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Abstract

Face alignment has recently generated great popularity in computer vision due to its
widespread applications. The cascaded regression model has dominated and achieved
great progress in the last decade, which however suffers from innate shortcomings, e.g.,
reliance on initialization. In this work, we propose attentional alignment networks (AAN),
a novel end-to-end convolutional architecture for direct face alignment without relying
on cascaded regression. AAN incorporates the attention mechanism into a convolutional
regression network, which generates multiple attention maps for different convolutional
layers to capture distinctive features in different granularity; by introducing intermedi-
ate supervision to create top-down attention maps, AAN attends to regions around facial
landmarks, which enables it to establish more informative and discriminative representa-
tion closely related to facial landmarks. Extensive experiments on four commonly-used
benchmark datasets demonstrate that the proposed AAN consistently delivers high per-
formance on all datasets, surpassing previous methods by large margins, which shows its
great effectiveness for direct face alignment.

1 Introduction

Face alignment, also known as facial landmark detection, is to localize the coordinates of
a set of predefined points on the face. Face alignment has recently drawn increasing re-
search interest since it serves as an important prerequisite for face related tasks including
face recognition, face animation and face reconstruction. However, face alignment is essen-
tially a challenging task due to the great variations of facial images and huge variabilities of

the associated facial shapes.

The cascaded regression model has dominated in face alignment and achieved signifi-
cant progress on several benchmarks in the past decade. Nevertheless, cascaded regression
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models suffer from several innate shortcomings. They require a shape initialization and tend
to be trapped in local minima when the shape initial is far from the true shape. Moreover,
since cascaded models work with local features, e.g., SIFT, they are innately unable to fully
capture the holistic facial shape information, which however is of great importance for land-
mark detection. Recently, convolutional networks have been introduced for face alignment in
[23] which simply uses a CNN cascade to regress facial landmark locations, suffering from
the same shortcomings of cascaded models. Under a multi-task learning framework, the
task constrained deep convolutional network (TCDCN) [34] was developed for face align-
ment without using iterative cascaded regression; while it requires auxiliary facial attributes,
e.g., facial expression, pose orientation and gender, which however would not be always
available and therefore limit its applications to different datasets. DSRN [15] constructed
a multi-target regression model [35] [36] to disentangle highly nonlinear relationships be-
tween images and shapes, and incorporated a linear layer of low-rank learning to improve
the performance.

In this work, we propose an attentional alignment network (AAN) to achieve direct face
alignment with a fully end-to-end convolutional regression network. Instead of using the iter-
ative cascaded regression, AAN takes the image as input and outputs the coordinates of face
shape directly. Regular deep convolutional architectures do not consciously extract detailed
features complementary to high-level global features, while desired features located within a
small region around the facial landmark. In order to extract features that are relevant to facial
landmarks, we introduce the attention mechanism associated with intermediate supervision
in AAN to steer feature extraction to focus on regions around landmarks. Specifically, as
shown in Fig. 1, we adopt the residual bottleneck block as the basic building unit; spatial at-
tention maps are generated from the output features of each residual block to assign attention
scores to the output feature maps, which produce prediction associated with a loss for inter-
mediate supervision. Moreover, to fully capture multi-scale features, we generate multiple
attention maps from intermediate convolutional layers to explore distinctive features residing
in different granularity. To the best of our knowledge, the top-down spatial attention is for
the first time incorporated in convolutional regression networks for end-to-end face align-
ment though it has achieved great success in various tasks. Consequently, high-resolution
attention maps focus on local fine appearance while low-resolution attention maps capture a
relatively coarse holistic view of facial shapes.

In addition, to further enhance the ability of AAN in handling the highly nonlinear re-
lationship between image representations and facial shapes, we introduce a new nonlinear
embedding layer with a cosine activation, which is derived from kernel approximation and
therefore inherits the strong nonlinear learning ability of kernels.

In summary, we make contributions in the following three major aspects.

e We propose a new convolutional regression network, called attentional alignment net-
works, which establishes a fully end-to-end learning architecture for direct face align-
ment without relying on indirect and iterative cascaded regression.

e We introduce the attention mechanism associated with intermediate supervision. It not
only allows to explore the distinctive features of the different scale from intermediate
convolutional layers, but also drives the networks to extract features that are most
relevant to facial landmarks.

e We design a new nonlinear embedding layer to handle the complex relationship be-
tween image representations and facial shapes. It leverages the strong nonlinear learn-
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Figure 1: The end-to-end learning architecture of attentional alignment networks (AAN).

ing ability of kernels without forgoing the end-to-end learning architecture of convo-
lutional neural networks.

We have conducted the extensive experimental evaluation on four benchmark dataset-
s including AFLW, 300W, 300VW and CelebA, for face alignment. Our proposed AAN
achieves state-of-the-art performance on all tasks and consistently surpasses previous meth-
ods, which demonstrates its great effectiveness as an end-to-end learning architecture for
direct face alignment.

2 Related Work

Face alignment has witnessed great progress in the last decades, while most of existing
methods were developed based on the cascaded regression models [27]. Despite of the great
success in many face alignment tasks, cascaded models suffer from innate shortcomings due
to its iterative regression with required shape initialization.

Recently, alternative approaches have been developed to avoid iterative regression for
face alignment. Zhu et al. propose a coarse-to-fine searching method to handle large pos-
es [37], which achieved impressive performance on challenging datasets, e.g., AFLW, by
combining multiple handcrafted features, e.g. SIFT, HOG, and BRIEF. Recently, convo-
Iutional neural networks (CNNs) have been introduced for face alignment. Sun et al. [23]
proposed to use a three-stage algorithm with CNNs, which estimated positions of different
facial positions at the first stage, and refined the positions in the remaining stage. Face align-
ment algorithm based on RNN was further developed by Liu et al. [11], to take temporal
information of the video-based datasets. However, due to their cascaded regression based
structure, they still suffered from improper initialization. TCDCN [34] use one-stage multi-
task CNNss to estimate facial landmarks and auxiliary attributes at the same time. Compared
to the prior multi-stage framework, it can predict the coordinates of the landmarks instead of
shape increments, and optimize jointly. However, TCDCN needs to provide extra auxiliary
information to guarantee the performance of face alignment in the test stage. In contrast, we
directly predict the coordinates of facial landmarks with no need of auxiliary information,
which makes our method more generalized and applicable for the wider range of tasks.

Face alignment via 3D face models was recently shown to handle large pose variations
[2,7,40]. Zhu et al. [40] proposed a solution to a new alignment framework, 3D Dense Face
Alignment (3DDFA), for face alignment. In 3DDFA, a dense 3D face model is fitted to the
image via a CNN and a method to synthesize many profile training samples is presented to
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solve the problem of labeling invisible landmarks. To handle faces with large pose variations,
the powerful cascaded CNN regressor is combined with a 3D Morphable Model (3DMM)
[7]. Face alignment is formulated as a 3DMM fitting problem, where the camera projection
matrix and 3D shape parameters are estimated by a cascade of CNN-based regressors. It is
interesting to resort to 3D modeling for face alignment, but in so doing, one increases the
computational cost.

Attention mechanism has recently been introduced into deep learning to augment its
performance, which shows great effectiveness in a broad range of visual tasks, e.g., im-
age captioning [28] [30], image question answering [29] , object detection [18], pedestrian
analysis [12] and image classification [26]. In this work, we explore the soft attention mech-
anism, which is computationally efficient and can be updated by back-propagation. To the
best of our knowledge, our attentional alignment network, is the first to introduce attention
mechanism for face alignment. More importantly, instead of using a single attention map,
we generate multiple attention maps in different resolutions, which explore both local and
global features, achieving more comprehensive representation for improved face alignment.

3 Attentional Alignment Networks

In this section, we provide the architectural overview of the proposed attentional alignment
networks in Sec. 3.1, describe the attention mechanism in Sec. 3.2 and introduce the newly
designed nonlinear embedding layer in Sec. 3.3.

3.1 Architecture Overview

Face alignment is to find the mapping relationship between the input image / and the face
shape S which is represented by the coordinates of landmarks. Our attentional alignment
network (AAN) directly predicts the coordinates of face shape from images in an end-to-end
learning architecture, distinguishing from cascaded regression methods which update the
face shape increments iteratively. Our AAN is composed of four stacking building blocks
as illustrated in Fig. 1. In each building block, one residual bottleneck block is followed by
one attention block, and the residual bottleneck block is the same as [6] . Attention block is
an 1 x 1 convolutional layer with BN and relu activation function, and generates an attention
map using the output features of the residual block. The attention map is normalized by a
sigmoid layer into the range of [0, 1]. If the network is more interested in a specific location,
the corresponding attention score will be higher. The attention map would assign attention
scores to the output feature of the residual block through elementary-wise multiplication.
Then this output feature and the original one would be passed into the next building block
together. To be more precise, given the input x, the output of building block F is :

F(x) = (1+M(x)) *H(x) (1

where H (x) is the output of the residual block, M(x) denotes the attention map in the range
of [0,1]. * means elementary-wise multiplication. This residual connection is benefitted
from the effectiveness of residual learning. connection way as Equation2
+
F(x)=H(x)*M(x) 2)

Feeding the output F(x) as the input to the next building block directly leads to sharp
plunge in feature values due to the repeated dot product with M(x).
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To leverage the effectiveness of residual learning which offers a powerful mechanism in
solving back propagation degradation problem, showing impressive performance in various
tasks, we build our attentional network based on the residual learning module, that is, F(x)
in (2) is replaced by

We would like to highlight that deploying the residual block can effectively alleviate the
value degradation problem due to the use of multiple attention maps.

3.2 Top-Down Spatial Attention

Face images usually exhibit greatly varied appearances from which it is highly desired to
extract features that are directly and closely related to facial landmarks. However, ordinary
convolutional networks for facial feature extraction are not necessarily aware of the loca-
tions of facial landmarks. In this work, we incorporate the attention mechanism into the
convolutional networks and design top-down spatial attention by introducing the intermedi-
ate supervision, which steers the network to automatically focus on regions directly related to
facial landmarks. Moreover, facial attribute locations are mainly determined by two factors,
that is, local features related to facial parts, e.g., eyes, and the holistic view of each part of
the whole face. We therefore propose to generate multi-scale attention maps from intermedi-
ate convolutional layers of different resolutions, which enables it to capture complementary
information for more informative facial representation.

Intermediate Supervision. We introduce the intermediate supervision into the network
to create top-down spatial attention by injecting an intermediate branch with a shortcut con-
nection with landmarks. We use the intermediate features weighted by attention maps to con-
duct early prediction of facial landmarks upon which a loss can be applied. Back-propagation
proceeds from not only the final output, but also the local predictions from each attention
module. Making early prediction force attention maps represent the local appearance in a
fine-grained way and have a high-level understanding of the image. To be more specific, we
apply the same ground truth to all the intermediate prediction and sum up into the overall
loss in the optimization process. The intermediate supervision works seamlessly with back-
propagation and allows errors to flow directly to the intermediate layers to adjust network
parameters. As a result, the network is able to refine features at both local appearance and
global contexts. In contrast to saliency-based bottom-up attention, the top-down attention
drives the network to extract features around the locations of facial landmarks, while filter-
ing out irrelevant features through suppression. In the test stage, we remove the intermediate
branch and take the final output as the result directly.

Multi-Scale Attention. It is widely acknowledged that in CNNss, features in different
depths contain different levels of semantics, that is, features in deeper layers encode high-
order semantic information while those in shallower layers represents the local appearance.
To fully capture the information for face alignment, we generate multiple attention modules
to consolidate features of various semantics. Therefore, the attention maps from shallow lay-
ers would pay greater attention to local regions, e.g., eyes, nose, mouth and contour, while
attention maps from deeper layer can capture the holistic view of the face. Compared to sin-
gle attention design, which is limited to capture only one certain level of semantic features,
our design of multi-scale attention enables the alignment network to have a comprehensive
and coherent understanding of both whole facial shapes and local regions.
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3.3 Nonlinear Embedding Layer

Although features from the convolutional layers reach a relatively high semantic level, it
would still not be strong enough to handle the highly nonlinear relationship between images
and facial shapes by simply feeding the features into a linear fully connected layer. We
therefore design a new nonlinear embedding layer by leveraging the strength of kernels.

We derive the nonlinear embedding layer by kernel approximation based on Bochner’s
theorem. It is well known that a shift-invariant kernel, e.g., radius basis function (RBF), can
be approximated by finding explicit feature maps, that is,

O(x;) = \/g[cos(wyxi‘Fbi)]l:d (3)

where cos is the elementary-wise cosine function, ¢ (x) is called the random Fourier fea-
ture [16] which has been successfully used for kernel approximation. We propose learning
features in data-driven way rather than using random sampling. The nonlinear embedding
layer takes the form of

¢ =cos(Wx+Db) 4)

where x € RP is the feature vector produced by the last residual block, W € R¥*P is the
wight matrix of the layer, and b is the bias. (4) turns out to be fully connected layer with
cosine activations, which can be injected into convolutional networks for end-to-end train-
ing. Following the nonlinear embedding layer, a linear fully connected layer is deployed to
directly predict the coordinates of landmarks.

4 Experiments and Results

We conduct extensive experiments on four benchmark datasets, i.e., AFLW, 300W, CelebA,
and 300VW including both images and videos. Experiments demonstrate that the proposed
AAN delivers high performance on all datasets, largely exceeding previous methods.

4.1 Datasets

We provide the description of the datasets used in this work, associated with experimental
settings to benchmark with previous methods. Facial images are cropped according to the
bounding boxes provided with datasets. We do not use any data augmentation though the
performance could be further improved with more augmented data for training.

AFLW [9] contains around 25,000 face images collected in the wild. It is regarded as one
of most challenging datasets for face alignment due to huge face yaw angles between £90°,
extreme expressions, large variety in face appearance (e.g. gender, occlusion and ethnicity).
The images were originally labeled with 21 landmarks and a bounding box. We discard
the ear landmarks to keep the experiment settings consistent with cascaded compositional
learning [38]. Following common setting, we use the subset with 20,000 images for training
and 4,386 images for testing, respectively.

300W [19] [20] consists of several databases with 68 landmarks, including AFW [39],
HELEN [10], LFPW [1], XM2VTS [14] and IBUG [21]. It is widely used to evaluate near-
frontal face alignment. Following the widely-used settings, we test on a common set and a
challenging set, respectively.
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Figure 2: Comparison in terms of CED on AFLW (left) and 300VW-Category 3 (right).

CelebA [13] is one of the largest dataset including 202,599 images with large pose vari-
ations and background clutter. Each image contains five landmarks localizing eyes, nose and
mouth corners. To facilitate comparison, we follow the original work [13], and take 182,632
images for training and 19,926 for testing.

300VW [21] is a video-based face alignment dataset and provides 114 videos in total.
Faces in frames are annotated with 68 landmarks. In [21], a subset of 50 videos is selected
to train the model , and the remaining are divided into three categories for testing.

4.2 Implementation Details

We design the network with four residual blocks and four pooling layers to extract features.
Following each residual block, an attention block is attached to produce the attention map
upon the output features of the residual block. The features from the last attention block are
fed to the nonlinear embedding layer followed by a linear fully connected layer to produce
the prediction of landmarks for direct face alignment.

In the training stage, we employ the weight decay and batch normalization. The weight
decay for parameter is set to 0.001. We train the attention alignment network with stochastic
optimization algorithm Adam, and set the mini-batch size 64. The initial learning rate is
le-3, we decrease the learning rate to le-4 and le-5 after 25,000 and 40,000 epochs. The
number d of notes in nonlinear embedding layer is set to 256 by cross validation.

We use the normalized mean error (NME) as the evaluation metric defined as follows:

1 ¥ R 2 o 2
NMEZN,; \/(xi—xi) —(i—yi)?/d, )

where (x;,y;) is the ground truth and (£;, ;) is the prediction coordinates of facial landmarks.
N denotes the total number of landmarks on the face and d is the normalization distance.

> ~ > N
> g < o & & < 9 & &
9 S & < S o & N < >
Slg & & § § & & & & 7
S |9 ] K S N < C S G i
[ Brror [ 543 373 435 405 425 5.32 392 272 227 173 ]

Table 1: Performance comparison on AFLW (NME error in %)
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] Method | Common Subset | Challenging Subset | Full Test set |

RCPR [3] 6.18 17.26 8.35
SDM [27] 5.57 15.40 7.52
ESR [4] 5.28 17.00 7.58

GN-DPM [25] 5.78 - -
ERT [8] - - 6.40
CFAN [32] 5.50 16.78 7.69
LBF [17] 4.95 11.98 6.32
CFSS [37] 4.73 9.98 5.76
MDM [24] 4.83 10.14 5.88
AAN 4.38 9.44 5.39

Table 2: Performance comparison on 300W (NME error in %)

d is used for normalization, and specifically, we use the inter-ocular distance to normalize
the mean error for near-frontal view datasets such as celebA. For the large-pose face dataset,
e.g. AFLW, we take the bounding box size as the normalization distance. For brevity, %
is omitted in all tables. The evaluation results are also shown in the form of the cumulative
error distribution (CED) curve for comprehensive comparison.

4.3 Results

Our AAN achieves state-of-the-art results across all four datasets and outperforms previous
methods by large margins in most cases. In which follows, we explain the results accompa-
nied with discussions on each dataset.

The results on AFLW are reported in Table 1. Our AAN achieves highest performance
among all compared methods with an error of 1.73, which is impressive considering the
great challenges of AFLW. The intuitive results of our AAN are shown in the top row of
Fig 3, from which we can see that AAN can produces high accurate prediction on faces with
illumination, occlusion and huge orientation.

The results on 300W are summarized in Table 2. Our AAN also achieves the best results
and outperforms previous methods consistently. The intuitive results of our AAN are also
illustrated in the middle row of Fig. 3. Our AAN can well handle challenging cases with
great head orientation and large occlusions.

The results on CelebA are compared in Table 3. Again, our AAN achieves the best
performance with an error of 2.99, largely surpassing representative methods, e.g., RCPR
and CFSS. It can also be observed from the second last row of Fig. 3 that our AAN can
achieve accurate prediction on facial images with great appearance variations.

The results on 300VW are listed in Table 4. Our AAN achieves the best performance
on test sets of Category 1 and 3. It is worth mentioning that Category 3 is regarded as the
most challenging subset, while our method achieves the best results with a mean error of

[Method | RCPR [3] SDM [27] CFSS [37] AAN |
[ Error | 412 4.35 3.95 2.99 |

Table 3: Performance comparison on CelebA (NME error in %)
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Figure 3: Intuitive illustration of the prediction results.

’ Method \ Category 1 \ Category 2 \ Category 3 ‘

SDM [27] 7.41 6.18 13.04
TSCN [22] 12.54 7.25 13.13
CFSS [37] 7.68 6.42 13.67
TCDCN [34] 7.66 6.77 14.98
TSTN [11] 5.36 4.51 12.84
AAN 5.03 4.82 7.98

Table 4: Performance comparison on 300VW (NME error in %)

7.98, dramatically surpassing previous methods with large margins, which again indicates
its great effectiveness for direct face alignment.

For more comprehensive comparison, we have plotted the cumulative error distribution
(CED) curves of the results in Fig. 2. We use AFLW and 300VW as representatives due to
the space limit. Our AAN is clearly above all compared methods, which again shows its
performance advantages for face alignment. Moreover, we have also conducted an ablation
study in Table 5 by removing (w/o0) the attention mechanism and the nonlinear embedding
layer. The results have shown that both largely improve the overall performance, which
verifies their effectiveness for face alignment.

Additionally, it would be interesting to look into how attention mechanism works in our
attentional alignment network. We pint the multiple attention maps of different convolutional
layers in Fig. 4 in which the top row shows the original face images. It is easy to find
attention maps generally highlight the regions that are closely related to facial landmarks.
Specially, attention maps from shallow layers (upper rows) focus on local regions while
those from deeper layers (lower rows) tend to capture the holistic view of facial shapes.
The intuitive illustration demonstrates that the introduced multi-scale attention helps to learn
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Figure 4: Multiple attention maps from shallow (higher rows) and deep (lower rows) layers.

‘ | AAN | w/o attention | w/o NE layer | w/o both |

AFLW | 1.73 2.06 1.78 2.10
300VW-Category 3 | 7.98 9.38 8.15 9.60

Table 5: The effectiveness of the attention mechanism and the nonlinear embedding layer.

more distinctive features, which enables more accurate face alginment.

5 Conclusions

We have presented an attentional alignment network (AAN) for direct face alignment without
relying on cascaded regression. We introduce attention mechanism associated with interme-
diate supervision to face alignment and design a new nonlinear embedding layer derived from
kernel approximation to handle nonlinear image-shape relationships. Our AAN achieves a
new end-to-end learning architecture that combines the strengths of neural networks and k-
ernels for face alignment. Experiments on four benchmark datasets have demonstrated the
effectiveness of our AAN for direct face alignment.
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