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Abstract

Single Image Super-Resolution (SISR) has obtained unprecedented breakthrough
with the development of Convolutional Neural Networks (CNN). A majority of these
methods try to increase the depth of the network to obtain a larger receptive field. How-
ever, we found that blindly stacking feature maps and the simple cascading structure can
not achieve a high rate of utilization in super-resolution reconstruction. In this paper, we
propose a refined fully convolutional network for Single Image Super Resolution. Based
on the assumption that features maps from different depths or the same depth but dif-
ferent channels have different contributions during image reconstruct, we introduce the
Squeeze and Excitation (SE) network to evaluate the importance of different feature map-
s while building the network. Besides, densely connection operation is also conducted
in the framework for a better use of the contextual information and feature maps. Ex-
tensive experiments demonstrates that the proposed method can enhance the restoration
performance and achieve the state-of-the-art results in super-resolution task.

1 Introduction
Image super-resolution reconstruction (SR) is a classic problem in computer vision. It mainly
contains two subfields: Single Image Reconstruction and Sequence Images Reconstruction.
In this paper, we mainly talk about the Single Image Super Resolution (SISR), which aims
to recover a high resolution image from its degraded one [7]. The task can be formulated as

Yhr = Θ(Xlr) (1)
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SRCNN[1] VDSR[8] DRRN[18]

Figure 1: Simple outlines of SRCNN, VDSR (8 convolutional layers) and DRRN (2 recur-
sive blocks). Block Conv denotes a standard convolutional block which consists of Batch
Normalization (BN), convolution (CN) and ReLU in order. While in DRRN, it represents a
pre-activation convolutional block contains BN, ReLU and CN in sequence. These architec-
tures can be divides into 3 modules: Features Extraction (blue), Nonlinear Mapping (grey)
and Image Reconstruction (green).

in which Xlr and Yhr denote the low-level resolution input image and high-level resolution
output image, respectively. Function Θ is an abstract description referring to the reconstruc-
tion process. Considering that the degraded image losses plenty of contextual information
and details, SISR is a typical ill-posed inverse problem.

In the early time, interpolation methods such as bicubic interpolation and Lanczos resam-
pling [2], more technically, statistical image priors [9, 17], are used in SISR. Currently, with
the prosperity of machine learning especially deep learning technology, excellent methods
based on deep learning [1, 8, 10, 18] have shown a dominant performance in this field.

Dong et al. first proposed a convolutional network structure (SRCNN) to generate bet-
ter reconstructed images utilizing the bicubic interpolation results as input [1]. Compared
with the previous methods, SRCNN can take good advantage of the contextual information
through its simple architecture when recovering the high resolution (HR) image. It mainly
consists of three convolutional layers which called patch extraction layer, non-linear mapping
layer and reconstruction layer, respectively. It is worth noticing that these three convolution-
al layers in SRCNN stand for three different modules: features extracting module, features
mapping module and image reconstructing module and there are still many approaches that
continue utilizing these modules nowadays. Excluding the succeed of SRCNN in SISR, its
three-layer structure can not make fully use of the inner information of the input and quanti-
ties of experiments indicate that the model is hard to learn during training phase.

To deal with this issue, Kim et al. introduced a very deep convolutional networks for
super-resolution (VDSR) [8]. In this work, the authors built a deep model with 20 layers
acting as the features mapping module. Different from the previous methods, they draw on
the experience of residual learning and tried to let the model mainly focus on learning the
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Method Mathematical Formulation
SRCNN[1] y = f3( f2( f1(x)))
VDSR[8] y = fRec( fn( fn−1(... f1(x)...)))+ x

DRRN[18] y = fRec(RN(RN−1(...R1(x)...)))+ x

Table 1: Three related methods mentioned in Sec.2. function f denotes convolutional layer
and R denotes recursive block.

residual part of the input. Experiments shows that VDSR shows a better performance than
SRCNN. Moreover, the residual learning part in VDSR makes it easy to converge during
the training phase. Although VDSR has gained great progress in SISR, it has it own limita-
tion: feature maps far from the reconstructing module are less considered when restoring the
residual part of the input patch.

Recently, a new approach utilizing Deep Recursive Residual Network (DRRN) has been
introduced for single image reconstruction [18]. The network continues learning the resid-
ual parts w.r.t the input patches. In DRRN, Tai et al. firstly utilized a convolutional layer
to extract the original features, and then used these features to make a constrain to the fea-
ture maps produced by the feature mapping layers. To be specific, the authors proposed an
stacked recursive blocks structure in a cascading way. Each of these recursive blocks are
trained to learn the residual part of the original features. By adopting these methodologies,
DRRN provided an improved performance compared with VDSR.

In this paper, we design a Squeeze and Excitation Residual Network for super resolu-
tion (SENSR). The model is built to learn the residual part of an input image. Based on the
assumption that feature maps from different layers have different contributions to the restor-
ing module, we introduce the key component of Squeeze and Excitation Network [5] for the
importance evaluation. By labeling the feature maps with different contribution rates, the
residual reconstructing part can handle these feature maps in a smart way. Compared with
VDSR, the proposed method can make better use of these intermediate feature maps and
achieve the sate-of-the-art performance.

2 Related Work
In this section we mainly discuss three mainstream methods mentioned in Sec.1: SRCNN,
VDSR and DRRN.

2.1 SRCNN
SRCNN [1] is the first work that introduced deep learning to the super-resolution recon-
struction filed. It only has 3 separate layers, which called patch extraction and representation
layer, non-linear mapping and reconstruction layer, respectively. The first layer is to extrac-
t high dimensional vector from the low-resolution input patch and the second is about the
feature mapping module that maps the original vector to another high dimensional vectors.
The last reconstruction module aims to generate the high-resolution output image. These
three layers have filters of spatial sizes of 9× 9, 1× 1 and 5× 5, separately, which enable
the neurons of the last layer has a limited receptive size (13× 13). SRCNN has gained the
state-of-the-art performance when proposed. However, It is because of the shallow network
depth that puts its learning ability into a bottleneck.
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Figure 2: A simplified cascading architecture of proposed methodology with 4 capsule units.
SE denotes a squeeze and excitation component. FR and GR stand for features residual and
global residual, respectively. Symbol C represents a concatenation operation.

2.2 VDSR

To strengthen the learning ability of Deep Learning based model, Kim et al. proposed a very
deep convolutional network (VDSR) in [8]. The authors argued that increasing network′s
depth can significantly get a better features representation and boost the performance. Moti-
vated by [4], they use a residual structure to make the net much deeper (20 layers). Compared
with SRCNN, VDSR has a larger receptive field (41× 41). Besides, VDSR introduces an
conception of Global Residual Leaning (GRL), which architecture enables the net to learn
the residual parts of the input image. In addition, the VDSR model is robust to multi-scale
image reconstruction due to the scaling augmentation and experiments shows that it provides
an excellent performance in image restoration.

2.3 DRRN

The architecture of Deep Recursive Residual Network (DRRN) [18] can be regarded as an
recursive residual network, in which all the outputs of residual blocks is added to the origi-
nal feature maps extracted by a simple convolutional block. In contrast to these traditional
networks, Tai et al. utilized an pre-activation structure described in [4] for a better perfor-
mance. Same as [8], the network aims to learn the residual parts of the input patch. Inspired
by [11], they use a multi-path mode in DRRN to facilitate the learning and prevents over-
fitting. Compared with VDSR, DRRN can get the state-of-the-art performance with fewer
parameters.

3 Proposed Method
Here we talk about the details of our proposed method. The network takes the bicubic
interpolated LR image as input and then predict the HR output. This section includes 3
parts: global residual learning, capsule unit and an overview of the network outline.

3.1 Global Residual Learning

Same as [8], we follow the idea of Global Residual Learning in VDSR. In contrast to the
origin implementation of Global Residual (GR), we divide the residual learning module into
two stages: (I) features residual learning and (II) global residual learning.
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(a) CReLU (b) Capsule Unit (c) SE Component

Figure 3: Structure of CReLU, Capsule Unit and SE Component. Convolution here denotes
a convolutional block contains a batch normalization layer, a ReLU layer and a convolutional
layer in sequence.

In the proposed model, we use an concatenated ReLU (CReLU) structure introduced
by [15] for the origin features extraction. The proposed CReLU structure can extract more
complete features compared with the traditional convolutional layers as Shang et al. argued
that there is a negative correlation among the filters in the lower convolutional layers. The
origin feature extraction can be formulated as:

γ = fCReLU( fSE( fCReLU(x))) (2)

where γ denotes the origin features, fCReLU stands for an concatenated ReLU unit and fSE is
the symbol of Squeeze and Excitation component.

For the features residual learning, the cascading path is to learn the residual parts of the
origin features. And then construct the global residual part through these features residual
(see in Fig. 2), which can be formulated as:

y = fGR( fFR(ϕ(γ))+ γ)+ x (3)

where fGR and fFR are the global residual learning layer and features residual learning layer,
respectively. ϕ denotes the cascading Capsule Unit.

3.2 Capsule Unit
As illustrated in Fig 2, the cell called capsule is the basic unit in our proposed method. It
contains three convolution blocks and a squeeze and excitation component (see in Fig 3.b).

The first convolutional block in Capsule is used for decreasing the dimension of feature
maps. From Fig 2, we can observe that each of the Capsule units will take the concatenation
of the previous Capsule’s outputs as input. The dimension of Capsule input will arise linearly
with the increasing depth. To tackle this issue, we utilize a convolutional layer (Transition
Down Block) with a spatial size of 1×1 to unified the input dimension.

The 2nd and 3rd convolutional layers are designed for the feature mapping process. In
each capsule, we use 2 cascading convolutional layers as the feature mapping unit.
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The output of Capsule will pass through a Squeeze and Excitation component. The SE
part is design for evaluating the produced feature maps. To be specific, it labels each of the
feature maps with a list of scores ranging from 0 to 1. The score denotes the importance of
each feature map.

As is demonstrated in Fig 3.c, the structure of SE component is simple and easy to
implementation. The fist global pooling layer is utilized for squeeze every two dimension
feature map to a single number. Each of the numbers has a complete receptive field for the
channel they are in. Then we use a one dimensional encode and decode operation for the
information interaction. While implementing this procedure, we use two fully connected
layer to simplify the operation. Next, we exploit the sigmoid activation to compress the
output to (0, 1). Finally, we re-adjust the feature maps by multiplying the corresponding
scores.

3.3 Network Outline
Here we give an overview of the proposed network (Fig 2).(1)We utilize the bicubic interpo-
lation result of a patch as the input of the network.(2)These two concatenation ReLU units
act as the origin features extraction module.(3)There are a number of cascading Capsule U-
nit stacked for the origin features residual learning.(4)The global residual of the input are
computed through the origin features residual part.

4 Experiment
In this section, we are going to talk about the data we choose and the training details in the
experiment.

4.1 Training Data
As with the previous methods, we turn the image into Ycbcr format, and then utilized the
model to learn the mapping relations of the luminance layer. The training data contains 291
images, where 91 images are from [19] and the others are contributed by [12]. In addition,
data augmentation technics are used in our experiment. For generating the training set, we
rotate the 291 images by 90◦, 180◦, 270◦ and make a symmetry transformation on them.
Then, we clip these images into 32×32 patches for training. Multi-scaling augmentation
(×2, ×3, ×4) is also introduced to the training set to enhance the robustness to diverse
scaling inputs. There are 4 popular data sets used for the performance evaluation: Set5,
Set14, BSD100 and Urban100.

4.2 Training
We implement the proposed model with Caffe and utilize Stochastic Gradient Descent (SGD)
as the optimizer.

4.2.1 Gradient Clipping

The adjustable gradient clipping technique is usually used for recurrent networking training
to avoid gradient explosion [13] and it has been conducted in some of the previous methods
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Data Set PSNRs/SSIMs
Bicubic SRCNN[1] SelfEx[6] RFL[14] VDSR[8] DRRN_B1U9[18] DRRN_B1U25[18] SENSR (ours)

SET5
×2 33.66/0.9299 36.66/0.9542 36.49/0.9537 37.53/0.9587 37.59/0.9591 37.66/0.9589 37.74/0.9591 37.80/0.9596
×3 30.39/0.8682 32.75/0.9090 32.58/0.9093 33.66/0.9213 33.78/0.9226 33.93/0.9234 34.03/0.9244 33.98/0.9242
×4 28.42/0.8104 30.48/0.8628 30.31/0.8619 31.35/0.8838 31.44/0.8849 31.58/0.8864 31.68/0.8888 31.67/0.8883

SET14
×2 30.23/0.9384 32.45/0.9067 32.22/0.9034 33.03/0.9124 33.13/0.9132 33.19/0.9133 33.23/0.9136 33.25/0.9141
×3 27.54/0.7736 29.30/0.8215 29.16/0.8196 29.77/0.8314 29.85/0.8330 29.94/0.8339 29.96/0.8349 29.95/0.8343
×4 26.00/0.7018 27.50/0.7513 27.40/0.7518 28.01/0.7674 28.09/0.7689 28.18/0.7701 28.21/0.7720 28.22/0.7709

BSD100
×2 29.56/0.8431 31.36/0.8879 31.18/0.8855 31.90/0.8960 31.96/0.8965 32.01/0.8969 32.05/0.8973 32.05/0.8972
×3 27.21/0.7388 28.41/0.7863 28.22/0.7806 28.82/0.7976 28.87/0.7988 28.91/0.7992 28.95/0.8004 28.95/0.7999
×4 25.96/0.6674 26.90/0.7101 26.75/0.7054 27.29/0.7251 27.31/0.7259 27.35/0.7262 27.38/0.7284 27.39/0.7271

URBAN100
×2 26.87/0.8401 29.50/0.8946 29.11/0.8904 30.76/0.9140 30.95/0.9159 31.02/0.9164 31.23/0.9188 31.20/0.9180
×3 24.46/0.7344 26.24/0.7989 25.86/0.7900 27.14/0.8279 27.26/0.8309 27.38/0.8331 27.53/0.8378 27.53/0.8357
×4 23.14/0.6570 24.52/0.7221 24.19/0.7096 25.18/0.7524 25.25/0.7552 25.35/0.7576 25.44/0.7638 25.49/0.7612

Table 2: Performance on four benchmark data sets

[8, 18]. Specifically, it helps to clip the gradients to a predefined range [− ξ

r ,
ξ

r ], where ξ

is a predefined scalar and r denotes the current learning rate. We keep this trick in our
implementation to avoid gradient explosion and accelerate the training phase.

4.2.2 Multi-Scaling Augmentation

Reference [8] is the first work that introduced the concept that a single model is robust
to different scaling factors. In order to follow this principle, we mix up the patches from
different scaling factors when generating training set.

4.2.3 Training

We use Caffe to implement SENSR on a PC with 4 Nvidia 1080Ti GPUs. While in the
experiment, we stacked 16 Capsule units to training the model with the batch size of 16.
SGD with momentum of 0.9 is utilized as the optimizer for the gradient back propagation.
The initial learning rate and weight decay are set to 0.1 and 0.0001, respectively. The spatial
filter sizes of convolutional layers except the transition down layers are set to 128× 3× 3.
For the weights initialization, we adopt the method introduced in [3]. To achieve the goal
of facilitating training phase and avoiding gradient explosion, adjustable gradient clipping
technique is a must. This method makes it possible to set a higher initial learning rate (0.1)
to accelerate the convergence process.

5 Comparison with State-of-the-Art Models

In comparison with previous methods, we introduced Urban100 for the performance eval-
uation except for the three widely used benchmark data sets (Set5, Set14 and BSD100) in
super resolution field. As for evaluating criterion, both PSNR (Peak signal-to-noise ratio)
and SSIM (Structure Similarity) are considered as the comparison standards. Besides, we
introduce a extra criteria called Information Fidelity Criterion (IFC) [16] for a complete
evaluation.

We provide quantities of statistics in Tab 2, in which the we re-trained the VDSR model
and the rest scores are cited from [18]. Besides, we further make an comparison of IFC
among these methods in Tab 3. From these two tables, we observe that the proposed method
achieves a competitive performance with the former models.
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Data Set Bicubic SRCNN[1] SelfEx[6] RFL[14] VDSR[8] DRRN_B1U9[18] DRRN_B1U25[18] SENSR (ours)

SET5
×2 6.083 8.036 7.811 8.556 8.569 8.583 8.671 8.821
×3 3.580 4.658 4.748 4.926 5.221 5.241 5.397 5.468
×4 2.329 2.991 3.166 3.191 3.547 3.581 3.703 3.757

SET14
×2 6.105 7.784 7.591 8.175 8.178 8.181 8.320 8.371
×3 3.473 4.338 4.371 4.531 4.730 4.732 4.878 4.882
×4 2.237 2.751 2.893 2.919 3.133 3.147 3.252 3.269

URBAN100
×2 6.245 7.989 7.937 8.450 8.645 8.653 8.917 9.047
×3 3.620 4.584 4.843 4.801 5.194 5.259 5.456 5.516
×4 2.361 2.963 3.314 3.110 3.496 3.536 3.676 3.737

Table 3: IFCs of different models on benchmark data sets

Data Set PSNRs/SSIM/IFC
SENSR_No_Dense SENSR_No_SE SENSR_FULL

SET5
×2 37.54/0.9594/8.3226 37.70/0.9600/8.7069 37.80/0.9596/8.821
×3 33.69/0.9224/5.1241 33.86/0.9239/5.3730 33.98/0.9242/5.468
×4 31.34/0.8865/3.5450 31.48/0.8890/3.6911 31.67/0.8883/3.757

SET14
×2 33.07/0.9130/7.9954 33.17/0.9138/8.3028 33.25/0.9141/8.371
×3 29.82/0.8328/4.7038 29.89/0.8337/4.8175 29.95/0.8343/4.882
×4 28.05/0.7681/3.1485 28.12/0.7690/3.2032 28.22/0.7709/3.269

URBAN100
×2 30.91/0.9152/8.4958 31.15/0.8175/8.9312 31.20/0.9180/9.047
×3 27.25/0.8298/5.2112 27.40/0.8323/5.4195 27.53/0.8357/5.516
×4 25.29/0.7553/3.5317 25.39/0.7577/3.6417 25.49/0.7612/3.737

Table 4: Ablation studies of the proposed Squeeze and Excitation Network.

Ground Truth (GT)
(PSNR / SSIM /

IFC )

Bicubic
(24.0379 / 0.8216 /

3.5272)

SRCNN
(27.9530 / 0.9098 /

5.2111)

VDSR
(29.2479 / 0.9295 /

5.6248)

DRRN_B1U25
(30.3927 / 0.9463 /

6.8513)

SENSR (ours)
(30.5269 / 0.9474 /

6.9621)

Ground Truth (GT)
(PSNR / SSIM /

IFC )

Bicubic
(29.1358 / 0.7851 /

3.0221)

SRCNN
(30.597 / 0.8245 /

3.7520)

VDSR
(31.2457 / 0.8403 /

3.9048)

DRRN_B1U25
(32.1955 / 0.8616 /

4.3936)

SENSR (ours)
(32.2848 / 0.8624 /

4.4301)

Ground Truth (GT)
(PSNR / SSIM /

IFC )

Bicubic
(27.9988 / 0.8413 /

6.7331)

SRCNN
(28.6357 / 0.8759 /

8.3018)

VDSR
(28.5148 / 0.8744 /

8.1706)

DRRN_B1U25
(27.8437 / 0.8728 /

8.5471)

SENSR (ours)
(28.2490 / 0.8782 /

8.8702)
Figure 4: Performance on 4 image chosen from Set5, BSD100 and Set14 (Scaling Factor:
rows 1,2 in ×3 and 4,5 in ×2).
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5.1 Comparison with VDSR

As illustrated in Fig 1, The simple cascading structure in VDSR can not make fully use of
these feature maps produced by the feature mapping module. In order to mitigate this issue,
we propose Capsule Unit acting as the feature mapping unit and then concatenate the outputs
of all the capsule units when reconstructing the features residual. Based on this theory, we
can see that the performance of SENSR has an overwhelming advantage in all the assessment
indicators compared with VDSR.

5.2 Comparison with DRRN

Tai et al. proposed 2 model with different network depth in [18] and we make a contrast with
these 2 models. It is obvious that the scores of SENSR are superior to the DRRN_B1U9
model with different scaling factors. While compared with DRRN_B1U25, SENSR can also
achieve a comparable performance. Moreover, when referring to the criterion of Information
Fidelity Criterion (Tab 3), SENSR has an absolute advantage over the performance of these
4 benchmark data sets. Further more, the IFCs of SENSR on the Urban100 which contains
100 images exceed those in DRRN_B1U25 by 0.13, 0.06 , 0.061 with the scaling factors of
×2, ×3 and ×4, respectively.

Fig 4 presents the comparison of the construction details in the testing data. The fist two
images are selected form Set5 and BSD100 with scaling factor 3. We can see that SENSR
can fully utilized the contextual information and achieve state-of-the-art performance com-
pared with the previous method. The rest two images are under the scaling factor 2. From
the recovering images in row 4, we find that the proposed method can handle the complex
texture details well while the results of the other methods have varying degrees of distortion.
Considering that the loss of contextual information will grow exponentially with the increase
of scaling factor, how to ensure that the recovering details are not distorted is still a knotty
problem.

5.3 Further Discussion

We also conducted ablation studies on the proposed Squeeze and Excitation Network. During
the experiments, we removed the Squeeze and Excitation Component and Dense Connection
separately to identify the roles they act in the proposed network (see in Tab 4). It is obvious
that after removing the Dense Connection pathes, its performance was almost the same as
that of VDSR. We found that the Dense Connection pathes can significantly improve the
reconstruction performance, and the introduction of Squeeze and Excitation Component can
further enhance PSNR/SSIM/IFC scores.

6 Conclusions
In this paper, we propose a refined and effective network for the Single Image Super Resolu-
tion. In Super Resolution field, the current mainstream approach is to gain greater receptive
field by deepening network depth. However, we find that with the increase of network depth,
the influence of the shallow level features on the image reconstruction layer is weakened. To
resolve this issue, we introduce a Capsule Unit and connect these capsule outputs directly to
the reconstruction layer. There is a tiny but elegant Squeeze and Excitation component inside
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the capsule unit acting as an importance assessment system for the produced feature maps.
By utilizing the features concatenation operation, SENSR establishes a strong association
with the features from different level and can easily make better use of all these feature maps
while recovering the residual outputs. Experimental results show that the proposed mod-
el can achieve the state-of-the-art performance and exhibits robustness to complex texture
images.

Despite the promising performance in the Super Resolution field, there are still a lot of
problems remain to be solved. The current model can not handle the complex the images with
complex textures well as the low resolution image only retains high-frequency information
and lose most of the details. How to use the model to learn extra knowledge to infer details
when restoring the high resolution image is still worth a continuous work.
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