active Search
(SIFT) [19]

Geometric loss
PoseNet[11]

Bayesian
PoseNet[10]

PoseNet Spatial
LSTM[24]

GPoseNet
(Ours)

King’s College 140×40 0.42m, 0.55◦ 0.88m, 1.04◦ 1.74m, 4.06◦ 0.99m, 3.65◦ 1.61m, 2.29◦

Old Hospital 50×40 0.44m, 1.01◦ 3.20m, 3.29◦ 2.57m, 5.14◦ 1.51m, 4.29◦ 2.62m, 3.89◦

Shop Facade 35×25 0.12m, 0.40◦ 0.88m, 3.78◦ 1.25m, 7.54◦ 1.18m, 7.44◦ 1.14m, 5.73◦

St Mary’s Church 80×60 0.19m, 0.54◦ 1.57m, 3.32◦ 2.11m, 8.38◦ 1.52m, 6.68◦ 2.93m, 6.46◦

Chess 3×2×1 0.04m, 1.96◦ 0.13m, 4.48◦ 0.37m, 7.42◦ 0.24m, 5.77◦ 0.20m, 7.11◦

Fire 2.5×1×1 0.03m, 1.53◦ 0.27m, 11.3◦ 0.43m, 13.7◦ 0.34m, 11.9◦ 0.38m, 12.3◦

Heads 2×0.5×1 0.02m, 1.45◦ 0.17m, 13.0◦ 0.31m, 12.0◦ 0.21m, 13.7◦ 0.21m, 13.8◦

Office 2.5×2×1.5 0.09m, 3.61◦ 0.19m, 5.55◦ 0.48m, 8.04◦ 0.30m, 8.08◦ 0.28m, 8.83◦

Pumpkin 2.5×2×1 0.08m, 3.10◦ 0.26m, 4.75◦ 0.61m, 7.08◦ 0.33m, 7.00◦ 0.37m, 6.94◦

Red Kitchen 4×3×1.5 0.07m, 3.37◦ 0.23m, 5.35◦ 0.58m, 7.54◦ 0.37m, 8.83◦ 0.35m, 8.15◦

Stairs 2.5×2×1.5 0.03m, 2.22◦ 0.35m, 12.4◦ 0.48m, 13.1◦ 0.40m, 13.7◦ 0.37m, 12.5◦

Table 1: Median error of localization for Cambridge Landmarks and 7 Scenes datasets.
We compare our method (GPoseNet) with the Spatial LSTM-PosNet [24], Bayesian PoseNet
[10]. For Cambridge Landmarks dataset and 7 Scenes datasets, the median pose error of our
method is averagely (2.0m, 4.6◦) and (0.3m, 9.9◦). The overall results surpass Bayesian
PoseNet and are comparable with Spatial LSTM-PoseNet [24], for which the average of
median error for these two datasets are (1.3m, 5.5◦) and (0.3m, 9.9◦) respectively.

5 Experiments and results

To benchmark our model both on outdoor and indoor scenarios, we use two datasets for
training and evaluation, the Cambridge Landmarks [12] and the 7 Scenes [20] dataset. We
follow the same traninging/test split in PoseNet. All the experiments are done on a NVIDIA
GeForce GTX 1070 GPU. The batch size in training is 75. We optimize all the models in
an end-to-end fashion with ADAM [13]. We also initialize the CNN base with pre-trained
weights from ImageNet [7], suggested by [12] and [10]. The number of inducing points
for SVI GPs is 10% of the image number in each training split. This number various w.r.t
different scenes, from to 23 to 149 in the Cambridge Landmarks dataset. We initialize the in-
ducing points Z with the results from k-means clustering over the features from 500 images.
These images are randomly selected from training set. This initialization keeps the induced
feature points and the deep features of the training images in the same domain, preventing
the large – and meaningless – elements in the kernel matrix, which could rasie if Z is with
random initialization around zero. Experiments show that this initialization also ensures a
stable convergence. The learning rate is 10−4 for CNN base and 10−2 for GPs’ parameters.
We implement the CNN base with Tensorflow [1] and the GPs part with GPflow [14].

We evaluate our method from two perspectives, localization accuracy and predictive
uncertainty. Overall, the results from the following experiments shows that our method
can achieve comparable accuracy with the state-of-the-art pure RGB based method, Spatial
LSTM PoseNet [24], and estimates the uncertainty in a more efficient way comparing to
Bayesian PoseNet [10].

Localization accuracy. We use the mean of the translational and rotational predictive
distributions as the point estimation for the 6DoF camera pose. The rotational vector is
normalized to ensure that it is an unit vector. In Table 1, we compare the median error of
localization in different scenes with the state-of-the-art methods. We can see that with the
same CNN encoder, our SVI GP regressors outperform PoseNet and Bayesian PoseNet in
every scene, and have similar results with Spatial LSTM PoseNet [24]. In the scene Old
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Figure 2: Position samples from the predictive distribution. We show 100 samples from
three predictive pose distributions of our models from Cambridge Landmarks.
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Figure 3: Comparison of system efficiency. For Bayesian PoseNet, the average time con-
sumption for probabilistic inference is correlated to the number of Monte Carlo samples.
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(b) Bayesian PoseNet

Figure 4: The correlation between uncertainty of translation and rotation. This shows
that the translation uncertainty is linearly correlated with rotation uncertainty, and the linear-
ity is more obvious in our distribution compared to Bayesian PoseNet.

Hospital and Stairs, the proposed method produces similar accuracy with geometry-based
method [11].

This result shows that by replacing the L2-loss based pose regressors with the SVI GPs,
our system improves the performance of the original PoseNet and Bayesian PoseNet. Since
all of them use same CNN base, hence the advancement is contributed by the regressors.
The comparable accuracy with Spatial LSTM PoseNet suggests that the effect of regressors
replacement qualitatively equals the enhancement of the output feature from CNN.
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(a) GPoseNet (b) Bayesian PoseNet

Figure 5: Confusion matrices of model uncertainty. The test images from each dataset
(row) are tested on the each model (column). We consider the model that the lowest un-
certainty belongs to as the classified scene. We achieve about 69% accuracy for dataset
Cambridge Landmarks, compared to 78% in Bayesian PoseNet.

0.8 0.9 1 1.1 1.2

Uncertainty

0

2

4

6

8

10

12

14

16

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

King's College

Old Hospital

Shop Facade

St Mary's Church

(a) St Mary’s Church

0 0.2 0.4 0.6 0.8 1

Uncertainty

0

10

20

30

40

50

60

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

chess

fire

heads

office

pumpkin

redkitchen

stairs

(b) Red Kitchen

Figure 6: The gamma distribution of uncertainties on chosen model. We evaluate all the
test images on the model of scene St Mary’s Church and Red Kitchen to obtain uncertainties.
We plot the approximated Gamma distributions of test uncertainties. This shows that these
two models produce smaller uncertainties on the test images from the corresponding scenes.

Uncertainty The “cherry on top” of this proposed framework is the ability to predict a
distribution over the 6DoF pose without losing the localization accuracy. Fig. 2 shows the
samples from estimated position distribution for three test images in different scenes.

Firstly, we compare the distributions of our method and Bayesian PoseNet in terms of
efficiency. The pose distribution of Bayesian PoseNet is summarized from the Monte Carlo
samples. The number of samples is also the number of inference times for one image. The
more poses sampled, the more time consumed. In Fig. 3, we plot the average time for
pose distribution estimation of one image against the number of samples1. If the number of
samples is 40, it takes 0.4 second to estimate the pose distribution in average.

In contrast, the number of inference in our method for pose distribution is only one. As
showen in Fig. 3, it takes 0.015 second to perform the distribution prediction, which is lower
than the Bayesian PoseNet when the sample number is 10. Since the distribution is not from
the sampling method, the time consumption is not related to the number of samples. If we
leverage the parallel computing power of GPU, the average time for a single image inference
could be less. This significant improvement of efficiency makes our system ready for real
time relocalization with uncertainty.

To qualitatively evaluate the uncertainty of our model, we use the same measure in
Bayesian PoseNet [10], which is the trace of the covariance matrix for each pose compo-
nent. In the following evaluation, the term uncertainty stands for this trace.

1Due to the performance of our GPU, the time consumption of Bayesian PoseNet inference in this paper is more
than [10]. However we perform all the experiments using the same hardware to ensure a fair comparison.
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The translational uncertainty and rotational uncertainty from our model are strongly
linear correlated. In Fig. 4, we show these two uncertainties from scenes in Cambridge
Landmarks datasets. This linear correlation is in accordance with the results from Bayesian
PoseNet, but with a more consistent linearity.

The uncertainty of camera pose can be interpreted as a measure for scene classifier.
[10] defines a normalized metric, Z-score, to compare the uncertainties of different mod-
els. Firstly, all the test images from the scene that the model was trained on are inferred by
the model, and then they fit a Gamma distribution over the uncertainties of the test results.
At last, when a new image (from scene’s test images split or images from other scene) is
inferred by the model, a percentile of the new uncertainty in the Gamma distribution is de-
fined as the Z-score for the image. We evaluate the test split from one scene on all models.
The images are classified to one scene if the uncertainties inferred by that model is lowest.
Fig. 5 compares the confusion matrices of our method and [10]. It shows that the smallest
predictive uncertaintiy of a test image is majoritively produced by the model that is trained
on the analogous training split.

The uncertainty of our model also indicates the confidence of the pose prediction. The
confusion matrices in Fig. 5 is from a setting we call ‘same-image-for-different-models’.
This means the comparison is done by applying different models on the same images. We
also do an experiment on the ‘different-images-for-same-model’ setting, which is an intuitive
evaluation scheme for each individual model. To to so, we evaluate the test splits from all
scenes on one of the models, and plot the probability density function of the approximated
Gamma distribution of uncertainties in Fig. 6. We can see that if the images are from the
test split of the dataset that this model is trained on, the model tends to estimate a lower
uncertainty. This observation corroborates the conclusion of the vanilla GPR.

It means that the uncertainty from our model is a practicable indicator for the confidence
of the inferred result. We suggest that this confidence also can be used in other tasks beyond
pose regression, such as image classification or object detection, for which the most of the
deterministic CNNs trust the prediction with absolute certainty.

6 Conclusion and future work

We show how to combine the deterministic CNN and probabilistic GPR together to ac-
complish real time camera relocalization with modelling the uncertainty. This is done by
replacing the traditional L2 norm loss based linear regressor with KL divergence based SVI
GPs regressor. It improves the system efficiency of method based on bayesian approximate
CNN without losing accuracy. In the future, we would like to exploit the different forms of
kernel functions and other non-Gaussian likelihood to improve the performance. And the
usage of the model uncertainty could also be considered to track the 6DoF pose of camera in
real time, as well as in other tasks.

7 Acknowledgement

This work was supported by the Australian Research Council through the Australian Centre
for Robotic Vision (CE140100016), the ARC Future Fellowship (FT120100969) to C. Shen,
and the ARC Laureate Fellowship (FL130100102) to I. Reid.

Citation
Citation
{Kendall and Cipolla} 2016

Citation
Citation
{Kendall and Cipolla} 2016



CAI, SHEN, REID: A HYBRID PROBABILISTIC MODEL FOR CAMERA RELOCALIZATION11

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. Kernels for vector-
valued functions: A review. Foundations and Trends in Machine Learning, 4(3):195–
266, 2012.

[3] Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan Gumhold,
and Carsten Rother. Uncertainty-driven 6D pose estimation of objects and scenes from
a single RGB image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3364–3372, 2016.

[4] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Compu-
tation, 14(3):641–668, 2002.

[5] Andreas Damianou and Neil Lawrence. Deep Gaussian processes. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS), pages
207–215, 2013.

[6] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse. MonoSLAM:
Real-time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 29(6):1052–67, 2007.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. ImageNet: A
large-scale hierarchical image database. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

[8] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Represent-
ing model uncertainty in deep learning. In Proceedings of the International Conference
on Machine Learning (ICML), 2015.

[9] James Hensman, N Fusi, and Neil D. Lawrence. Gaussian processes for big data. In
Conference on Uncertainty in Artificial Intelligence (UAI), pages 282–290, 2013.

[10] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera
relocalization. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2016.

[11] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression
with deep learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.



12CAI, SHEN, REID: A HYBRID PROBABILISTIC MODEL FOR CAMERA RELOCALIZATION

[12] Alex Kendall, Matthew Grimes, and Roberto Cipolla. PoseNet: A convolutional net-
work for real-time 6-DOF camera relocalization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[14] Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis
Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow:
A Gaussian process library using TensorFlow. Journal of Machine Learning Research
(JMLR), 18(40):1–6, 2017.

[15] Lili Meng, Jianhui Chen, Frederick Tung, James J Little, Julien Valentin, and
Clarence W. de Silva. Backtracking regression forests for accurate camera relocal-
ization. In Proceedings of IEEE International Conference on Intelligent Robots and
Systems (IROS), pages 6886–6893, 2017.

[16] Raúl Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardós. ORB-SLAM: A
versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31
(5):1147–1163, 2015.

[17] Joaquin Quiñonero-candela, Carl Edward Rasmussen, and Ralf Herbrich. A unifying
view of sparse approximate Gaussian process regression. Journal of Machine Learning
Research (JMLR), 6:1935–1959, 2005.

[18] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. MIT Press, 2006.

[19] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient & effective prioritized
matching for large-scale image-based localization. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 39(9):1744–1756, 2017.

[20] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and
Andrew Fitzgibbon. Scene coordinate regression forests for camera relocalization in
RGB-D images. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2930–2937, 2013.

[21] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Advances in Neural Information Processing Systems (NIPS), pages 1257–
1264, 2006.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–9, 2015.

[23] Michalis Titsias. Variational learning of inducing variables in sparse Gaussian pro-
cesses. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 567–574, 2009.

[24] Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian Hilsen-
beck, and Daniel Cremers. Image-based localization using LSTMs for structured fea-
ture correlation. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 627–637, 2017.


