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Abstract

Automated 3D prototyping capability is at critical demands for rapid production
across multiple industries. While traditional 3D object reconstruction approaches have
been heavily relying on depth maps, which are either costly to acquire or inaccurate to
approximate. Some recent approaches attempted to synthesize 3D shapes from monocu-
lar clues by directly learning complex non-linear transformations for bridging the cross-
domain data. Despite that visually satisfactory synthesized 3D objects can be observed,
these 3D synthesis approaches have following major restrictions: 1) the learned non-
linear transformations are hardly aware of the intra-class objects’ structural variations;
2) multiple-image inputs from different observation viewpoints are required for generat-
ing structure-aware 3D shapes; 3) objects are always observed from natural images with
cluttered backgrounds. In this work, we aim to address above restrictions by proposing
an improved 3D shape synthesis method that relies on a single input image. Benefiting
from recent advancements of generative models, we learn to map the distributions be-
tween different-view 2D images and eventually generate multi-view images from a sin-
gle image. The generated multi-view images are then employed to synthesize 3D shapes
with incremental object details. In addition, by building perfectly aligned object poses
in cross-view images as well as the corresponding 3D shape, the 2D-to-3D mapping can
be guided to be aware of geometric structure of the objects. Extensive quantitative and
qualitative results demonstrate that the proposed approach can achieve the state-of-the-art
performance on the ShapeNet datasets.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

3D shape reconstruction is a classical problem in 3D computer vision. In the recent decade,
along with the exponentially growing industrial needs that range from virtual reality to 3D
printing, the capability for automated 3D prototyping becomes a critical technique that
can potentially promote the development of several industries. Correspondingly, 3D ob-
ject reconstruction has been receiving increasingly extensive attentions as a research scope
[4, 11, 15, 34]. Among the popular existing 3D object reconstruction approaches, the depth
estimation [20, 30] and the monocular cues are the commonly used for inferring 3D shapes.
Considering the additional costs and complex procedures led by external hardware equip-
ment for acquiring the depth maps, depth estimation from natural images can be one of
the most straightforward solutions for recovering 3D objects. However, despite that deep
learning has recently demonstrated some progress on the depth estimation task [5, 19, 20],
inferring the depth channel from single images is arguably an ill-posed problem due to the
missing partial information on unobserved side views of the objects [6]. Compare to depth
map estimation, recovering the full 3D shape from images is a more challenging task due to
the requirement of recovering detailed shape poses and structures. When utilizing monocular
cues (e.g., silhouettes, shading and texture) for full 3D shape reconstruction, the state-of-the-
art approaches [4, 14, 31] share the following common restrictions, such as the requirement
of multiple image captures from dense viewpoints and non-reflective objects’ appearances.
Benefiting from the tremendous success of convolutional neural network (CNN) [17], the
advancement of deep generative models and the continuing growing 3D shape repositories,
more possibilities have been explored for the generation of 3D shapes from 2D images. A
typical example is the 3D Recurrent Reconstruction Neural Network (3D-R2N2) [4], which
resorts to the neural networks for building the mapping between the cross-domain data. De-
spite the observed visually satisfactory results, the 3D-R2N2 approach has the following
limitations: 1) the brutal-force mappings between 3D shapes and natural images are unlikely
to attend the fine-grained objects’ poses and structures; 2) multiple images captured from
different observation viewpoints are required as inputs to the network; 3) objects are always
observed from natural images with cluttered backgrounds.

In this work, we aim to address above limitations by proposing a structure-aware 3D
(SA3D) shape synthesis approach. Instead of requiring multiple image inputs, the proposed
SA3D takes only a single image from a certain viewpoint as input, and synthesizes multi-
ple “virtual” images from different viewpoints using the pre-trained deep generative models.
In order to learn the deep generative models for cross-view image synthesis, we generate
aligned object images from multiple viewpoints through projecting 3D shapes to 2D im-
ages with consistent projection parameters. When learning the mapping between multi-view
images and corresponding 3D shapes, such aligned object poses across different views can
facilitate the model’s awareness towards the objects’ geometric structures. Our main contri-
butions are summarized as follows:

• We propose a SA3D shape synthesis approach that only requires a single-view image
as the input. Meanwhile, the learned 2D-to-3D mapping is aware of the geometric
structure of the objects in cross-view images when synthesizing the 3D objects.

• To our best knowledge, the SA3D approach is the pioneering work that attempts to
employ synthesized 2D cross-view images for improving the quality of synthesized
3D shapes.
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• Extensive quantitative and qualitative results demonstrate that the proposed approach
can achieve the state-of-the-art performance on the ShapeNet datasets [2] with single-
view image inputs.

2 Related Work

2.1 Reconstructing 3D shapes from images

How to reconstruct 3D shapes from a single or a handful of images has been a long standing
problem. Some approaches [1, 7, 13] rely on matching image features from different-view
images to reconstruct 3D shapes. For example, Huang et al. [13] estimated the viewpoints of
large amounts of web images to match correspondences between the images and pre-existing
models for 3D model reconstruction. However, these approaches are vulnerable to appear-
ance changes of 3D shapes. As CNNs are getting popular in the image domain, a growing
trend is to generate 3D shapes with CNN methods. Song et al., [28] leveraged the coupled
nature of the 3D shape completion task and the depth labeling task, and proposed an end-
to-end 3D CNN that takes an depth image as input and generates complete 3D voxels with
semantic labels. Wu et al. [32] generated volexilzed 3D models with the pre-trained network
from depth images. More recently, Niu et al., [24] proposed a convolutional-recursive au-
toencoder that generates cuboid structure of the parts of 3D models. Some other CNN-based
learning approaches leverage large repositories of 3D CAD models. For example, Choy et
al., [4] proposed a unified 2D-to-3D learning approach for both single and multi-view based
3D object reconstruction with minimal supervision required. In addition to CNNs, proba-
bilistic graphical models (e.g., conditional random field [18]) are also employed for learning
the 2D-to-3D mapping [20].

2.2 Deep generative models

Deep generative models have received extensive attentions in recent years, including genera-
tive adversarial networks (GANs) [9], variational autoencoders (VAE) [16] and their variants
[22, 36]. Benefiting from both the GANs and volumetric convolutional networks, Wu et al.,
[32] proposed a 3D generative adversarial network (3DGAN) that generates a 3D object from
the probabilistic space. Based on the GAN framework, Gadela et al. [8] proposed PrGANs
to train a projector, where the discriminator is trained to distinguish the projection images of
real 3D models from those from generative models. Zhu et al. [35] proposed to introduce an
enhancer that feeds the learned high-level feature images to the generator of the GAN to gen-
erate 3D models better. Inspired by prior arts that extended VAE for learning the mappings
between cross-modality data [26], we propose to adapt VAE for synthesizing cross-view ob-
ject images, and eventually enhance the quality of the single-view reconstructed 3D shapes
with synthesized multi-view images.
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3 Structure-Aware 3D shape Synthesis with Single-view
Images

3.1 Single-View to Multi-View Object Image Synthesis
In order to learn a robust mapping between cross-view images, we utilize variational ap-
proach for latent representation learning, whereby aligned object poses across different views
will be embedded into a unified latent space. In particular, we learn a deep generative model
for each object category in an unsupervised fashion, where each deep generative model con-
sists of an encoder network and a decoder network. The encoder network embeds all images
into a compact vector representing the mean the data distribution in the latent feature space.
At the meantime, a latent vector representing the variance of the training data is obtained
through the encoder network as well. After that, the decoder network interprets these latent
faces into cross-view pose object images with the same size of inputs of the encoder, so that
the conversation between multi-view pose objects is effectively bridged.

The Kullback-Leibler (KL) divergence [16] is used to constrain the mean latent vector
and the variance latent vector of the output of the encoder network is shown as follows:

Lkl =
1
2
[ z2

mean + z2
var− log(z2

var + eps) ]−1 (1)

where, zmean represents the mean latent vector, zvar represents the variance latent vector, eps
is equal to 1e-8. Furthermore, we adopt l2 norm to represent the difference of pixel-wise of
the generated images and the real images. Thus, we formulate the loss as:

Lrecon =
1
2

m

∑
i
‖ G(x)i− yi ‖2

2 (2)

where, G(x) represents generated target domain image, y represents real object target domain
image. Eventually, we form our total loss function as:

Ltotal = Lkl + Lrecon + λLreg (3)

where, λ represents the regularization hyper-parameter, Lreg represents weight decay for all
CNN parameters. We optimize our model by minimizing the Ltotal.

In order to enhance the synthesized image, we used U-Net [27] that a "fully convolu-
tional network" [21]. The main idea in [27]: It will concatenate the output of the last de-
convolution layer and the output of the corresponding encoder convolutional layers together
and feed into the next deconvolution layer. In this way, a successive deconvolution layer can
then get to assemble a more consummate output based this deep and shallow features. Figure
1 shows the pipeline of our model.

3.2 3D Shape Reconstruction from Synthesized Multi-View 2D Object
Images

The 2D-to-3D generation network employed the same 3D recurrent module [10] as in [4],
which is capable of utilizing both the current observation and previous observations, and
can eventually improve the reconstruction quality as the observation view increased. More
detailed network structure is as follows: Firstly, an encoder network employs standard 2D
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Figure 1: The pipeline of the proposed SA3D shape synthesis approach.

convolution layers, pooling layers and leaky rectified linear units to encode input images into
lower dimensional latent vectors. Next, the 3D Convolution Gated Recurrent Units (GRUs)
[3] is applied to the latent vectors for selectively updating cell memory status in GRUs.
Finally, given the hidden states of the GRUs, the 3D Deconvolutional Neural Network can
decode the input images and generates a 3D voxel reconstruction model.

The parameters 3D shape generation network are updated by minimizing the sum of
voxel-wise cross-entropy. The loss function is expressed as follows:

L(χ,y) = ∑
i, j,k

y(i, j,k) log( p(i, j,k) ) + (1− y(i, j,k)) log(1− p(i, j,k) ) (4)

where, χ represent the collection of input that omitted relevance. p(i, j,k) represent the final
softmax layer output the occupancy probability p(i, j,k) of the voxel cell at (i, j,k). y(i, j,k)∈
{0,1} represent the ground truth voxel occupancy.

3.3 Deep Network Modeling
For the cross-view image synthesis network, we adopt a three-step training procedure: Firstly,
we train our network on all training sets instead of training the network on per-category train-
ing sets. Secondly, we add L2 regularization loss to all parameters of the encoder network
and the decoder network, and set the regularization hyper-parameter λ of 0.0005. Finally,
dropout [12] regularization with a probability of 0.7 is added after the first three layers of
the decoder network. In the encoder network, we use eight full convolutional layers structure
(kernel size = 4, padding = 1, stride = 2) , and instance normalization [29] and Leaky-ReLU
[33] activation functions are applied to all encoder network convolution layers. Leaky-ReLU
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slope is 0.2. In the decoder network, we use eight deconvolution layers structure (kernel size
= 4, padding = 1, stride = 2), and instance normalization and ReLU [23] activation functions
are applied to all decoder network deconvolution layers, excluding the output layer. Each
layer of deconvolution output fused the output of the corresponding convolutional layer. Our
models use the ADAM Optimizer [25] to set learning rate of 0.0002 and the momentum of
0.5. We set the training batch size to 64 and trained our model for 50,000 iterations. Table 1
shows our network architectures [36].

Net Layer Kernel Size Stride Activation
Function

Output

Encoder-Net

Input - - - 256 × 256 × 3
Conv1 IN 4 × 4 2 Leaky-ReLU 128 × 128 × 64
Conv2 IN 4 × 4 2 Leaky-ReLU 64 × 64 × 128
Conv3 IN 4 × 4 2 Leaky-ReLU 32 × 32 × 256
Conv4 IN 4 × 4 2 Leaky-ReLU 16 × 16 × 512
Conv5 IN 4 × 4 2 Leaky-ReLU 8 × 8 × 512
Conv6 IN 4 × 4 2 Leaky-ReLU 4 × 4 × 512
Conv7 IN 4 × 4 2 Leaky-ReLU 2 × 2 × 512
Conv8a 4 × 4 2 - 1 × 1 × 512
Conv8b 4 × 4 2 - 1 × 1 × 512

Decoder-Net

Decoder Input - - - 1 × 1 × 512
Deconv1 IN 4 × 4 2 ReLU 2 × 2 × (512 × 2)
Deconv2 IN 4 × 4 2 ReLU 4 × 4 × (512 × 2)
Deconv3 IN 4 × 4 2 ReLU 8 × 8 × (512 × 2)
Deconv4 IN 4 × 4 2 ReLU 16 × 16 × (512 × 2)
Deconv5 IN 4 × 4 2 ReLU 32 × 32 × (256 × 2)
Deconv6 IN 4 × 4 2 ReLU 64 × 64 × (128 × 2)
Deconv7 IN 4 × 4 2 ReLU 128 × 128 × (64 × 2)

Deconv8 4 × 4 2 TanH 256 × 256 × 3

Table 1: Architectures for the cross-view image generation network. Conv8a and Conv8b
are shown in figure1. IN denotes instance normalization.

In training phase of 3D generation network, the input images are randomly cropped from
the ShapeNet datasets [2], where the input size was set to 127 × 127 × 3, the output size
was set to 32 × 32 × 32 that object voxelized reconstruction model. This network was
trained up to 40,000 iterations with a batch size of 24 on a subset of the ShapeNet datasets
(include 50,000 objects and 13 major categories). Based on the 40,000 iterations network
parameters, we fine-tune 10,000 iterations of network parameters on the object single-view
and synthesized multi-view datasets and use the ADAM Optimizer to set learning rate of
0.0001.

4 Experiments
In the experimental section, we will first introduce our experimental settings and then il-
lustrate both qualitative and quantitative analysis results on 3D shape reconstruction. Our
model is trained on a GPU server configured with two GTX TITAN X cards.

4.1 Dataset
ShapeNet: The ShapeNet datasets [2] is a popular 3D CAD datasets that has been widely
used for 3D shape reconstruction, recognition and retrieval tasks. It consists of a large repos-
itory of 3D CAD models that are well-organized according to the WordNet hierarchy. In
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Figure 2: Reconstruction samples of single-view and synthesized multi-view. The left col-
umn of the dotted line is the real view of the object, and the right four columns are the
synthesized views based on the object real view. (a) and (b) synthesized object view of
four different perspectives based on object source view and reconstruction performance. (c)
synthesized multi-view or reconstruction failure cases on testing sets. S-Re [4] indicates
the reconstruction result of the single-view. SA3D indicates the reconstruction result of the
synthesized multi-view.

our experiment, we selectively choose certain commonly seen object categories from the
ShapeNet datasets. In order to build up the alignment of objects’ poses across different
views, we use a open-source tool kit ShapeNet-Viewer to generate 2D rendering images in
batches for certain object categories (include bench, car, chair, phone, sofa, speaker, video
and watercraft). More specifically, rendering images of each object are obtained from 5
selected views (include front, leftside, rightside, side and top view 1). For all experiments,
where the training sets contains 18,692 object samples and the testing sets contains 4,483
object samples. The training sets and the testing sets are randomly selected from the per-
category at a ratio of approximately 4:1.
Evaluation criteria: Throughout all our experiments, the proposed SA3D approach is eval-
uated by comparing the Intersection-over-Union(IoU) of each object’s single-view and syn-
thesized multi-view reconstructed voxelization models with ground-truth voxelization mod-
els. The formula follows:

1Five different perspectives of the object. See Figure 2.
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IoU = ∑
i, j,k

[I(p(i, j,k) > t)I(y(i, j,k))]/ ∑
i, j,k

[I(I(p(i, j,k) > t)+ I(y(i, j,k)))] (5)

I(·) is the indicator function and t is the voxelization threshold in the 3D generation net-
work, in order to let voxel (i,j,k) obey the Bernoulli distribution. Other variables are intro-
duced in section 3.2. The higher IoU values indicate that voxel reconstruction performance
better. Next, we will compare the single-view and synthesized multi-view IoU reconstruction
performance.

4.2 Evaluation
We report both qualitative and quantitative evaluations of single-view and synthesized multi-
view reconstruction performance on the all testing sets.

Experiment setup: We respectively select the leftside view and the rightside view as the
source view since these two views are relatively more informative than the other three views.
We fine-tune 10,000 iterations 3D generation network on all single-view and synthesized
multi-view training sets. At the same time, we set the same hyper-parameter t (voxelization
threshold) = 0.4 in fine-tune process, t is defined in formula 5. Finally, we respectively
use 3D generation network get single-view 3D voxel reconstruction model and synthesized
multi-view 3D voxel reconstruction model on all testing sets. Note that in all experiments,
our method does not require any category labels.

Qualitative results: Figure 2 illustrates examples of the authentic source view images,
the synthesized cross-view images and the corresponding reconstructed 3D shapes in the
testing sets, which strictly does not overlap with the training sets. More specifically, Figure
2 (a) and (b) show some example reconstructions from the object single-view and structure-
aware 3D shape synthesized results. We can draw the following analysis and conclusion.
The cross-view synthesize network can generated multi-view of objects, and simultaneously
the decoder layer fusion the object’s features, the synthesized views has better performance
in details such as object outline, color, and length, etc. Since the synthesized multi-view can
better represent the geometric structure of the object as well as containing more details, it
has better reconstruction performance than single-view. We also illustrate some failure cases
in Figure 2 (c).

Singleview[4]
(Rightside)

SA3D
(Rightside)

Improve Singleview[4]
(Leftside)

SA3D
(Leftside)

Improve Mean
Improve

Bench 0.4392 0.4272 -1.20% 0.3903 0.4325 4.22% 1.51%
Car 0.7986 0.7993 0.07% 0.7694 0.7968 2.74% 1.40%
Chair 0.4947 0.4853 -0.94% 0.4755 0.4945 1.90% 0.48%
Phone 0.6798 0.7692 8.94% 0.6869 0.7813 9.44% 9.19%
Sofa 0.6425 0.6364 -0.61% 0.6315 0.6543 2.28% 0.83%
Speaker 0.6653 0.6915 2.62% 0.6792 0.7024 2.32% 2.47%
Video 0.5494 0.5778 2.84% 0.5219 0.5750 5.13% 3.98%
Watercraft 0.5322 0.4832 -4.90% 0.5375 0.4931 -4.44% -4.67%
Mean IoU 0.6002 0.6087 0.85% 0.5865 0.6162 2.97% 1.91%

Table 2: Compare per-category reconstruction results for single-view and synthesized multi-
view on all testing sets. These values are Mean IoU.

Quantitative results: As described above, we select two views (leftside and rightside)
out of the total 5 views as the source views. All parameters are set consistently throughout
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the experiment. Table 2 shows per-category single-view and synthesized multi-view recon-
struction results. Based on object rightside view, our method improve four categories, we
improve the IoU by 0.85% on average. Based on object leftside view, our method improve
seven categories, we improve the IoU by 2.97% on average. Our method worse on watercraft
categories, because it has lots of details and higher shape variation. In all experiments, we
improve the IoU by 1.91% on average.

(a) Samples (b) Per-category IoU
Figure 3: (a). The synthesized multi-view samples based on the object top view. (b). Per-
category reconstruction IoU comparison.

Figure3 (a) shows partial synthesized multi-view samples based on object top view. Fig-
ure3 (b) shows the results of single-view and synthesized multi-view based on top view that
reflect object local information. Figure 3 shows that our method can improve the perfor-
mance of 3D reconstruction when we only observe the local information of the object. In
this experiments, we train 20,000 iterations of 3D generation networks in object top view and
synthesized multi-view training sets. Our method enhances seven categories reconstruction
performance, and improve the IoU by 3.99% on average compared to single-view. Table 3
shows based on object leftside view comparison. SA3D-3 represent three views (leftside,
front and rightside) generated based on the leftside view. SA3D-5 represent five views (left-
side, front, rightside, side and top) generated based on the object leftside view. We found
that the reconstruction quality improve for seven categories as the number of views. SA3D-3
IoU have an average improved of 2.32% compared to single-view IoU. SA3D-5 IoU have an
average improved of 2.97% compared to single-view IoU. Bench, Phone and Video had the
highest reconstruction improved since these objects have fewer shape changes.

Singleview[4]
(Leftside)

SA3D-3
(Leftside)

Improve SA3D-5
(Leftside)

Improve

Bench 0.3903 0.4478 5.75% 0.4325 4.22%
Car 0.7694 0.8014 3.20% 0.7968 2.74%
Chair 0.4755 0.4782 0.27 % 0.4945 1.90%
Phone 0.6869 0.7525 6.56 % 0.7813 9.44%
Sofa 0.6315 0.6666 3.51% 0.6543 2.28%
Speaker 0.6792 0.6986 1.94 % 0.7024 2.32%
Video 0.5219 0.5388 1.69 % 0.5750 5.13%
Watercraft 0.5375 0.4941 -4.32% 0.4931 -4.44%
Mean IoU 0.5865 0.6097 2.32% 0.6162 2.97%

Table 3: Compare per-category reconstruction results for Singleview, SA3D-3 and SA3D-5
on all testing sets.
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5 Conclusion
In this paper, we addressed some common restrictions of image-based 3D shape reconstruc-
tion approaches, and proposed a structure-aware 3D shape synthesis method that requires
only a single-view image input. To our best knowledge, the proposed method is the first at-
tempt that employs synthesized multi-view images for enhancing the quality of single-view
reconstructed 3D shapes. In order to guide the learned model to be aware of the geometric
structure of objects, we generated aligned object poses across multi-view images through
projecting 3D shapes to 2D images with consistent projection parameters. We provided ex-
tensive quantitative and qualitative results on selected categories of the ShapeNet datasets,
where the proposed SA3D approach can lead to an average of 2.32% performance improve-
ment over the single-view based baseline with 2 synthesized views, and an average of 2.97%
performance improvement with 4 synthesized views.
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