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Abstract

Automatic detection of facial action units (AU) is a key towards fully understanding
spontaneous facial expressions in human emotion analysis. The most recent develop-
ment shows encouraging results in utilizing deep learning models to recognize facial
action units. However, existing AU-labeled spontaneous facial expression datasets are
either in a small-scale due to labor-intensive annotations, or lack of sufficient variety
in terms of amount, ethical background, age ranges, and facial appearance variations of
subjects, thus limiting the learning effectiveness. To mitigate the issue of high redun-
dancy and low level of variants existing among image frames of facial video sequences
with respect to both subject identities (ID) and facial action units (AU), we propose a
novel learning process with convolutional neural networks (CNNs), named Adversarial
Training Framework (ATF). Architecture wise, ATF takes the form of a multi-task learn-
ing CNN, where a deep stack of convolutional layers, pooling layers and fully connected
layers act as feature learners, and an AU loss together with an ID loss is computed with
the shared deep representations. The crucial property of ATF is that during training, the
underlying feature layers are trained to minimize the AU loss while maximizing the ID
loss. This adversarial training w.r.t. the ID loss essentially makes the learned features
effective for AU detection, while invariant to subject identities, thus alleviating the affec-
tion of personal identity to a great extent. We have conducted experiments on the public
databases BP4D and DISFA, showing significant performance improvements over the
peer methods.

1 Introduction
Research on facial expression recognition (FER) has been intensified in recent decades
[6, 21]. Ekman proposed the Facial Action Coding System (FACS) [7], as a comprehen-
sive, anatomically based system, to measure all visually discernible facial movement. Thus,
detecting facial action units has become an essential task towards realizing an accurate and
reliable FER system. Recently, deep network based algorithms [11, 23, 33] have been devel-
oped for extracting robust facial features. As a data-driven approach, the quality of the data
with ground truth labels is crucial for affecting the performance of deep networks.
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From existing facial action unit databases [18, 19, 30, 32], there are a large amount of
2D images that have been AU annotated. For example, in BP4D [30], over 140,000 frames
from 41 subjects have FACS coded while the numbers have been increased to 190,000 with
140 subjects for BP4D+ [32]. Similar statistics can also be found in DISFA [19], with about
120,000 frames from 27 subjects. Although there exists a great number of training samples,
the number of class instances, i.e. subjects × AUs, is relatively small when AU occurrence
needs be determined. This turns to cause the over-fitting problem for deep network based
classifiers.

It is arguable whether the subjects’ identities could help or jeopardize the task of AU
recognition. Previous works [3, 4] have learned person-specific models for facial expres-
sion and AU recognition. By transferring the informative knowledge from a small set of
person-specific data, it allows us to learn an accurate model for a new subject. Such induc-
tive/transductive learning technique is also employed by [1] on AUs annotation. All of these
work indicate that the person-specific information can help to improve the performance of
AU related classification tasks. However, these works are typically built on hand-crafted
features and the good AU detection system must be person-invariant, thus requiring the sys-
tem to tackle the personal information in an automatic way. In order to regularize deep
features, we need to find the relationship between subject identification and AU recognition.
In [5], Chu et al. visualized the FC7 features from AlexNet [14] by a t-SNE embedding.
t-SNE can project the high dimensional data into low dimensional space while keeping the
distribution of data. This work discovered that through the feature learning process of deep
neutral network, the feature representation will be increased as the individual differences are
minimized. Inspired by this finding, here we present a compositional framework to add an
adversarial training layer by maximizing the loss from human subject identification, with an
attempt to improve the feature generality in the deep neutral network.

One way to understand the proposed ATF is by drawing the analogy between AU recog-
nition and domain adaption [8, 17, 20]. Domain adaption deals with the problem when the
training data distribution differs slightly from the testing data distribution, a model trained
on the training data might not perform well during the test. And one commonly used ap-
proach is to learn a transformation of the input data, such that the distribution of transformed
data points are about the same on the training set and the test set. In the setting of AU
recognition, frames taken from the test subjects differ significantly from those of the training
subjects, due to the unique biases attached to individual subjects, much like the problem in
domain adaption. Our approach can thus be considered as a deep learning based domain
adaptation method, with a specific focus on AU recognition, where the goal is to learn sub-
ject/domain invariant representations that can help generalization. To our knowledge, this is
the first work to apply an adversarial training process on AU related classification tasks for
facial expression analysis. The experimental results show that such an adversarial training is
an effective mechanism to facilitate the feature generality on AU occurrence detection.

2 Related work
The existing works have been focused on the investigation of facial action information and
learning methodologies.

Deep Model Based AU Recognition: With the extensive use of deep learning networks,
it is needed to address how the deep features are correlated to perceived facial actions. To
address this issue, Khorrami [13] set zero to all neurons of specific convolutional layers and
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deconvolved to visualize the reconstructed images. Jaiswal [12] concatenated the Convo-
lutional and Bi-directional Long Short-Term Memory Neural Networks (CNN-BLSTM) to
jointly learn the shapes and appearances from dynamic sequences. The developed system has
achieved a good performance on the FERA-2015 [26] Challenge dataset. A similar architec-
ture has also be developed by Chu [5]. With a consideration of the sparse AU distributions,
Zhao [34] proposed a Deep Region and Multi-label Learning (DRML) method to guide the
deep network by focusing on important facial regions under certain AU correlations. In-
spired by this work, Li [15, 16] has further added two layers by enhancing and cropping nets
to a pre-trained CNN model and improved AU detection performance significantly.

Multi-task Learning (MTL): MTL means different tasks are learning in parallel while
using a shared representation. What is learned for each task can help other tasks to learn bet-
ter [2]. For instance, Wu [27] applied the MTL to learn the relationships among AUs and face
shapes while updating feature points, resulting in a boosted performance of both facial AUs
recognition and landmarks localization. Zhang [31] has also optimized facial landmark de-
tection successfully along with the other tasks, i.e., estimation of facial appearance attribute,
expression, demographic, and head pose. Our approach differs significantly from standard
multi-task learning in that, instead of jointly minimizing several losses each of which cor-
responds to a task, we only minimize the loss of the task of interest (i.e., AU recognition)
while adversarially maximize the loss of an auxiliary task (i.e., subject ID classification). On
the other hand, our method points to a promising direction of effectively leveraging tasks
which do not necessarily benefit from each other, and thus can be considered as a novel way
of performing multi-task learning in this regard.

Deep Domain Adaptation and Adversarial Learning: Domain adaption work, based
on their objects, can be categorized into discrepancy-based [17, 28] and adversarial-based
approaches [24, 25, 29]. Our model falls into the second group and is inspired by the do-
main adversarial networks by Ganin et al. [8], where deep neural networks are trained to
yield domain invariant features. Our contribution is to draw a previously undiscovered con-
nection between the deep domain adaptation problem with the AU recognition problem. In
contrast to [8] traditional domain adaption conventions, where source and target domains are
usually the data distributions from training and testing sets, we consider different subjects
as domains during the training phase. By treating images sampled from the same subject
as a domain, we are able to readily borrow the tools developed in the domain adaptation
literature. We also believe that this work could inspire further studies which apply different
methodologies than ours. The adversarial module is also related to the recent advances in
adversarial training of deep neural networks [9, 10], where instead of training a model by
minimizing a single objective, an adversarial module is engaged which concurrently maxi-
mizes certain objectives. Our model is thus an instantiation of such techniques in the specific
context of AU recognition.

3 Methodology

3.1 Deep CNN Architecture

VGG-19 [22] is the base model in this work, which has been widely used in many computer
vision tasks, e.g., object detection, images classification, etc.. It contains 16 convolution
layers (grouped by 5 max-pooling layers) and 3 fully connected (FC) layers with dropout
rate of 0.5 applied on the first two FC layers. We keep all the layers of VGG-19 except
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for the last FC layer (fc8) which is originally designed for classification with 1,000 possible
categories. We initialize all the weights and biases of VGG-19 from a pre-trained model on
ImageNet, which is freely available at Caffe model zoo. All the experiments in this paper
follow the fine-tuning protocol, unless otherwise mentioned.

3.2 Baseline model
In this paper, we focus on the AU occurrence detection which we cast as a binary classi-
fication problem. Each input image is associated with a binary FACS code, where at each
dimension 1 indicates the presence of a corresponding action unit is presented and 0 other-
wise. An RGB facial image is passed through the entire network which outputs a 2048-D
feature vector at FC7. Two more (2048, M) FC layers GAU with sigmoid units is placed on
top of FC7 for action unit predictions with parameters denoted as θAU . As shown in Fig-
ure 1(a), the output of GAU contains M neurons corresponding to M Action Units. Then
ground truth labels are compared for computing the loss (cross entropy), whose gradient is
further back-propagated for parameter updating.

Action Unit Loss: AUs recognition (or detection) can be naturally regarded as a multi-
label classification problem. We first define the action unit loss LAU , which is computed by
the mean value across all M AUs that have been considered:

LAU =
1
M

M

∑
j=1

H j(pAU
j (x),yAU

j ), (1)

where x denotes the input image, pAU (x) ∈ R11 is the output of the last FC layer for input
x, with each dimension representing the predicted score of an AU, yAU

j ∈ {0,1} and H j(·, ·)
denotes the label and loss for the jth AU, respectively. The loss for the jth AU is computed
with cross entropy, as shown in following equation:

H j(x,yAU
j ) =−yAU

j log pAU
j (x)− (1− yAU

j ) log(1− pAU
j (x)). (2)

The same setting can also be found in many related works for AU recognition, e.g., [5, 34].
We use this model as the baseline for this work.

3.3 Jointly Minimizing the ID Loss
It is common that the training images of many facial expression databases with AU annota-
tions (e.g., [30]) are organized by subject identities. Such a property can potentially serve as
an additional source of information to benefit the learning of AU recognition models. Similar
to the multi-task learning neural nets, we utilize the ID information to train an ID classifier
along with the AU classifiers. We now proceed to formally define this joint minimization
model (JM).

ID Loss: Followed by FC7, the ID classifier is implemented as another two (2048, C)
FC layers ( see the lower branch of Figure 1(b)) with softmax units GID which predicts the
subject identities from the facial images. C denotes the number of subjects appearing in the
training set. Different from AU recognition, this is a multi-class classification problem with
ground truth label of yID ∈ {1, ...,C}. Here the ID loss, LID, is defined as follows:

LID =−
C

∑
i=1

yID
i log(pID

i (x)), (3)
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Figure 1: Alternated way to consider identity

where pID(x) ∈ RC denotes the softmax prediction for the input x, with the ith dimension
denoting the probability of x belong to the ith subject.

The introduction of ID loss layer gives rise to a question of how to combine it with the
loss function from the AU recognition layer. Given that our objective is to minimize LAU
which in turn increases the accuracy of prediction, a more intuitive way from MTL is to add
these two losses together in the optimization process in pursuit of a faster convergence rate
or a better recognition performance [31]. Therefore, the loss function of our second baseline
model is a combination of the two losses:

Ltot = LAU +αLID, (4)

where α in equation 4 is a hyperparameter controlling the weight of the ID loss. Due to the
fact that the AU classifier and ID classifier share all the layers below and including FC7 in
our VGG-19 model, the joint minimization model essentially encourages the model to learn
representations (encoded by FC7) that can both distinguish AU as well as be sensitive to the
ID of an image.

3.4 Adversarial Training Framework (ATF)
Although the joint minimization model is by nature based on utilizing side class informa-
tion, we argue that the learned representations to remember the subject ID can hurt the
generalization ability of the AU classifier. A successful AU classifier should work well in a
person-independent fashion. Encouraging a model to memorize the ID information of train-
ing subjects (typically in the number of dozens) actually only makes the AU classifier easier
to overfit on the training set. This leads us to developing the core idea, in which we pro-
pose to adversarially train the feature learning layers (layers including and below FC7) to
maximize the ID classification loss, meanwhile minimizing the AU classification loss. The
parameters of GAU and GID on the other hand, are updated to minimize their respective loss,
same as in the joint minimization setting. We name this training strategy along with the
model architecture the adversarial training framework (ATF). Note that in ATF, we are no
longer updating all the parameters by minimizing a single objective function, instead, differ-
ent set of parameters have their dedicated objectives, which interact with each other during
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Figure 2: The architecture, along with the forward and backward propagation path of the
proposed ATF.

the time of training.
We now formally describe the update rules for each set of parameters. Recall that we

divide the set of parameters for ATF into three disjoint subsets: the feature layers parameters
θNet , the AU classifier parameters θAU , and the ID classifier parameters θID. Each of them is
updated as follows respectively,

θNet = argmin LAU −αLID,

θAU = argmin LAU ,

θID = argmin LID,

(5)

where LAU ,LID,α are defined as in Eq. 4. In other words, the network parameters θNet are
updated to improve the AU classification accuracy, as well as to confuse the best ID classifier
(by increasing its classification loss), so as to learn subject invariant deep representations.
As illustrated in Figure 2, the ATF includes both forward and backward propagations of the
neural network.

4 Experiment

The recent work by Li et al [15] introduced enhancing layers (E-Net) and cropping layers
(C-Net) on a basis of pre-trained V GG19 [22] and obtained state of art performance on AU
occurrence detection. In this section, we first plug the proposed AT F into E-Net to illustrate
the effectiveness of adversarial training on AU detection across two databases. Then we
visualize the training process in detail with comparison to the peer models (Baseline and
JM). The impact of ID layer on learning deep features is also demonstrated and discussed.
It is worth noting that the C-Net is not suitable for AT F because it crops an entire face
into small patches located by 20 landmarks and trains the shallow convolution network on
individual face patch, thus losing the holistic identity information.
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4.1 Datasets
BP4D: 41 subjects are included in BP4D with 23 females and 18 males. Spontaneous fa-
cial expressions were elicited through 8 well-designed tasks. FACS Coders selected most
expressive 20s from all 328(41×8) sequences for occurrence coding.

DISFA: Another benchmark dataset comes from Denver Intensity of Spontaneous Facial
Action (DISFA) which contains two-views videos of 27 adult subjects. Frames are labeled
by 66 facial landmark points and 0-5 scale AU intensity codes. We extracted the data frames
captured by the left camera and considered 8 AUs as positive if their intensities are larger
than 0.

Similar to the settings in [15], subjects in these two databases are split into 3 folds for
cross validation. In our experiment, the training and testing data of each fold are exactly
same as the ones used in [15] to assure a fair comparison. For training, some samples are
repeated 4 to 7 times in order to balance the AUs that are less occurring. Thus it alleviates
the negative impact of data unbalance on AT F . Note that no face alignment and further data
augmentation are required in our experiment.

4.2 Implementation Details
First of all, each image is resized into 224× 224 for fit of V GG19 [22]. We subtract each
image by its mean value and divide it by the variance of pixel intensities. Then the batched
images with a size of 50 are input to the network directly. Second, for the first two groups
of convolution layers in V GG19, parameters are left out during the fine-tuning process in
order to keep the lower level generic features. The output logits of the AU layer indicate
the presence or absence of each action unit. Third, an sigmoid function is applied on these
outputs in order to normalize them in the range from 0 to 1.

The whole framework is implemented on TensorFlow with an initial learning rate of
0.0001 for both AU and Identity. The parameters are then optimized by Nesterov method
with a momentum of 0.9. To further balance the optimization process of the two components,
AU and Identity, we use a weight decay of 0.0001 and decrease the learning rate by 4% on
every 2000 iterations. Note that an early-stop strategy is adopted before reaching the model
over-fitting.

4.3 Evaluation and Results
To be comparable to the existing models, two common metrics, i.e., F-score and Accuracy
are used to evaluate the performance of the proposed framework. F-score is the harmonic
mean of the precision and recall which is defined as F1 = 2∗precision∗recall

precision+recall . For AU detection,
the datasets are highly unbalanced in terms of both labels and classes (0 or 1). Even though
we try to balance them by up-sampling as mentioned, there still exist a large number of 0s in
labels. Therefore, F-score is more favorable than Accuracy for our performance evaluation.

4.3.1 Comparison with the State of Art

Experiment on BP4D: Table 1 shows a performance increase from 52.1% to 55.4% on
F-score. Note that recognition rates on AU1 (Inner Brow Raiser), AU4 (Brow Lowerer),
AU10 (Upper Lip Raiser), AU17 (Chin Raiser), and AU23 (Lip Tightener) have achieved
the best as compared to the peer state of the art approaches. Since those AUs are subtle
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in spontaneous expressions of the BP4D database, it is very challenging to increase the
recognition performance. The improvement of those AUs detection attributes to the use
of the proposed ATF, by which the identity influence has been mitigated effectively.

Table 1: F-score on BP4D in terms of 12 AUs. (α=0.02)
AU JPML [33] DRML [34] FVGG [15] E-Net [15] E-Net+ATF
1 32.6 36.4 27.8 37.6 39.2
2 25.6 41.8 27.6 32.1 35.2
4 37.4 43.0 18.3 44.2 45.9
6 42.3 55.0 69.7 75.6 71.6
7 50.5 67.0 69.1 74.5 71.9

10 72.2 66.3 78.1 80.8 79.0
12 74.1 65.8 63.2 85.1 83.7
14 65.7 54.1 36.4 56.8 65.5
15 38.1 33.2 26.1 31.6 33.8
17 40.0 48.0 50.7 55.6 60.0
23 30.4 31.7 22.8 21.9 37.3
24 42.3 30.0 35.9 29.1 41.8

Avg. 45.9 48.3 43.8 52.1 55.4

Experiment on DISFA: Following the same protocols in [15], we use the best model
trained on BP4D as a feature extractor to map the input images of DISFA database into the
2048-dimension vectors. Then a linear regressor is trained from scratch for inference of 8
AU labels. Table 2 shows the F-score of our model and the compared works. As we can see,
our proposed ATF outperforms the peer approaches on average F-Score, which is promising
to increase its generalizability.

Note that the number of parameters in the forward pass of E-Net is about 130M. In
the work [15], the authors also reported F-scores (55.9% on BP4D and 48.5% on DISFA
on average) with the use of cropping layers (noted as EAC). As compared to the E-Net,
EAC has an extra set of ∼ 78M parameters, which is a drastic increase in terms of model
capacity. However, without increasing the extra set of parameters, our proposed ATF can
obtain comparable AU recognition rate while still keeping the lower model complexity.

Table 2: F-score on DISFA in terms of 8 AUs.
AU APL [34] DRML [34] FVGG [15] E-Net [15] E-Net+ATF
1 11.4 17.3 32.5 37.2 45.2
2 12.0 17.7 24.3 6.1 39.7
4 30.1 37.4 61.0 47.4 47.1
6 12.4 29.0 34.2 52.5 48.6
9 10.1 10.7 1.67 13.4 32.0
12 65.9 37.7 72.1 71.1 55.0
25 21.4 38.5 87.3 84.2 86.4
26 26.9 20.1 7.1 43.5 39.2

Avg. 23.8 26.7 40.2 44.4 49.2
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Figure 3: Learning curves on BP4D dataset for comparison among different models (better
view in color). Upper row: y-axis stands for LID along with x-axis (iterations) during the
training. Lower row: y-axis stands for corresponding F-score on the validation set.

4.3.2 Model Comparison and Learning Visualization

In Figure 3(a), we compare different models (i.e., Baseline, JM, and AT F under different α)
and visualize the learning performance by plotting the training and validation curves on one
split (best α = 0.01 here) of the cross validation. The rest two splits follow the same trend.
The training curves show the trend of ID loss from JM and AT F . Since there is no ID layer
embedded in the baseline model, the ID Loss does not contribute to the parameter update
θNet , neither to the θID, hence we do not plot it for baseline model.

As the ID Loss is combined in the JM model, the total loss is thus increased. It also
increases the gradients of all trainable parameters θ . We can clearly see that the curve (in
blue) decreases quickly during the training stage. As an illustration, we only show one curve
from ATF to compare with Baseline and JM.

It is worth noting that because the two processes (i.e., ID identification and AU recogni-
tion) compete each other in an adversarial way, the ID loss is able to maintain in a certain
level, thus facilitating the entire feature learning procedure. More specifically, if without ID
loss as the regularizer, the baseline model can only attend to those frequently occurred AUs
and leave the rest unoptimized, resulting in low F scores (as illustrated by the green curves
before 20k iterations).

Impact of ID layer: In the adversarial training model, the weight α indicates the impact
of ID layer. By grid search, we get α in the range from 0.008 to 0.08, and compare their
learning performance as shown in Figure 3(b). As we can see, different choices of scalar
α could influence the learning procedure dramatically. A larger value of α means a more
intensive competition from the ID layer while keeping the ID loss in a higher level. Ex-
tremely when α is 0, the adversarial training degrades to the baseline model. In general, a
good choice of α (in this case, α = 0.01) can make the convergence of AU learning perform
better. We also notice that the ID loss decreases at the beginning of training process. We at-
tribute it to the constant setting of α given that different relative magnitudes of loss between
AU and ID during the training.
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5 Conclusion
In this paper we have presented a novel adversarial training framework to tackle the issue
of facial action unit detection for facial expression analysis. The core of this framework
is to enable the underlying feature layers to be trained by minimizing the AU loss while
maximizing the ID loss. This adversarial training essentially makes the learned features
effective for AU detection, while invariant to subject. The results are promising as compared
to the Baseline model and the JM model when tested on benchmark datasets.

Our future work will improve the proposed framework with extending the application to
the temporal domain, thus enabling us to further conduct comparison with more state of the
art approaches. We also hope that our work would inspire further explorations in deep multi-
task learning methodologies for a broader range of audience. Notice that the same adversarial
training framework is also applicable to facial expression recognition by minimizing the
expression label loss while maximizing the ID loss for improving the person-independent
expression classification, thus giving rise to our new development in the future.
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