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Abstract

We propose an end-to-end multi-person pose estimation model that learns to predict
keypoint locations for each person in the scene, regardless of the complexity of their
social interactions. While recent multi-person pose estimation algorithms achieve high
performance on scenes where people do not overlap, these algorithms produce unde-
sired outcomes, e.g. merging two people or swapping similar parts of different people,
when the people in the scene are heavily occluded. To attack this issue, we have curated
a subset of COCO [20] containing such scenes and call it COCO-crowd. We formu-
late multi-person pose estimation as a sequential prediction problem that first generates
heatmaps of the potential part locations and then assembles the parts into separate in-
stances, each representing a single person, using convolutional LSTMs. Despite using a
small-scale dataset (relative to all of COCO), we achieved comparable performance to
state-of-the-art methods trained on the full COCO dataset. We also evaluate our method
on the Immediacy dataset [7], which consists of images with diverse social interactions,
e.g. standing shoulder to shoulder, or hugging, and achieve state-of-the-art results.

1 Introduction
Pose estimation, localizing joint locations in an input image, is an important building block
for high level computer vision tasks such as human action recognition [34, 36], human re-
identification [40] and proxemics inference [7, 39]. Multi-person pose estimation focuses
on predicting a distinct keypoint skeleton for each person in an input image. Recent multi-
person pose estimation methods produce promising results with deep convolutional neural
networks and large-scale datasets [20]. These methods are categorized into 1) top-down
approaches [6, 10, 15, 25] that independently run single-person pose estimation algorithms
subsequent to human detection results, and 2) bottom-up approaches [3, 17, 23, 27] that
group the estimated joint locations into instances representing individual people.

Although current pose algorithms work well for scenes with minimal occlusion, it is
still a challenging problem to cluster the correct parts in cluttered scenes. In scenes with
human interaction, multi-person pose estimation becomes a challenging task, as body parts
are often partially occluded and/or intertwined. These scenarios have been identified as a
challenge by the pose-estimation community, and methods have been suggested to improve
performance. For instance, the winning entry of 2017 COCO keypoint challenge [6] (a top-
down approach) defines “hard” keypoints and performs a refinement process on the initial
prediction in difficult cases. Bottom-up approaches have suggested methods that attempt
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(a) Input (b) Part heatmaps (c) Corresponding ordered outputs of the model

Figure 1: An Overview of our system. For an input image (a), part localizer (Section 4.1)
produces keypoint heatmaps without identity (b). Person decoding module (Section 4.2) se-
quentially produces instance keypoint heatmaps with distinct person identities. The network
ends the prediction with generating the all-zero heatmap which represents no more instances
on the scene (c).

to learn additional cues for the succeeding inference step, i.e., pairwise terms [17], identity
embedding [23], or part affinity field [3]. However, these methods ignore the possibility that
multiple people can have the same part located at the same image coordinate, which is more
likely in highly crowded scenes.

Ronchi and Perona [30] provided in-depth analysis of the performance drops on pose
estimation algorithms; they concluded that state of the art methods vastly underperform in
crowd scenes, because parts are mostly occluded due to overlapped instances. In addition,
since crowd scenarios are rarely found in COCO, which is the most commonly used pose
estimation dataset, the community has suffered from scarcity of appropriate training data for
developing accurate multi-person pose estimation algorithms.

In this paper, we aim to develop a multi-person pose estimation algorithm that is able to
decouple human poses despite considerable overlaps between interacting instances. COCO
dataset has non-overlapping instance bias, which we discuss in section 3. To overcome this
bias, we analyze the COCO keypoint dataset and extract all images which show overlapped
instances. Also, we revisit the Immediacy dataset [7] which contains images with significant
overlap between people. We propose a single-pipeline framework that is trainable in a fully
end-to-end fashion. Unlike [23], our method directly renders the final instance heatmaps so
that an additional inference step is unnecessary. We let the network have the global encoding
of the entire scene and sequentially recognize individual instances to improve the overall
pose estimation performance in crowd scenarios. Storing the memory of the entire scene
and the histories of the instances, we empower the network to handle occluded parts in the
overlapped areas. Figure 1 illustrates an overview of our system.

We summarize the main contributions of this paper as follows:

• We tackle a challenging problem in multi-person pose estimation that deals with the
severe overlaps arisen from human interactions; and

• We achieve comparable performance with the state-of-the-art methods despite training
with significantly less data.
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(a) COCO (b) COCO-Crowd

Figure 2: Crowd Extraction Procedure. The left image (a) shows an original COCO im-
age and annotations, and the two images on the right (b) show the corresponding images
in COCO-crowd. We define the notion of “overlap” when the intersection of union (IoU)
score of two bounding boxes is greater than 0.1 ([1,2], [3,4], and [4,5] pairs on left image).
All interlinked boxes ([1,2] and [3,4,5]) are merged into proposals for the crowd region.
Meanwhile, we discard non-crowd regions, box without an overlap.

2 Related work
Single-Person Pose Estimation. Earlier approaches in pose estimation [5, 18, 26, 38] em-
ploy graphical models, where each node represents a keypoint and each edge encodes limb
information. Deformable Part Models (DPM) [11] decompose objects into parts and use
spatial relations among the parts to build computationally tractable inference steps. With the
advent of deep convolutional neural networks (DCNN), researchers began to apply DCNNs
for keypoint feature extraction and limb representation. Chen et al. [5] define limb config-
urations using pairwise clusters of adjacent keypoints, and employ a DCNN to extract the
unary and pairwise scores for each keypoint. A single unified model [33] was proposed to
combine a DCNN part detector with a spatial model enforcing implicit constraints on the
body parts.

Bulat et al. [2] proposed a cascaded CNN architecture that performs regression on the
first predicted part heatmap. Several approaches [4, 22, 35] exploit iterative refinements and
show significant improvement. In particular, the stacked hourglass network [22] consists
of repeating multi-scale modules and performs sequential refinements to capture complex
spatial relationships. Chu et al. [8] exploited attention mechanisms at multiple resolutions
and applied Conditional Random Fields (CRF) to model the correlations in neighboring
regions. Yang et al. [37] proposed a pyramid residual module on skip connections of the
hourglass block to learn multi-scale features.
Multi-person Pose Estimation. Current multi-person pose estimation methods can be clas-
sified into two main categories: top-down approaches [6, 10, 15, 25] and bottom-up ap-
proaches [3, 17, 23]. Top-down approaches first detect candidate human bounding boxes,
then run a single-person pose estimation algorithm on each box. Papandreou et al. [25]
followed this two-step pipeline with Faster-RCNN [28] as a human detector and fully con-
volutional ResNet [14] as a pose estimator. Fang et al. [10] proposed a symmetric spatial
transformer network to produce a high quality single-person region. Mask-RCNN [15] pro-
posed a framework for both instance segmentation and pose estimation by predicting an
object mask and keypoint locations in parallel with the existing branch for bounding box
recognition.

On the other hand, bottom-up approaches first predict part locations, then assemble the
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(a) (b) (c)

Figure 3: Dataset configuration. After running our crowd extraction system on COCO, we
observe that single-instances are dominant on the dataset (a). To overcome this dataset bias,
our dataset (named COCO-crowd) consists of images with two or more instances, where its
distribution can be seen in (b). To show the complexity of the our curated dataset, we count
the number of overlaps arisen from each instance, and provide the distribution in (c).

parts into distinct people. Pishchulin et al. [27] proposed a partitioning and labeling formula-
tion based on the CNN part detectors and Integer Linear Programming (ILP). DeeperCut [17]
extended this work by incorporating image-conditioned pairwise probabilities that consider
body part configurations into the deep network. Cao et al. [3] exploited a two-stage pipeline,
which first generated part heatmaps and part affinity fields along the limbs, and then assigned
part identity through a bipartite graph matching algorithm. Newell et al. [23] proposed an
end-to-end system which directly output part identity tags along with the part locations.
Recurrent Model with Spatial Sequence Prediction. Our work formulates multi-person
pose estimation as a sequential problem using spatial variants of recurrent neural networks.
Gkioxari et al. [13] adopted a sequential model for single-person pose estimation by pre-
dicting each joint location dependent on the previous output, allowing the network to learn
complex body structure. Shi et al. [31] proposed the Convolutional LSTM (ConvLSTM),
a convolutional variant of the standard LSTM [16], to capture spatiotemporal correlation
within precipitation forecasting. Romera-Paredes and Torr [29] proposed a class-specific
instance segmentation and counting method by sequentially segmenting one instance of the
scene at a time using ConvLSTM.

3 COCO-Crowd dataset

Our work focuses on parsing the poses of people in crowd scenes. With this perspective,
we analyze the COCO dataset. Previous work on COCO keypoint evaluation [30] defines
“overlap” between instances if a pairwise instance shows an intersection over union (IoU)
score greater than 0.1. We borrow this definition to extract regions of images that exhibit
overlap to use in our dataset. In order to discover these regions, we iterate over all possible
pairs of bounding boxes containing a person in each image. If a pair of boxes have IoU≥0.1,
then we tag that pair of boxes as a crowd. After all crowd pairs are obtained, we merge all
pairs that share at least one common instance into sets. Figure 2 describes this process in
detail. We also summarize the resulting data distribution in Figure 3. Our dataset, named
as COCO-crowd, has 14,003 training images containing 35,148 total instances. Test and
validation images are also produced by following this procedure on 2014 COCO validation
data, which results in 3,336 validation and 3,336 test images.
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Figure 4: Network architecture. The network consists of two parts: part localizer (each
blue box representing ResNet-50 convolution block) and person decoder (green boxes cor-
responding to ConvLSTM block at each resolution). The input image is encoded with part
localizer and first predicts part heatmaps. The person decoder decouples this encoded feature
into distinct instance heatmaps.

4 Method
Figure 4 provides an overview of our system composed of two parts: part localizer and
person decoder. The proposed framework is a single pipeline that encodes the input image to
predict K keypoint heatmaps using a fully convolutional network, and sequentially produces
instance heatmaps using a convolutional recurrent neural network. We use ConvLSTM in
order to decode the individual instances. We describe the details of the part prediction in
Section 4.1 and explain how we apply ConvLSTM to our framework in Section 4.2.

4.1 Part localizer

We use ResNet-50 [14] as our building block for keypoint detection. Similar to [6, 21], we
utilize feature pyramid structure to preserve both semantic information and the localization
quality. An input image I is encoded with ResNet conv blocks, and transformed into feature
maps in different scales as C1,C2,C3, and C4, respectively (see Figure 4). We apply 1×1
kernel convolution to match the dimension of the all feature maps to 64. Then, we resize and
sum these feature maps to produce the final part heatmap. We apply a sigmoid to the summed
feature maps. The output of the part localization module has the form of K heatmaps, each
representing a single part location, with an output stride of 4. We denote the final output
heatmap as fk(xi), where k represents the k-th keypoint (out of K) and xi ∈ {1, . . . ,N} repre-
sents the index of 2D pixel location.

4.2 Person decoder

We model multi-person pose estimation as a sequential prediction problem with variable
length of output. In our problem setting, the model should keep track of the number of
people, and individuate an instance from a set of human candidates. Since pose estimation
requires high localization quality, we adopt a spatial variant on LSTM, ConvLSTM. To pre-
serve multi-resolution information, we apply ConvLSTM units at every scale encoded from
the part localization step.

The architecture of the person decoding module is displayed in Figure 5. The person
decoder consists of a chain of ConvLSTMs at every scale. All of the ConvLSTM kernels
are 3×3. The features C1,C2,C3, and C4 generated from the part localization module are
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Figure 5: Person Decoding Module. The green block represents two ConvLSTM layers at
each resolution. The recurrent block on each scale is composed of two stacked ConvLSTMs.

fed through all the subsequent recurrent stages to prevent the network from forgetting key-
point information. In particular, we halve the dimensionality of part features by applying one
convolutional block of ResNet, which we explain the details in the supplementary material.
These features are concatenated to the input for each ConvLSTM block. We employ two
stacked ConvLSTM layers for each scale block, so that the output from the first ConvLSTM
acts as an input to the second unit. After passing the ConvLSTM block, features are up-
sampled by 2, and the final output of person decoder has an output stride of 4, producing K
keypoint heatmaps of the target person. We denote the output as fkp(xi) where p∈ {1, . . . ,P}
represents p-th person over the total number of people P in an input image. In the same man-
ner as the part localization step, we apply a sigmoid on top of the outputs. When the network
finishes prediction, it is trained to output an all-zero heatmap. We provide the details of the
person decoder in the supplementary material.

4.3 Loss function
In our experimental setting, the network first predicts candidate part locations and finally
produces a heatmap for each instance. Thus, the loss function consists of two parts.
Part localization. Let xi be a 2D location on the image, where i ∈ {1, . . . ,N} indexing the
pixel locations. For each part type k ∈ {1, . . . ,K}, we denote hk(xi) as the k-th keypoint
heatmap at location xi. The ground truth heatmap hk(xi) = 1, when ‖xi− y‖ ≤ R for y ∈
{yk0,yk1, . . . ,ykP}, each ykp representing part-k location of the p-th person over all P people,
and zero otherwise. In our experiments, we set R = 3 pixels. This part heatmap encodes all
part locations without identity. We apply pixelwise binary cross entropy to the output of the
part localization module with hk(xi). The part localization loss is as follows:

Lpart =
1

NK

K

∑
k=1

N

∑
i=1
LBCE( fk(xi),hk(xi)), (1)

where LBCE denotes pixelwise binary cross entropy.
Person decoder. Let hkp(xi) be the k-th keypoint heatmap of p-th person at location xi. The
keypoint heatmap hkp(xi) = 1 when ‖xi− ykp‖ ≤ R with ykp ground truth location of part-k
of p-th person, and zero otherwise. The network produces set of keypoint heatmaps at each
step, encoding part locations of each person. In order to make the network decide the order
in which to predict each instance, we use the Hungarian algorithm [19], as in [29, 32]. Given
a cost matrix, the Hungarian algorithm finds an optimal matching between the output and
the target heatmaps and re-orders the target heatmaps in a matched order. We construct our
cost matrix by computing binary cross entropy for each prediction-target pair. Given the
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Method AP AP.5 AP.75 AP M AP L AR AR.5 AR.75 AR M AR L
Mask-RCNN [15] 0.364 0.598 0.362 0.371 0.398 0.497 0.706 0.519 0.505 0.528
CMU-pose [3] 0.365 0.599 0.369 0.367 0.378 0.418 0.628 0.429 0.422 0.438
AE [23] 0.438 0.664 0.456 0.440 0.451 0.532 0.740 0.560 0.538 0.554
AE* 0.396 0.663 0.402 0.409 0.420 0.486 0.728 0.507 0.493 0.515
Ours 0.433 0.709 0.447 0.440 0.454 0.520 0.761 0.549 0.526 0.545

Table 1: Results (AP) on COCO-crowd. Mask-RCNN is tested using Detectron [12] and all
other methods are tested using the code and pretrained models the authors provide. Testing
is held on single scale on all bottom-up methods. To see the impact of the amount of data,
we also trained associative-embedding [23] on COCO-crowd (AE*).

re-ordered heatmaps from the Hungarian algorithm, we again apply binary cross entropy in
order to compute our loss. We additionally apply loss for the following two steps, as in [29],
with zero heatmaps, so that the network learns the stop criterion.

Lperson =
1

NK(P+2)

P+2

∑
p=1

K

∑
k=1

N

∑
i=1
LBCE(H( fkp(xi),hkp(xi))), (2)

where H(·) denotes the Hungarian algorithm, which returns the re-ordered target and input.
The final loss is as follows:

L= λ0 Lpart +Lperson, (3)

where λ0 = 0.5 is a hyperparameter which controls the relative importance of two terms.

5 Experimental results

5.1 Experimental setup

Training Setup. We have implemented our system in PyTorch. We optimize eq. (3) with
Adam and train for 130 epochs. For COCO-crowd, the learning rate is set to 1e-3 and is
decayed by 0.1 at epoch 60 and 90, respectively. With the same initial setting, the learning
rate is dropped by 0.1 at 40 and 60 for the Immediacy dataset. We use a batch size of 32
on 8 GPUs for COCO-crowd, whereas a batch size of 12 on a single GPU for Immediacy.
For the part encoding backbone (i.e., ResNet), we employ the initial weights pretrained on
ImageNet [9]. The input size is set to 512×512. We augment the data with random flips,
rotations (±40◦), and scalings on the fly. When training the model on COCO-crowd, we
use the corresponding original COCO images for the scale augmentation to contain various
backgrounds. The cropped box is enlarged when the scaling factor is greater than 1.0.

We follow the curriculum learning scheme used in [1, 29] by gradually increasing num-
ber of people after the loss converges. Therefore, the network learns to predict at most M
instances in iteration M, even when more instances are present. In our experiments, we train
the network to predict at most two people until convergence, then increase the maximum
number of people by 1 every two epochs. For COCO-crowd, the loss is masked to avoid
penalizing instances without annotation.
Testing Setup. Testing is performed on a single scale with both the original and a flipped
version of each image. If the maximum value of the heatmap is less than the threshold (0.05),
the network produces all-zero heatmap to stop the prediction.
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Method 2 3 4 5 ≥ 6
AE [23] 0.503 0.435 0.367 0.405 0.419
Ours 0.512 0.439 0.393 0.386 0.364

Table 2: AP score by number of people

Jittering (px) ± 0 ± 5 ± 10 ± 15
AP 0.433 0.426 0.412 0.392

Table 3: AP score by jittering bounding box
Figure 6: Counting confusion matrix

5.2 Evaluation

5.2.1 COCO-crowd

COCO keypoint dataset has 17 keypoint labels of 5 facial landmarks (nose, left/right ear and
eye) and 12 body parts (left/right shoulder, elbow, wrist, hip, knee and ankle). We report
the performance with three different algorithms using the official evaluation metric, average
precision (AP) and average recall (AR) in Table 1. Two bottom-up methods [3, 23] are
tested in a single scale using the code and pretrained models that the authors provide. Mask-
RCNN [15] is tested using Detectron [12] with the ResNeXt-101 encoding backbone, which
showed the highest mAP score among all detectron models.

With a small amount of data, we outperform two different methods and achieve compa-
rable performance to the state-of-the-art method trained on the full COCO dataset. To see
the impact of the amount of data, we also train AE [23] from scratch, using COCO-crowd
(AE*). When compared against state-of-the-art methods trained on the same amount of data,
our method shows promising results. We also perform an additional experiment to gauge the
importance of part localization module. When training without the part localization loss, we
observed a huge performance drop, AP score of 0.271 compared to the original score 0.433.
Counting. To see if our method successfully learns when to stop, we visualize the confusion
matrix for the number of predictions and the number of ground truth instances in Figure 6.
We observe that most of the elements are in diagonal, which implies our method can approx-
imately count the number of people in an image.
Performances over the number of people. We evaluate the score by varying number of
people in an image and compare against the state-of-the-art method in Table 2. Our method
performs better on predicting relatively small number of people. Due to the recurrent archi-
tecture, we observed failure cases as the sequence length increases.
Bounding box jittering test. COCO-crowd dataset is composed of the cropped regions
for the crowd, thus it requires crowd detections in advance. To show the feasibility of our
framework as a full system, we show how our method is robust at bounding box jittering in
Table 3. While some part locations can be eliminated from the bounding box as jittering, our
method faithfully estimates pose of people in the box.

5.2.2 Immediacy Dataset

The Immediacy dataset was originally designed to analyze visual interaction between people.
In this dataset people are mostly present in pairs, either holding one another from behind,
hugging, holding hands, giving each other a high five or putting arms over each other’s
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Figure 7: Qualitative results. Results containing severe occlusion due to social interaction.

shoulders. It contains 7,500 training images and 2,500 testing images. We used 500 images
from the training set for validation. The total number of instance is 20,499, each having 12
keypoint labels of upper body (head top, neck, left/right shoulder, left/right elbow, left/right
wrist, left/right hand, left/right hip). This dataset is challenging for inferring the arm loca-
tions, since social interaction makes significant arm occlusions.

We followed the percentage of correct keypoints (PCK) metric [38] used in the dataset
paper [7]. PCK measure is for a single-person pose estimation problem, where an estimated
body part location is defined to be correct when it falls within α max(height,width) pix-
els. We used α = 0.2 as in the original setup of [7]. Since the results from the paper are
evaluated given the bounding box of ground truth upper body, we match the result to corre-
sponding ground truth and report the mean PCK of matched keypoints, for fair comparison.
To show how current methods perform at this dataset, we also test Mask-RCNN [15] and
report score of the parts in common. Even without using the person location, current meth-
ods significantly outperform all previous methods. In particular, our method improves wrist
and hand predictions by a wide margin. Even without exhibiting the Immediacy dataset, our
model trained on COCO-crowd still shows huge performance gains on wrist compared to
Mask-RCNN. We provide qualitative results on both datasets in Figure 7.

Method head shoulder elbow wrist hand torso mean
Yang et al. [38] 69.5 63.0 42.6 31.8 29.0 43.9 47.0
Ouyang et al. [24] 67.7 61.3 46.4 35.4 32.5 48.9 49.0
Chu et al. [7] 82.5 74.6 50.1 38.8 37.1 55.4 56.4
Mask-RCNN [15] - 81.0 64.3 55.3 - - -
Ours (crowd) - 86.8 65.5 63.7 - - -
Ours 95.6 88.8 72.4 74.0 73.3 75.1 79.9

Table 4: PCK score on Immediacy Dataset.
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6 Conclusions
In this paper, we addressed the problem of pose estimation in crowd scenes and proposed a
multi-person pose estimation method which sequentially decouples each instance. We tested
our approach with two challenging datasets and showed that the proposed method is able to
infer human poses regardless of complex interactions. With considerably small amount of
data, our method achieved a comparable performance to the state-of-the-art method trained
on the full COCO dataset. Furthermore, we significantly improved the performance on the
Immediacy dataset, containing heavily occluded scenes due to social interactions, and pro-
duced faithful predictions on the arm locations. We believe our approach to be applicable to
general multi-person pose estimation followed by crowd detection.
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