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Abstract

In this work, we present, LieNet, a novel deep learning framework that simultane-
ously detects, segments multiple object instances, and estimates their 6D poses from a
single RGB image without requiring additional post-processing. Our system is accurate
and fast (∼10 fps), which is well suited for real-time applications. In particular, LieNet
detects and segments object instances in the image analogous to modern instance seg-
mentation networks such as Mask R-CNN, but contains a novel additional sub-network
for 6D pose estimation. LieNet estimates the rotation matrix of an object by regressing
a Lie algebra based rotation representation, and estimates the translation vector by pre-
dicting the distance of the object to the camera center. The experiments on two standard
pose benchmarking datasets show that LieNet greatly outperforms other recent CNN
based pose prediction methods when they are used with monocular images and without
post-refinements.

1 Introduction
Detecting objects and computing their 6D poses (3D locations and orientations) are crucial
for many real-world applications including robotics (i.e., object manipulations), augmented
reality, to name a few. In cluttered environments, object instances must be first localised,
then their poses can be estimated. While the 2D object detection task has gained significant
improvement thanks to the power of deep learning, estimating object poses in 3D remains a
challenging problem.

Traditional methods match feature points between 2D images and the corresponding 3D
models to estimate object 6D poses [7, 17, 18, 28]. However, feature matching is often not
robust to poorly textured objects, leading poor pose estimations. Template-matching tech-
niques [9, 12, 22, 26] are more robust, but highly sensitive to illuminations and occlusions.
Pose estimation accuracies can be greatly improved by taking advantage of available depth
information. However, depth sensors also admit several limitations such as power hungry, a
limited working range, and less precise in outdoor environments.
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Inspired by recent works [13, 20, 27], in this work we aim at addressing the above limi-
tations by learning a deep network to predict object poses directly from RGB images. Unlike
previous methods, which either return coarse object poses or only predict 2D projections of
the 3D bounding box vertices, our proposed network directly outputs object poses from the
images without a need of a posterior pose refinement or pose optimisation. As a result, our
system is more elegant and efficient.

In this paper, we propose a novel deep CNN network, called LieNet, that takes an im-
age input, and directly outputs object detections (represented by bounding boxes, labels, and
segmentation masks) together with their 6D poses. Recently, Mask RCNN [8] has shown im-
pressive performances on the instance detection and segmentation tasks. LieNet goes beyond
Mask RCNN [8] by adding a new branch for pose estimation. The pose branch is in parallel
with the object classification, bounding box regression, and mask prediction branches. Fur-
thermore, the layers of LieNet is redesigned and optimised for real-time performances. An
overview of LieNet is shown in Figure 1.

Our pose branch predicts poses by estimating translation and rotation parameters sepa-
rately. The translation of an object can be estimated by simply predicting its distance to the
camera center. Care must be taken when regressing the 3D rotation matrix as not all 3× 3
matrices are valid rotation matrices. Fortunately, the Lie algebra representation of the 3D
rotation matrix group parameterises a rotation with only three scalar values. Such a repre-
sentation is unconstrainted and not over-parameterised, thus well suited for regression with
deep learning. Although using Lie algebra to represent rotation has been widely used in
robotics and vision problems [1, 23, 30], to our best knowledge, this is the first work which
successfully applies the Lie algebra representation for deep learning-based object 6D pose
estimation.

LieNet is very simple and easy to train in an end-to-end fashion, and does not require
an expensive pose refinement post-process. LieNet allows fast inference at about 100ms per
frame on a GPU. Evaluated on two standard pose benchmarking datasets, LieNet surpasses
all the state-of-the-art RGB pose estimation methods that are used without post-refinements.
LieNet is even better or on par with some methods that really depend on post pose refinement
steps to boost their accuracies. The remainder of the paper is organized as follows: Section 2
discusses related work. Sections 3 and 4 present the proposed LieNet and experimental
results, respectively. Section 5 concludes the paper.

2 Related Work
In this section, we review existing 6D object pose estimation methods ranging from tradi-
tional feature matching to modern deep learning based methods.
Traditional approaches. Early object pose estimation methods [7, 17, 18, 25, 28] are based
on matching sparse feature points between 2D images and 3D object models. These methods,
though simple and fast, do not work reliably with poorly textured objects. In such cases, tem-
plates matching methods [9, 10, 12, 22, 26] often work better. For instance, LINEMOD [9]
used stable gradient and normal features for template matching. LINEMOD is, however,
designed to work with RGB-D images, unlike our method which only needs RGB images.
Moreover, template-based approaches are sensitive to the lighting and occlusion.
Feature learning approaches. Recent 6D pose estimation methods have relied on feature
learning for dealing with poorly textured objects [4, 14, 15, 19]. In general, these meth-
ods compose of multiple stages. For example, in [4], a regression forest is trained to predict
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Figure 1: An overview of LieNet. LieNet takes a RGB image as input. A deep CNN back-
bone (i.e., a VGG net) is used to compute image features. A region proposal network (RPN)
(attached to the last convolutional layer of VGG) predicts a number of regions of interest
(RoIs). These RoIs will be passed to four independent branches for bounding box regres-
sion, bounding box classification, mask segmentation, and pose estimation. In the right most
image, different object instances, detected by LieNet, are shown in different colors, and their
predicted 6D poses are visualised using 3D boxes.

dense pixel semantic labels and pixel coordinates (with respect to object coordinate systems).
A set of pose hypotheses is generated by using the predicted pixel labels, coordinates, and
the input depth. Finally, an energy function is defined to evaluate and select the best pose
hypothesis. Note that these works heavily depend on depth information. The work in [5]
also follows a multi-stage approach as [4, 14] but is designed to work with RGB inputs. In
order to deal with the missing depth information, the distribution of object coordinates is
approximated as a mixture model when generating pose hypotheses.
CNN-based approaches. In recent years, deep learning based methods [13, 14, 15, 20, 27,
29] have been proposed to address the limitations of the traditional object pose estimation
methods. Similar to the template-matching based methods, SSD-6D [13], based on a CNN,
casts the object pose estimation as a pose classification problem by discretizing the 3D ro-
tation space into a fixed number of “template” views. However, under-sampling the rotation
space might lead to poor pose predictions, while denser-sampling will significantly increase
computational cost. Furthermore, this method does not directly output translations — instead
inferred from the predicted rotations and the detected 2D bounding boxes. In contrast, our
framework LieNet directly regresses object poses from a single RGB image. LieNet outputs
translation and rotation components independently, where the rotation component is param-
eterized using a Lie algebra representation. Recently, in [29], the authors have proposed a
CNN-based approach to directly regresses 6D object poses, but they use quaternion repre-
sentation for rotations. Unlike the Lie algebra, the 4-d unit quaternion representation is over
parameterized, and normalization of the network output often results in worse performance.

Instead of directy regressing object poses, other recent methods [20, 27] train deep net-
works to predict 2D projections of 3D bounding box vertices, which are then used to infer
object poses using a PnP algorithm. These methods often compose of a cascade of multi-
ple CNNs for object localisation, predicting of box vertices, and pose refinement, are thus
time-consuming for inference. In contrast, LieNet is end-to-end and runs in real-time.

Citation
Citation
{Brachmann, Michel, Krull, Yang, Gumhold, and Rother} 2016

Citation
Citation
{Brachmann, Krull, Michel, Gumhold, Shotton, and Rother} 2014

Citation
Citation
{Krull, Brachmann, Michel, Yang, Gumhold, and Rother} 2015

Citation
Citation
{Kehl, Manhardt, Tombari, Ilic, and Navab} 2017

Citation
Citation
{Krull, Brachmann, Michel, Yang, Gumhold, and Rother} 2015

Citation
Citation
{Krull, Brachmann, Nowozin, Michel, Shotton, and Rother} 2017

Citation
Citation
{Rad and Lepetit} 2017

Citation
Citation
{Tekin, Sinha, and Fua} 2018

Citation
Citation
{Xiang, Schmidt, Narayanan, and Fox} Nov, 2017

Citation
Citation
{Kehl, Manhardt, Tombari, Ilic, and Navab} 2017

Citation
Citation
{Xiang, Schmidt, Narayanan, and Fox} Nov, 2017

Citation
Citation
{Rad and Lepetit} 2017

Citation
Citation
{Tekin, Sinha, and Fua} 2018



4 DO, PHAM, CAI, REID: REAL-TIME MONOCULAR OBJECT INSTANCE 6D POSE ESTIMATION

3 LieNet
Our goal is to design an efficient end-to-end network that is capable of estimating 6D poses
of multiple object instances in a RGB image. In order to estimate their poses, objects must
be correctly detected (and segmented) from the image. Inspired by the impressive results of
Mask R-CNN [8] for the object instance segmentation task, LieNet extends Mask R-CNN to
simultaneously detect, segment, and estimate 6D poses of object instances presenting in the
image. Besides the object detection and segmentation branches, LieNet contains a novel pose
estimation branch composing of a few fully connected layers. For each detection, the pose
branch, outputs four (real) values, where the first three elements represent the Lie algebra of
the rotation matrix, and the last element represents the z component of the translation vector.
Given the predicted z and the predicted bounding box from the box regression branch, we
use projective geometry to recover the full translation vector.

3.1 Network Architecture

Figure 1 presents the schematic overview of LieNet. We differentiate two parts of the net-
work: a backbone and head branches. The backbone is mainly used for extracting image
features and shared between head branches. There are four head branches corresponding
to the four different tasks including bounding box regression, bounding box classification,
mask segmentation, and the 6D pose estimation. To ensure high acuracy and low latency, the
backbone is adopted from the VGG network [24], which is followed by a region proposal net-
work (RPN) similar to Faster RCNN [21]. For each region of interest (RoI) returned by RPN,
a fixed-size 7× 7 feature map is pooled from the conv5_3 feature map using the RoIAlign
layer [8], which is then passed to head branches. Our bounding box regression, classification
head branches follow exactly as Mask R-CNN [8], while our segmentation head branch is
slightly different. We use four 3× 3 consecutive convolutional layers (denoted as ‘×4’ in
Figure 1). A ReLu layer is inserted after each convolutional layer. A deconvolutional layer
is used to upsample the feature map to 28×28 which becomes the segmentation prediction.

Our proposed pose branch is a small multilayer perceptron (MPL) composing of 4 fully
connected layers whose sizes (number of nodes) are 4096, 4096, 384, and 4 respectively,
where the last 4 nodes represent 6D poses (see Section 3.2). A ReLU layer is inserted after
each fully connected layer, except the last one. We found that the above LieNet’s architecture
balances well the trade-off between accuracy and efficiency.

3.2 Pose Regressor

One of our main contributions is a novel pose branch that regresses 6D object poses directly
from monocular images. Object poses are often decomposed into translation and rotation
components respectively. Similarly, our pose branch predicts object translations and rota-
tions separately.

Translation Regression Instead of regressing a full translation vector t = [tx, ty, tz], our
network is trained to regress the tz component only. The reason is that a 3D object model,
when projected into a 2D image using two different translation vectors with the same tz, may
produce two object images with similar appearances and scales (at different positions in the
image). This causes difficulty for the network to predict the x and y components by using
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only appearance information as input. Given a detection and its depth tz component, its full
translation vector can be recovered easily as follow:

tx =
(u− cx)tz

fx
, ty =

(v− cx)tz
fy

(1)

where[u,v] is the bounding box center, and the matrix [ fx,0,cx;0, fy,cy;0,0,1] is the camera
intrinsic calibration matrix. The formulation (1) assumes that the object center in 3D will be
projected to the object bounding box center in the 2D image.

Rotation Regression While regressing translations is quite straightforward, regressing ro-
tations is more tricky. The Euler angles can describe any rotation using three angles, but wrap
around at 2π radians, i.e., multiple values representing the same angle. This causes difficulty
in learning a uni-modal scalar regression task. Furthermore, the Euler angles-based repre-
sentation suffers from the problem of gimbal lock [3]. A rotation can also be presented by a
3×3 orthogonal matrix, which is unfortunately over-parametrised, and enforcing the orthog-
onality constraint during training is non-trivial. Recent works (e.g., [29]) represent rotations
using unit length 4-dimensional quaternions. Such a representation is over-parameterised
and the unit length constraint often results in worse performance.

In this work, we use the Lie algebra so(3) associated with the Lie group SO(3) (3×3
rotation matrices are members of SO(3)) as our rotation representation. The Lie algebra
so(3) is known as the tangent space at the identity element of the Lie group SO(3). An
arbitrary element of so(3) (parameterized by a vector in R3) admits a skew-symmetric matrix
representation. Technically, any 3-dimensional vector can be easily mapped to a rotation
matrix using the closed-form Rodrigues logarithm mapping formulation [2]. Effectively,
our pose network needs to regress only three scalar numbers for a rotation, without any
constraints. Such a representation is well suited for regression with deep learning. During
training, we map ground-truth rotation matrices to their associated elements in so(3), which
are then used as regression targets for learning.

3.3 Multi-task loss function

In order to train the network, we define a multi-task loss to jointly optimise bounding box
classification, bounding box regression, mask segmentation, and 6D object pose estimation.
Formally, the loss function is defined as follows

L = α1Lcls +α2Lbox +α3Lmask +α4Lpose (2)

where α1,α2,α3,α4 are weighting parameters controlling the importance of each loss. As
in Mask RCNN [8], the classification loss Lcls, the bounding box regression loss Lbox, and
the segmentation loss Lmask are softmax loss, smooth L1 loss, and binary cross entropy loss,
respectively. Details of these losses can be found in [8]. The pose regression loss Lpose is
defined as follows

Lpose = ‖r− r̂‖p +β ‖tz− t̂z‖p (3)

where r and r̂ are two 3-dimensional vectors representing regressed and ground-truth rota-
tions; tz and t̂z are scalars representing regressed and ground-truth translations (z component
only); p is a distance norm; β balances rotation and translation regression errors.
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3.4 Training and inference

Training We implement LieNet using Caffe deep learning library [11]. The input to our
network is a RGB image with the size 480× 640. The RPN outputs RoIs at different sizes
and shapes. We use 5 scales and 3 aspect ratios, resulting 15 anchors in the RPN. The 5
scales are 16×16, 32×32, 64×64, 128×128 and 256×256; the 3 aspect ratios are 2 : 1,
1 : 1, 1 : 2. This design allows the network to detect small objects.

The α1,α2,α3, and α4 in (2) are empirically set to 1, 1, 2, 2, respectively. β in (3) is
empirically set to 1.5. An important choice for the pose loss (3) is the regression norm p.
Typically, deep learning models use p = 1 or p = 2. We found that p = 1 give better results
than p = 2 for our pose estimation problem.

We train the network in an end-to-end manner using stochastic gradient descent with 0.9
momentum and 0.0005 weight decay. The network is trained on a Titan X GPU for 350k
iterations. Each mini batch has 1 image. The learning rate is set to 0.001 for the first 150k
iterations and then decreased by 10 for the remaining iterations. The top 2000 RoIs from
RPN (with a ratio of 1:3 of positive to negative) are subsequently used for computing the
multi-task loss. A RoI is considered positive if it has an intersection over union (IoU) with a
groundtruth box of at least 0.5 and negative otherwise. The losses Lmask and Lpose are defined
for only positive RoIs.

Inference At the test phase, we run a forward pass on the input image. The top 1000 RoIs
produced by the RPN are selected and fed into the box regression and classification branches,
followed by non-maximum suppression [6]. Among the remained bounding boxes, we select
bounding boxes which have classification scores higher than a certain threshold (i.e., 0.9) as
the final detections. The segmentation branch and the pose branch are then applied to these
detected boxes to output object segmentation masks and their 6D poses.

4 Experiments

We evaluate LieNet on two widely used datasets including the single object pose dataset
LINEMOD provided by Hinterstoisser et al. [9] and the multiple object instance pose dataset
provided by Tejani et al. [26]. We compare LieNet against the state-of-the-art RGB based
6D object pose estimation methods such as BB8 [20], SSD-6D [13], [5], and [27].

Metric: To evaluate the pose estimation accuracy, we use the standard metrics used
in [5, 20, 27]. The 2D−projection metric measures pose errors in 2D, in which we project
the 3D object model into the image using the groundtruth pose and the estimated pose. The
estimated pose is correct if the IoU between two project boxes is higher than 0.5. 5cm 5◦ and
ADD metrics measure pose errors directly in 3D. When 5cm 5◦ metric is used, an estimated
pose is correct if it is within 5cm translational error and 5◦ angular error of the ground truth
pose. When ADD metric is used, an estimated pose is correct if the average distance between
transformed model point clouds by the groundtruth pose and the estimated pose is smaller
than 10% of the object’s diameter. We also evaluate detection and segmentation results. A
detection / segmentation is true-positive if its IoU with the groundtruth box / segmentation
mask is higher than a threshold.
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Ape Bvise Cam Can Cat Driller Duck Box Glue Holep Iron Lamp Phone Average
LieNet Det. F0.5

1 99.8 100 99.7 100 99.5 100 99.8 99.5 99.2 99.0 100 99.8 100 99.7
LieNet Seg. F0.5

1 99.5 99.8 99.7 100 99.1 100 99.4 99.5 99.0 98.6 99.2 99.4 99.7 99.4
LieNet Det. F0.9

1 85.4 91.7 93.3 93.6 89.3 87.5 86.3 94.2 81.1 93.2 92.5 91.3 90.8 90.0
LieNet Seg. F0.9

1 80.6 57.0 91.4 62.5 52.1 74.6 81.2 91.9 73.3 84.6 90.3 85.0 84.6 77.6
2D-projection metric

LieNet 99.8 100 99.7 100 99.2 100 99.8 99.0 97.1 98.0 99.7 99.8 99.1 99.3
Tekin et al. [27] 99.8 99.9 100 99.8 99.9 100 100 99.9 99.8 99.9 100 100 100 99.9
Brachmann [5] (*) 98.2 97.9 96.9 97.9 98.0 98.6 97.4 98.4 96.6 95.2 99.2 97.1 96.0 97.5
SSD-6D [13] (*) 99.0 100 99.0 100 99.0 99.0 98.0 99.0 98.0 99.0 99.0 99.0 100 99.1

5cm 5◦ metric
LieNet 57.8 72.9 75.6 70.1 70.3 72.9 67.1 68.4 64.6 70.4 60.7 70.9 69.7 68.5
Brachmann [5] (*) 34.4 40.6 30.5 48.4 34.6 54.5 22.0 57.1 23.6 47.3 58.7 49.3 26.8 40.6
BB8 [20] (*) 80.2 81.5 60.0 76.8 79.9 69.6 53.2 81.3 54.0 73.1 61.1 67.5 58.6 69.0

ADD metric
LieNet 38.8 71.2 52.5 86.1 66.2 82.3 32.5 79.4 63.7 56.4 65.1 89.4 65.0 65.2
Brachmann [5] - - - - - - - - - - - - - 32.2
BB8 [20] 27.9 62.0 40.1 48.1 45.2 58.6 32.8 40.0 27.0 42.4 67.0 39.9 35.2 43.6
SSD-6D [13] - - - - - - - - - - - - - 2.42
Tekin et al. [27] 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 75.0 71.1 47.7 55.9
Brachmann [5] (*) 33.2 64.8 38.4 62.9 42.7 61.9 30.2 49.9 31.2 52.8 80.0 67.0 38.1 50.2
BB8 [20] (*) 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7
SSD-6D [13] (*) - - - - - - - - - - - - - 76.3

Table 1: Object detection and pose estimation accuracy on the LINEMOD dataset [9] for
single object. Fa

1 is F1 score at IoU a. (*) indicates methods used with post-refinements. The
result of SSD-6D [13] without post-refinements under ADD metric is cited from [27].

4.1 Single object pose estimation

In [9], the authors published a RGBD dataset named LINEMOD, which has become a stan-
dard benchmark for 6D pose estimation. The dataset contains 15 sequences with poorly
textured objects in cluttered scenes. Following [5, 20], we only use RGB images for training
and testing. The images in each sequence contain multiple objects, however, only one object
is annotated with the ground-truth class label, bounding box, and 6D pose. The dataset also
provides camera intrinsic matrix. Given 3D object models with ground-truth 6D poses and
the camera matrix, we are able to compute the ground-truth object segmentation masks.

We randomly select 30% of the images from each sequence for training and validation.
The remaining images serve as the test set. A complication when using this dataset for
training arises because not all objects in each image are annotated, i.e., only one object in-
stance is annotated per sequence, even though multiple object instances are present. In other
words, one object, annotated as foreground in one sequence, is annotated as background in
other sequences. Such annotation issue may make the network training difficult to converge
properly. To overcome this problem, for each object sequence, we use the RefineNet [16],
a state-of-the-art semantic segmentation algorithm, to train a semantic segmentation model.
The trained model is applied on all training images in other sequences. The predicted masks
in other sequences are then filtered out, so that the presences of objects without annotated
information does not hinder the training.

Results: As done in previous works [5, 13, 20], we evaluate LieNet on 13 object se-
quences for which 3D models are available. We first study the object detection and seg-
mentation performances of LieNet. Top rows in the Table 1 report the results. At an IoU
0.5, LieNet achieves impressive accuracies with F1 scores greater than 99% for all object
categories. Even at an IoU 0.9, although the accuracies decrease, LieNet still performs quite
well with average detection F1 score 90%.

Next we evaluate pose estimation performance of LieNet, which is the main focus of this
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Figure 2: Some qualitative results of LieNet on the LINEMOD dataset [9]. Left: original
images; Middle: predicted 2D boxes, classes, and segmentations; Right: green and red boxes
are the groundtruth poses and predicted poses, respectively.

work. Table 1 reports the comparative pose estimation accuracies between LieNet and the
state-of-the-art works including Brachmann et al. [5], BB8 [20], SSD-6D [13] and Tekin et
al. [27]. All the methods only use RGB images as inputs to predict the poses. Note that
except LieNet and [27], other methods comprise of multiple-stages including a 2D object
detection, an initial pose estimation, and a pose refinement.

It can be seen that LieNet significantly outperforms all the considered competitors when
they are used without a post-refinement under all evaluation metrics. The improvements
are more significant when the errors are computed using the estimated poses directly (i.e.,
ADD and 5cm 5◦), and less significant when evaluated in 2D using IoU. Even when the
competitor methods such as BB8 and SSD-6D further refine their estimated poses using a
post-refinement step, LieNet is still very competitive. Note that the post-refinement cost
is often expensive, for instance the method in [5] takes about 100ms per object. Figure 2
shows some qualitative results of LieNet for single object pose estimation on the LINEMOD
dataset.

4.2 Multiple object instance pose estimation

We use the dataset published by Tejani et al. [26], which consists of six object sequences in
which images in each sequence contain multiple instances of the same object class with dif-
ferent levels of occlusion. This dataset is considered more challenging than the LINEMOD
dataset. The experimental settings are the same of the previous one (see Section 4.1).

Results: The pose estimation accuracies are reported in Table 2. We note that ex-
cept SSD-6D [13], none of the previous RGB based pose object estimation works report
their results using this data. Also SSD-6D [13] only reports their pose accuracies using the
2D−projection metric. No results with ADD metric is reported. It can be seen from the Ta-
ble 2 that LieNet performs better than SSD-6D even when SSD-6D uses a post-refinement.
Furthermore, under more tricky 5cm 5◦ and ADD metrics, LieNet still achieves impressive
results with mean accuracies 64.5% and 62.0%, respectively.

Nonetheless, we found that LieNet is not very robust to rotationally symmetric objects
such as Coffee mug. That is because such rotationally symmetric object looks the same
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after any rotations around Yaw axis. The network is not able to handle such confusions by
using only appearance information. Figure 3 shows some qualitative results, where LieNet
successfully detects and segments multiple object instances, as well as estimates their 6D
poses. The last row of Figure 3 demonstrates the Coffee mug case where the object rotations
are wrongly estimated. Nevertheless, the estimated poses are still useful, e.g., for picking
task in robotic applications.

Metric Camera Coffee Joystick Juice Milk Shampoo Average
LieNet 2D−projection 99.2 100 99.6 98.4 99.5 99.1 99.3
SSD-6D [13] 2D−projection - - - - - - 98.8
LieNet 5cm 5◦ 76.5 18.7 60.2 85.6 73.5 72.4 64.5
LieNet ADD 80.4 35.4 27.5 81.2 71.6 75.8 62.0

Table 2: Quantitative results on the dataset of Tejani et al. [26] for multiple object instances.

Figure 3: Some qualitative results of LieNet on the multiple object instance dataset of Tejani
et al. [26]. Left: original images; Middle: predicted 2D boxes, classes, and segmentations;
Right: green and red boxes are the groundtruth poses and predicted poses respectively.

Timing: When runing on a Titan X GPU, LieNet takes approximately 100ms to process
one image, which is several times faster than BB8 [20] (300ms) and Brachman et al. [5]
(450ms), and comparable with SSD-6D [13]. However, these methods report their running
times using the LINEMODE dataset [9], which contains only one object instance in each
image. Due to the post-refinement, their computational cost will increase rapidly when tested
on images with multiple object instances such as the Tejani’s dataset [26]. In contrast, the
running time of LieNet stays almost the same regardless of the number of object instances.
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5 Conclusion
In this paper, we propose LieNet, a deep learning approach for jointly detecting, segmenting,
and importantly recovering 6D poses of object instances from a single RGB image. LieNet
is end-to-end trainable and directly outputs 6D poses without any post-refinements. LieNet’s
novel pose head branch uses the Lie algebra based rotation representation, which is well
suited for deep regression. LieNet outperforms the state-of-the-art RGB-based 6D object
pose estimation methods when they are all used without post-refinements. Furthermore,
LieNet also allows a fast inference which is around 10 fps. An interesting future work is to
improve the network for handling with rotationally symmetric objects.
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