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Abstract

The paper presents a novel deep learning framework for automatic annotation and
segmentation of densely cluttered objects in a warehouse application use-case as spec-
ified by the Amazon Robotics Challenge (ARC) 2017. This framework addresses two
challenges of the competition: (1) reducing the amount of manual labour involved in
generating a large number of annotated data that could be used for training a deep net-
work and, (2) achieving good segmentation accuracy in a very limited amount of training
time (≤ 30 minutes). These two problems are solved by proposing a deep architecture
comprising of Residual Network and Feature Pyramidal based convolutional neural net-
work that helps to retain primitive features along with higher level features obtained from
each successive layer. In addition, a framework is proposed using this network to auto-
matically generate a large annotated dataset having different degrees of clutters to carry
out multi-class semantic segmentation after training with this machine generated dataset.
The proposed framework is shown to provide better segmentation accuracy with lesser
training time as compared to the existing state-of-the-art architectures such as PSPNet
and Mask R-CNN. The overall working of the proposed architecture is explained by cre-
ating a new dataset from the objects specified by the ARC competition. An extensive
experiment is also performed using the MIT-Princeton database [22]. Our TCS-ARC-
Dataset [13]is made available online for the convenience of readers.

1 Introduction
The E-commerce companies like Amazon deploy thousands of wheeled mobile robots [19]
to move goods within their warehouses. However, it still requires several hundred people in
each warehouse to do things like pulling items from shelves and placing them into packaging
boxes to be shipped to the user. Robots that can automatically pick and place items would
boost the efficiency of operation by reducing the reliance on human workers which is very
expensive in highly competitive e-commerce market with very narrow profit margins. The
development of such robots require expertise in multiple domains. In this paper, we are
focusing on the perception part of the system responsible for identifying and segmenting
objects in a dense clutter. The problem is challenging due to uncertainties arising from
varying illumination, partial occlusion, changing shape and sizes as well as varying view
point.

Amazon has been organizing Amazon Picking / Robotics Challenge (APC/ARC) [18]
[6] [15] consecutively over last three years in order to spur and encourage research and de-
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velopment in this direction. While most of the participating teams in 2015 APC competition
relied on traditional feature-based image processing methods for object recognition [1] [7],
the APC 2016 event witnessed the dominance of deep learning algorithms for object recog-
nition [6] [8]. The challenge in ARC 2017 was made more difficult by providing new set
of objects (around 15 of them) only 45 minutes prior to the actual demonstration. So, the
participating team were required to generate sufficient templates, annotate them and train a
deep network to achieve good accuracy within this duration. It became apparent that there
was need for automating the data annotation process and at the same time, reduce the training
time for achieving a specified level of accuracy. While one could always use more number
of GPUs to reduce training time, it is still necessary to automate the data generation pro-
cess which takes considerable amount of time and effort to produce a decent size of dataset
necessary for training.

This paper primarily targets the two aforesaid points and proposes an automatic object
annotation and a multi-class object segmentation approach based on the concept of Feature
Pyramid Network (FPN) [10] integrated in a deep framework. The proposed FPN based
deep network generates a comprehensive feature vector, selectively collected from succes-
sive convolutional layers that preserve features from primitive shape information, such as
lines, corners to much higher and better represented features. Residual Network (ResNet) [4]
has been used as a base network in our deep framework as it has been experimentally proven
to be outperforming networks, like VGG-16, both in-terms of computational complexity as
well as recognition accuracy. The proficiency of the proposed multi-class semantic segmen-
tation framework has also been compared with the current state of the art techniques, such as
Pyramid Scene Parsing Network (PSPNet) [23] and Mask R-CNN [5]. Unlike, the proposed
approach, PSPNet uses Spatial Pyramid Pooling (SPP) [3] module to learn surrounding con-
textual information for resolving ambiguities in class labels. For instance, while it learns to
segment a ‘river’ from a ‘house’, it also learns that a house surrounded by a river could be
a ‘boat house’. However, such contextual correlations may not be useful in our application
where the objects belong to ‘household retail objects’ and are to be segmented based on their
intra-class variability. In-fact this dependency on contextual information may often mislead
the classifier in warehouse scenarios. Moreover, incorporation of the SPP module makes the
PSPNet computationally more intensive as compared to our approach. Mask R-CNN, which
is considered as the current state of the art technique, also has certain important limitations.
It uses regional proposal to estimate anchors (computationally very expensive) and detects
the bounding box using a regression loss that always take 5-10 epochs to learn the network.
Whereas, the proposed approach does semantic segmentation using the softmax loss, which
is much faster.

The proposed framework works in three steps. First, the deep network is trained on a
small set of manually annotated dataset to act as a binary classifier, that can segment fore-
ground objects from its background. This binary classifier is then used to automatically
generate labeled template for any object placed on a trained background. Second step in-
volves generating synthetic clutters by superimposing individual templates. Third step in-
volves training the proposed network using this machine generated cluttered object dataset
for multi-class segmentation. It has to be noted that, the multi-class segmentation module
is not making use of any trained models from the binary classifier, except the automatically
generated dataset. In short, the main contributions made in this paper are as follows: (1)
a deep network architecture is proposed for automatic generation of annotated dataset. (2)
A framework using the above deep network is proposed for recognizing and segmenting re-
tail household objects in a dense clutter. This network architecture provides better accuracy
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compared to the PSPNet and the Mask R-CNN with lesser training time. (3) A new dataset
for objects specified by ARC 2017 competition is created using this approach and will be
made available online for community use. (4) A rotating platform with multiple cameras is
designed to automatically collect a large amount of data in a very short time. The whole
process of data collection and network training is performed within the time constraint of 45
minutes in ARC 2017 event.

The rest of this paper is organized as follows. A brief overview of related work is pro-
vided in the next section. The proposed deep network architecture and the method for gener-
ating automatic annotations is explained in Section 3. The details of experiment and analysis
of results is presented in Section 4 followed by conclusion and direction for future work in
Section 5.

2 Related Work
Numerous research work have been done in the field of robotic perception. However, cover-
ing the entire literature in this domain is beyond the scope of this paper. Thus, we have con-
centrated only on those research works which are directly related to the object segmentation
and recognition techniques needed for warehouse automation. The area of automatic anno-
tation came into limelight in the recent past, only after continuous progress of deep learning
based object recognition approaches. Few research works in this direction include [2] [21]
[14] and [9]. Grossmann et al. [2] first presented a deep neural network based foreground
and background segmentation method using Pascal VOC database. In a recent paper Milan
et al. [14] used RefineNet [9], a deep convolutional neural network specifically designed for
autonomous picking which can be fine-tuned with a limited training image set. However, the
segmentation performance of that approach was not very precise and also required human
intervention for correction of wrongly segmented data. In another work Zeng et al. [21]
estimated object pose using RGBD data. They have segmented and labeled multiple views
of objects with a fully convolutional neural network. 6D object pose was obtained by fitting
pre-scanned 3D object models to the resulting segmentation. One important limitation of this
approach was that, it must have pre-scanned 3D model for each of the objects. The approach
is hence not suitable to use for new set of objects where shape may be entirely different.
There are few other conventional methods, such as FCN [12] which can be directly used for
semantic segmentation. DeepLab [16] uses a combination of the few strongly labeled and
many weakly labeled images to semantically segment objects. They have also used dilated
convolutions to prevent excessive downscaling of the input images.

3 Proposed Method
We propose a new framework that enables us to generate a semantically stronger compre-
hensive feature vector by selectively collecting features from different convolutional layers
while preserving primitive information, such as lines and corners. FPN as shown in Figure.1
is generated by consolidating features from multiple CNN layers which undergoes interpola-
tion in order to generate equivalent dimensional feature vectors followed by concatenation at
three different points. The architecture of the proposed deep network is explained in Section
3.1 and detailed description of the end-to-end multi-class segmentation approach is given in
Section 3.2.
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Figure 1: Overall architectural diagram of the proposed network. Features from different layers are convolved
followed by interpolation to generate equivalent dimensional feature vector and then concatenated in three different
steps. The final concatenated feature vector z is then used for FCN based semantic segmentation. ResNet is used
as a base network. In contrast to PSPNet, (1) No dilation is used in the convolutional layers of the last two blocks;
(2) FPN is used to exploit multi-level features for high-resolution prediction (3) Each feature space is smoothened
before concatenation.

3.1 Network Architecture
The presented pyramidal feature generation network is motivated by the concept of FPN
proposed in [10]. In our proposed object annotation framework, ResNet consisting of 50
and 101 convolutional layers [17] are used as building blocks. As, it has been shown in
the Figure 1 that, a set of residual blocks (block 2, block 3, block 4, and block 5) except
the first one is used to make the final prediction. Outcome of the last layer at each of these
blocks has been considered as the reference set of feature maps, since the deepest layer of
each block contains the strongest features [10]. This approach thus ensures the inclusion
of different levels of features, starting from primitive features to much stronger and better
representational features. First block has been omitted from the pyramid just to avoid an
increased memory requirement. Moreover, it is expected that, the output features at first
block are not significant enough to represent meaningful patterns. The FPN is shown as
component 2 in the Figure 1. The chosen set of blocks have strides of (4, 8, 16, 32) in case
of ResNet-50 and for ResNet-101 it is (4, 8, 8, 8) pixels with respect to the input image.
At the region 3 as shown in the Figure 1, the derived feature vectors gets concatenated to
retain the aforesaid features. Just before concatenation, we have used an interpolation layer
to ensure that same dimensional feature vector is coming from each block.

3.2 End-to-End approach for Semantic Segmentation
3.2.1 Image Acquisition

Figure 2: In-house developed rig to capture
multiple images at a time with varying orien-
tations and scale. It helps in speedy image ac-
quisition and ensures non-redundancy in gen-
erated data.

To facilitate an automatic and speedy image acqui-
sition technique, and also to avoid any possibility
of redundant data in our dataset, we have designed
and developed an automatic image acquisition rig as
shown in the Figure 2. It is an in-house production
and has 5 Foscams of 519 series mounted to it. It
can capture 400 images of an object (placed on a ro-
tating platform), at various scale and orientation in a
single rotation of the rotating platform. For this pre-
sented work, we have obtained 300 images per ob-
ject with varying orientations, scales and positions. The resolution of the images captured
are 1920×1080. Later, these images are cropped to the size of 512×512 before passing to
the annotation network for training. All these images were captured in a uniform (red) back-
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ground so as to promote binary classification to generate ground truth data for these captured
images. Manual intervention is limited to changing the pose of object 2-3 times for capturing
this dataset. Once the images are captured, 200 random single-object images are annotated
manually and passed to the proposed annotation network for training our pixel-wise binary
classifier.

3.2.2 Ground Truth Generation

As noted previously, in this work we aim to develop an automatic object annotation module
that needs to be highly accurate in order to be able to accurately classify and segment any
object in a cluttered environment. Starting with only few manually labeled training images,
we train the proposed deep network as a binary classifier to generate ground truth masks of
any new object placed on a familiar background (red in this case). The generated ground
truth masks are further refined by integrating the proposed annotation framework with Sin-
gle Shot Multibox Detection (SSD) [11] network, to makes sure that, no pixel outside the
detected object boundary gets classified as an object. This module thus act as a refinement
network. SSD is chosen over other bounding box detectors, such as Faster RCNN as it is
computationally much faster and yet achieves similar detection accuracy due to elimination
of both bounding box proposals and the subsequent pixel or feature re-sampling stage [11].
This trained binary segmentation model can then be used to automatically generate ground
truth masks for any new object on the given background. These generated masks are later
used as ground truth for multi-class segmentation.

3.2.3 Artificial Clutter Generation

It is expected in the warehouses that the objects are to be picked from a cluttered tote/box. We
have thus synthetically generated different degree of clutters and their corresponding masks
by using automatically generated masks of single object images. Few such resultant clutters
are shown in the Figure 3. These artificial clutters are obtained by applying data augmenta-
tion techniques, such as rotation, translation and scaling. Multiple degrees of clutter are gen-
erated by using different permutation and combinations of items along with varying pose and
orientation.

Figure 3: Few examples of synthetically
generated cluttered environment is shown
here.

This technique results in generating the final dataset
with 18000 cluttered images. Among these 12000
images are used to fine-tune the proposed multi-class
segmentation network and the remaining 6000 are
used for validating the performance of the proposed
approach.

3.2.4 Multi-class Segmentation

A flow diagram of the proposed approach is shown
in the Figure 4. In this flow diagram, we have shown that, once we synthetically gener-
ate sufficiently large amount of artificial clutters, we train the proposed network to obtain
a multi-class object spatial classification model. Unlike, the state-of-the-art technique PSP-
Net [23], this approach ensures accurate segmentation of the objects.The promising aspect
of PSPNet was the use of SPP module, whereas, we opted to use FPN. This has two fold
advantage over SPP: firstly, the multi-scale feature map prediction is almost twice as fast as
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SPP and secondly, SPP module [3] of PSPNet increases accuracy by bringing in contextual
information to differentiate between confusing categories. Since the objects in the bin or the
stack are highly uncorrelated, surrounding context does not add much information. In fact,
inclusion of SPP may sometimes mislead the classifier. To further increase the speed of our
network, unlike PSPNet, dilation [20] (which is computationally very intense) is not used in
any of the convolutional layers. Dilation simply enables a network to have higher receptive
field and it is not a requirement in the current scenario, as the distance from object to camera
location is not varying. The proposed framework, specifically designed for objects in ware-
houses is hence an improvement over the state of the art technique, PSPNet, both in terms of
faster computation and segmentation accuracy. Even when comparing with the current state
of the art technique: Mask R-CNN, the proposed annotation module is computationally more
efficient and performs better in the given warehouse scenario. Experimental results and the
performance comparisons with PSPNet and Mask R-CNN have been presented in Section 4.

4 Experiment

Clutter Generation

Training dataset

Refinement of

masks generated

Single shot

detection

Semantic

segmentation

1

2

3

Manually 

labeled images

Detected and segmented object

Binary Classification

(Automatic Annotation

module)

Figure 4: Flow diagram of the
approach. (1) Semi-supervised
technique to automatically anno-
tate training data set with SSD run-
ning in parallel to refine the gen-
erated masks; (2) Automatic data
generation of cluttered environ-
ment; (3)Multi-class image seg-
mentation trained on data gener-
ated in (1) and (2).

The proficiency of the proposed annotation framework and the
multi-class object segmentation module is validated by per-
forming different experiments on both synthetically generated
cluttered objects as well as on real-world clutters. We have
trained multi-class object segmentation model using the auto-
matically generated annotations and cluttered images. Also,
we have statistically compared our network with two state-of-
the art techniques, PSPNet and Mask R-CNN, through rigor-
ous experimentations. In this section we have demonstrated
some of those experimental results.

4.1 Loss Function
The proposed architecture uses softmax loss at its main
branch. Apart from this loss, an auxiliary loss is also applied at
the 4th block of the architecture to train the final binary clas-
sifier. Like PSPNet [23], we let the auxiliary loss to back-
propagate all previous layers. This deeply supervised learning
strategy for ResNet-based network optimizes the learning pro-
cess. The weightage for auxiliary loss is set to 0.4. However,
the auxiliary branch is not used in the testing phase.

4.2 Automatic Annotation and Multi-Class Object Segmentation
Results

Figure 6 shows some test results of the automatic annotation model. It can be observed
from the illustrated examples, that even transparent objects (like plastic bottle) and objects
with colors close to the background color (like barbie book) get segmented very precisely.
To further validate the accuracy of the proposed automatic annotation model, we train our
multi-class object segmentation framework using only the automatically generated cluttered
images along-with the corresponding automatically generated annotations. Training image
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Cluttered Mask R-CNN PSPNet Proposed
image

Figure 5: Multi-class semantic segmentation results of few images with different degree of clutters are shown here.
The clutters are generated synthetically by using automatically generated mask of individual objects. Comparison
have been made with the state of the art techniques; Mask R-CNN and PSPNet.

Figure 6: Figure illustrates few examples of binary mask generated using the proposed network. It can be observed
that even for transparent objects the network can generate precise segmented region.

set containing 12000 cluttered images are used for this purpose. A set of 40 different objects
given by ARC-2017 has been used through out these experiments. The hardware configu-
rations and various other experimental details are jotted down in the Table 1. Semantic
segmentation results of few synthetically generated cluttered images with increasing degree
of clutters are shown in the Figure 5. The resultant segmented images are obtained for three
different networks: Mask R-CNN, PSPNet and the Proposed net. To verify the effectiveness
of the proposed approach we have also tested it with real cluttered object images. Some of
such cluttered images and their segmentation results using all the three model are shown in
the Figure 9. It can be observed from both the above two Figures that, even objects with
approximately 50% occlusion also gets segmented accurately using the proposed model.
Statistical analysis in terms of precision, recall and f-measure, obtained for all the 40 differ-
ent classes of objects when tested using all the three trained models (Mask R-CNN, PSPNet
and the Proposed Net) are shown in the Figure 7. Table[3] compares the performance of our
architecture with PSPNet and Mask R-CNN in terms of overall recognition accuracy, time

Table 1: Training and testing setup. Training is done using GPU-machine: NVIDIA Quadro P6000
with two 24GB GPUs. The parameters setting and the training-testing details are given here.

Method Training Training # Training Batch # Test Image
Setup time (s) images Size images size

Proposed Quadro 500 10 512×512
Mask R-CNN P-6000 1800 12×103 8 6×103 600×600

PSPNet 1400 5 473×473
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Table 2: Performance comparison of the proposed network with the state of the art techniques: Mask
R-CNN and PSPNet. The measurement criterion are Mean- Intersection Over Union (mIOU), average
pixel accuracy, Precision, Recall and F-measure for 40 different classes of objects.

Base Method mIOU Pixel Precision Recall F1 Score
Network % Accuracy % % % %

ResNet Mask R-CNN 69.95 90.34 66.87 56.45 59.94
50 PSPNet 81.65 95.64 91.06 92.46 91.26

Proposed Net 87.25 96.76 93.08 93.08 93.08

ResNet Mask R-CNN 43.53 70.23 55.38 48.54 49.70
101 PSPNet 80.71 95.08 89.74 88.21 88.87

Proposed Net 86.58 96.54 92.05 90.27 91.05

Table 3: Performance comparison of the proposed network with the state of the art techniques: Mask R-CNN and
PSPNet when trained using RseNet-50 as base network. The comparison is made in terms of Average pixel accuracy,
training time of each image during forward pass, backward pass and combining forward as well as backward pass.

Performance measure Mask R-CNN PSPNet Proposed net

Average pixel accuracy 90.34% 95.64% 96.76%
Forward pass 115.20 ms 108.066 ms 63.622 ms

Backward pass 192.8 ms 172.048 ms 82.650 ms
Forward-Backward pass 308 ms 280.460 ms 146.598 ms

taken during forward pass and time for backward pass. Forward-backward pass of the pro-
posed network is comparatively much faster (approximately 1.91 times faster than PSPNet
and approximately 2.1 times faster than Mask R-CNN) when trained using ResNet-50 as
base network.

The error convergence plots for all the three approaches, when trained for multi-class
object segmentation with base networks ResNet-50 and ResNet-101, are shown in Figure 8.
It is clearly observed that, the learning of the proposed model is quite better than other two
networks in terms of faster learning rate as well as lower error. Even the overall recognition
accuracy of the proposed net is better in-comparison to other two approaches. An over-
all recognition accuracy of 96.76% is achieved using proposed model which is marginally
higher than PSPNet with 95.64% and significantly much higher than Mask R-CNN that has
an overall accuracy of 90.34% A comparative analysis in terms of mean precision, recall and
f-measure obtained for 40 class spatial classification is shown in the Table 2. The analyses
are done for both ResNet-50 as well as ResNet-101. In both the cases, the proposed approach
significantly outperforms other two approaches. We have further performed extensive exper-
iments on a MIT-Princeton Database [22] (created using same set of 40 objects given in ARC

Figure 7: Statistical comparison of the proposed multi-class segmentation model with PSPNet and
Mask R-CNN. Plots for precision, recall and f-measure obtained for 40 different class of objects are
demonstrated here. ResNet-50 is used as a base network. Same set of test and training data have been
used for all the three networks. The observations clearly demonstrates the proficiency of the proposed
multi-class object segmentation approach.
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Cluttered Mask R-CNN PSPNet Proposed
image

Figure 9: Segmentation comparison for real cluttered images using Mask R-CNN, PSPNet and the Proposed
architecture.

2017). MIT-Princeton database has few images per class (around 16-24 images for an ob-
ject). However, In case of our database, we have used 12000 cluttered images for training the
deep networks remaining 6000 images are used for testing. In order to maintain a consistency
and to have a better training, we have applied augmentation and generated same number of
cluttered images using the given images in MIT-Princeton database. Distribution of training
and testing data are also done accordingly. The mean average precision, recall and f-measure
obtained for the proposed approach when trained and tested for 40 different object classes
are 88.84%, 88.53% and 88.54% respectively. Whereas, the corresponding results for the
Mask R-CNN and the PSPNet are 78.88%, 69.17%, 73.01% and 86.52%, 84.83%, 85.58%.

Figure 8: Plots show loss functions for the proposed multi-class
object segmentation model, PSPNet and Mask R-CNN when trained
using ResNet-50 and ResNet-101.

5 Conclusion

We have presented an end to end
semi-supervised methodology for
automatic annotation and multi-
class segmentation of object im-

ages in an warehouse scenario. Our proposed method has three fold utility. Firstly it au-
tomates the process of ground truth generation, giving near-perfect binary masks. Secondly,
human efforts are reduced not only in the task of ground truth generation but also by elim-
inating the need of data collection in a cluttered environment, ensuring non-redundancy in
generated data. The results show that the network trained on artificially created clutters
works more efficiently (both in terms of segmentation accuracy as well as computation
speed) as compared to the state of the art techniques. The test datasets contain both syn-
thetically generated clutters as well as real clutters. We have also performed the experiments
on MIT-Princeton database and compared the results with state of the art techniques to vali-
date the proficiency of the proposed approach. As a future work, the proposed work can be
transformed into a completely unsupervised technique by using weakly labeled dataset with
cascaded classifiers at the initial stage instead of using the manually annotated dataset for
binary classification.
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