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Abstract

We propose to implicitly learn to extract geo-temporal image features, which are mid-
level features related to when and where an image was captured, by explicitly optimizing
for a set of location and time estimation tasks. To train our method, we take advantage of
a large image dataset, captured by outdoor webcams and cell phones. The only form of
supervision we provide are the known capture time and location of each image. We find
that our approach learns features that are related to natural appearance changes in outdoor
scenes. Additionally, we demonstrate the application of these geo-temporal features to
time and location estimation.

1 Introduction

Outdoor images often contain sufficient visual information to understand geographic infor-
mation about the scene, such as where the image was captured. Developing effective algo-
rithms for this task has received significant attention for many years [6, 27]. The appear-
ance of an outdoor scene can also change rapidly. These changes are often due to fleet-
ing, or transient, attributes such as lighting and weather conditions, that dramatically affect
the visual perception of an environment. For instance, consider a scene that changes from
sunny and pleasant to rainy and brooding in mere minutes. Several methods have been pro-
posed for automatically understanding and extracting these subtle characteristics from im-
agery [1, 13, 16, 20]. Estimating these types of transient attributes has importance in a num-
ber of applications, including: environmental monitoring [4, 26], as a pre-processing step for
calibration [11, 29], and enabling semantic browsing of large photo collections [9, 13]. Our
work fuses these two research areas by learning to estimate geo-temporal image features,
which are related to when and where an image was captured.
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Recently, a significant amount of work has explored how sources of supervision beyond
manual annotation can be used to learn useful representations of images. In general, collect-
ing manual annotations for millions, or perhaps billions, of images is prohibitively expensive.
As Doersch summarizes [2], “The idea is that, given the right task, the computer can learn
on its own to represent useful semantic properties of the visual world.” Such learning tasks
are often referred to as pretext tasks; they serve as an intermediary target for learning the
intended representation. For example, Doersch et al. [3] show how spatial context can be
used as a supervisory signal in order to learn a visual representation for object discovery.
Similarly, Pathak et al. [18] use context-based pixel prediction for pre-training a represen-
tation for classification, detection, and segmentation tasks. We extend this line of work by
using time and location context to learn useful features from a large corpus of imagery.

Our work makes the following visual assumptions about the world. First, that pho-
tographs provide a direct source of context regarding the conditions under which they were
captured. For example, the time of day that an image is captured is directly related to the
brightness of the image (i.e., light to dark), season can indicate the expected weather condi-
tions or how people are dressed, and location can provide evidence about anticipated styles,
such as architecture. Second, these context signals are hard to extract from an image, are
potentially noisy (e.g., snow in early Summer), and can be indicated by multiple sources
(e.g., snow on the ground, people wearing heavy coats). These assumptions motivate our
method which integrates image appearance, time, and location, the latter of which are typi-
cally recorded automatically by the imaging device.

In our approach, we explicitly model the relationship between the image, its geographic
location, and the time of capture. We propose a novel convolutional neural network ar-
chitecture that implicitly learns how to extract geo-temporal features from the imagery by
optimizing for a set of location and time estimation tasks. Specifically, we structure our
network to jointly learn feature representations for three related spaces: images, time, and
location. To accomplish this, each representation, or combination of representations, is used
to predict held out information. For example, the image representation and location represen-
tation (or the combination of both) are used to learn to predict when an image was captured.
In total, three representations are learned using four classification tasks. We optimize all
representations and tasks simultaneously, in an end-to-end fashion.

The main contributions of this work are: 1) a novel approach for learning geo-temporal
image features from a large corpus of imagery without requiring image-level manual anno-
tations; 2) an evaluation of the learned features on the task of transient attribute estimation,
where our features outperform those from a network pre-trained using the strongly super-
vised ImageNet dataset [21]; 3) an evaluation of the accuracy of our learned estimators,
highlighting the value of additional context; and 4) a novel location estimation method that
uses the task of time estimation to localize a static webcam.

2 Related Work

Image localization, or estimating where an image was captured, is an important problem
in the vision community. Typically, the problem is formulated as image retrieval using a
reference database of ground-level images [6] or overhead images [15, 28, 30] with known
location. Other methods have been proposed which take advantage of photometric and geo-
metric properties such as sun position [ 14, 29], and many other cues. More recently, Weyand
et al. [27] proposed to directly predict the geographic location of a single image using a deep
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convolutional neural network by classifying the query image into a set of spatial bins. For
our localization task, we adopt this classification approach and extend it to include temporal
context.

Other work has explored how to estimate the time that an image was captured. Salem
et al. [22] demonstrate that human appearance, including clothing and hairstyle, is a useful
cue for dating images. Matzen and Snavely [17] predict timestamps for photos by matching
against a time-varying reconstruction of a scene. Volokitin et al. [25] use representations
extracted from CNNs to estimate ambient temperature and time of year for outdoor images.
As with localization, we adopt a classification approach to estimating when an image was
captured and show how these estimates improve when the image location is known.

Attribute-based representations have become popular in outdoor scene understanding to
help describe how the appearance of a scene changes over time. Laffont et al. [13] introduced
a taxonomy of 40 transient attributes that describe intra-scene variations along with methods
for identifying the presence of such attributes in an image. Using this dataset, Baltenberger
et al. [1] introduce methods for estimating the presence of transient attributes using convo-
Iutional neural networks. Jacobs et al. [9] demonstrate that principal component analysis,
when applied to webcam imagery, results in a decomposition that is closely related to nat-
ural changes in the scene, including the time of day, local weather conditions, and human
activity. Similarly, a body of work has sought understand local weather conditions [8, 16].
Many studies have shown that these types of transient attributes can be useful for image and
camera localization tasks [1, 10].

Recent work has explored the use of self-supervision, which are sometimes referred to
as pretext tasks, for training deep neural networks to capture useful visual representations [3,
18]. For example, Zhang et al. [31] show how image colorization (synthesizing colors for
a grayscale image) is a powerful pretext task for learning visual representations. Pathak
et al. [19] exploit low-level motion-based grouping cues for unsupervised feature learning.
These methods typically exploit some known quantity of the data (e.g., pixel color values) to
avoid expensive manual annotation. As a byproduct, a useful visual representation is learned.
In our work, we consider two novel pretext tasks, time and location estimation.

3 Estimating Geo-Temporal Image Features

We propose a neural network architecture for learning geo-temporal features from images
by optimizing for a set of location and time estimation tasks. An overview of the proposed
architecture is shown in Figure 1. Our network takes three inputs: an image, /, the time the
image was captured, ¢z, and the location of capture, /. Each input is independently processed
by a context network to extract mid-level features. Then, pairs of these features are used by
estimator networks to predict distributions over time or location.

3.1 Context Networks

We use three context networks: a temporal context network, Cr(¢); a location context net-
work, Cr(1); and an image context network, C;(I). The output of each context network is a
128-dimensional feature with a sigmoid activation function. For the temporal context net-
work, we parameterize the input timestamp using a one-hot encoding of month and hour of
day, for a total of 12 x 24 dimensions. This encoding is flattened and passed to Cr(¢), which
consists of three fully-connected layers (with 256, 512, and 128 channels respectively), the
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Figure 1: An overview of the proposed network architecture. Our approach learns mid-level
feature representations for time (orange), location (blue), and image appearance (green) by
optimizing for a set of conditional time and location estimation tasks.

first two with ReLLU activations. For the location context network, we parameterize the geo-
graphic location, /, using standard 3D ECEF coordinates, which we normalize by the Earth’s
radius. Other than a different input and independent network weights, the location context
network is identical to the temporal context network. For the image context network, we
use the InceptionV2 architecture [23], up to the global pooling layer, to extract features. We
flatten the output feature map and append the same structure as the other context networks.

3.2 Estimator Networks

The output of the context networks are used as input to four different estimator networks:
e Location Estimator, P(1|(C;(I)), which predicts location using only image features;
e Time Estimator, P(¢|C;(I)), which predicts capture time using only image features;
e Time-conditioned Location Estimator, P(1|(C;(I),Cr(t)), which predicts location us-
ing features from the image and the known capture time;
e Location-conditioned Time Estimator, P(t|C;(I),Cr(l)), which predicts capture time
using features from the image and the known geographic location.
Aside from different output sizes, the estimator networks have the same structure as the
context networks. We discretize the output space for location and time and represent the
probability as a categorical distribution (i.e., using a softmax activation for each estimator).
For location, we use 37 x 72 equal-angle “latitude x longitude” bins. For time, we use 12 x
24 “month x hour” bins.

3.3 Implementation Details

We randomly initialize the InceptionV2 network using the standard strategy [23]. We ini-
tialize all other network weights randomly using Xavier initializer [5] and simultaneously
optimize them during training. For each estimator network, we have a cross entropy loss.
We minimize the sum of these using the Adam optimizer [12] (f; = 0.9 and 3, = 0.999).
We use a learning rate policy that starts from 0.001 and decreases by half every 50k itera-
tions. For regularization, we apply weight decay with rate of 0.0001. We train the proposed
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MOS:4308 YFCC

Figure 2: Relating image appearance to the image context representation by visualizing the
images that yield the highest activation at three different neurons.

network for 2.5M iterations with batch size 32. We apply batch normalization [7] on every
layer except the last (for both context and estimator networks). The input images are scaled
o [—1,1] and augmented by a random crop to the size of 224 x 224. We use Greenwich
Mean Time (GMT) for all timestamps.

4 Experiments

We evaluate the context networks and estimator networks on various datasets, visualize spe-
cific features in the image context networks, and show that the image context features have
strong correlations with transient image attributes.

4.1 Training and Evaluation Datasets

We use four main datasets to evaluate our approach. The AMOS dataset refers to a subset of
the AMOS database [9], which is a collection of over a billion images captured from public
outdoor webcams around the world. For our experiments, we use a subset of images: only
from webcams with high-accuracy geolocation and images captured between 2002 to 2017.
This resulted in images from 12,193 webcams from which we held-out 231 for testing. Each
image has a timestamp recorded by the image collection process. The YFCC dataset refers to
a subset of the Yahoo 100 million dataset [24], only including geotagged images from smart
phones. We restricted the dataset to smart phone images since we found that non-phone
images often had inaccurate timestamps. We filter out indoor images using the Places net-
work [32]. This results in a training set of 892,662 images and a test set of 170,994 images.
The Hybrid dataset refers to a combination of the AMOS and YFCC training sets (sampling
equally for each mini-batch). The TA dataset refers to the Transient Attributes Dataset [13],
which contains 8,571 images, each manually annotated with 40 transient attributes, such as
sunny and cloudy.

4.2 Understanding the Image Context Representation

We conducted several experiments to relate image appearance to the representation learned
by the image context network. To begin, we examined images that correspond with extremal
activations. For this experiment, we used 10,000 images randomly sampled from the YFCC
dataset and 7,732 images covering the year of 2015 from one webcam (ID: 4308) in the


Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Jacobs, Roman, and Pless} 2007{}

Citation
Citation
{Thomee, Shamma, Friedland, Elizalde, Ni, Poland, Borth, and Li} 2015

Citation
Citation
{Zhou, Lapedriza, Khosla, Oliva, and Torralba} 2017

Citation
Citation
{Laffont, Ren, Tao, Qian, and Hays} 2014


6 MZ, TS, CG, SW, NJ, RP: LEARNING GEO-TEMPORAL IMAGE FEATURES

: 1
il LaE

0.0

oo
Buissin eleq

Nov 17 Nov 19 Nov 20 Nov 22 Nov 23 Nov 25

Figure 3: The time series of two neurons for a week of webcam imagery, with images show-
ing the scene at various points. It appears that the top neuron is related to the diurnal cycle
and the bottom is related to fogginess.
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Figure 4: Maximum absolute cross-correlation scores between transient attributes and three
image feature representations. For a majority of attributes our proposed representation has
at least one feature that is more highly correlated than any in both baseline representations.

AMOS dataset. For each neuron of the image context representation, we selected the 10
images that result in the highest activation from the two different sets of images. Figure 2
shows a montage of images for three neurons. The neurons appear to capture semantically
meaningful attributes, such as daylight, rainy, and winter. Similarly, we selected two neurons
and visualized their signal over time for images from the webcam. Figure 3 shows how scene
appearance changes are related to the image context features. For the example shown, it
appears that these neurons are related to daylight and fogginess. These experiments provide
evidence that the mid-level representation captured by the image context network are related
to static and transient scene attributes.

4.3 Analyzing Feature Correlation with Transient Attributes

To analyze quantitatively how much our model learns about transient attributes, we compute
the cross correlations between a mid-level representation of the image context network and
the corresponding transient attribute labels of all test images in the TA dataset. As a baseline,
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Figure 5: Comparing mid-level features for transient attribute estimation. (left) Features ex-
tracted from the weights of our proposed approach versus a network trained for image clas-
sification and a randomly initialized baseline. (right) Features extracted from our method,
trained on different datasets.

we compare to features of the same architecture trained for ImageNet [7] classification and
features sampled uniformly at random. We select the feature from the last pooling layer
(AvgPool_la_7x7), which is the deepest layer that this model and ours share in common. We
compute the cross correlation scores between the feature and the transient attribute scores of
each image, resulting in a 1024 x 40 cross correlation matrix, M, where the element m;; is
the cross correlation score between the i-th feature channel and the j-th transient attribute.
Figure 4 shows, for each transient attribute, the maximum absolute correlation score over
all feature channels. We observe that our proposed method learns features that are more
correlated to the transient attributes (p = 0.414) than the ImageNet network (p = 0.281) or
the random features (p = 0.038).

4.4 Comparing Mid-Level Features for Transient Attribute Estimation

The previous experiment showed that the image context network is capturing mid-level fea-
tures correlated with transient attributes. In this section, we explore the ability of this rep-
resentation for directly estimating transient attributes. Similar to the previous experiment,
we truncate our model at the last pooling layer (in order to compare versus alternative ini-
tialization strategies), and add a final two-layer MLP with 40 outputs corresponding to the
40 transient attributes in the 7A dataset. We train this network, initializing from the weights
of models trained for different tasks, including variants of our method trained on the AMOS,
YFCC, and Hybrid datasets. During training, the MLP portions are randomly initialized
while the earlier layers are frozen. We evaluate the average mean squared error (MSE) for
the test set every 500 iterations (batch size 32). Figure 5 shows the performance compari-
son among different mid-level features, including ImageNet and randomly initialized Incep-
tionV2. Our features are superior to all baselines and perform best when learned using the
Hybrid dataset.

4.5 Application: Image Localization

There are two image localization formulations that our network architecture enables. The
straightforward approach is to use the location estimator (or the time-conditioned variant)
to generate a probability distribution over a discrete set of location bins. An alternative
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Figure 6: Quantitative evaluation of localization performance shown as a cumulative distance
error plot for the YFCC dataset.

approach is to optimize for a continuous location estimate by minimizing the loss of the
location-conditioned time estimator.

Discrete Localization Given an input image, I, we evaluate the location estimator P(/|C;(I))
and the time-conditioned location estimator P({|C;(I),Cr(¢)), which requires a timestamp,
t. We trained our model on each dataset and perform quantitative evaluation using the test
images from AMOS and YFCC, separately. We use the latitude/longitude center of the high-
est probability bin as our location estimate. The results of this experiment are presented in
Figure 6. We observe that the time-conditioned location estimator is superior in both cases.
We also conclude that our model performs better if trained on the same imagery source with
the test set, and training the network with the Hybrid dataset is competitive on both test sets.

Continuous Localization In this formulation, we use the location-conditioned time esti-
mator, P(z|C;(I),C.(1)), to optimize for a continuous location estimate. Given the known
image capture time ¢*, the idea is that the true location should result in a low value for the
loss associated with the estimator, ¢, = ¢ (P(¢|C;(I),Cr(1)),t*), where ¢(o,0) is the cross-
entropy loss. Therefore, we can produce a location estimate by optimizing the location, [,
with respect to ¢;. Unfortunately, an individual image does not typically yield a unique, or
accurate, location estimate using this method. However, if we sum the loss across images
captured at different times, we find that the minima of the function becomes more distinct.
Figure 7 shows several qualitative examples of this localization strategy on static webcams,
where darker colors correspond to more likely locations. We can see that as additional im-
ages are included in the loss, the uncertainty of the location prediction diminishes.

4.6 Application: Time Estimation

Using the time estimator and location-conditioned time estimator, our network is able to es-
timate the capture time of a query image. These estimators output a distribution in discrete
2D time space. To evaluate our estimates, we compare the ground-truth capture time and the
marginal probabilities of our predictions on the YFCC test set, and present the cumulative
error plots in Figure 8. We observe that including location is not useful for pinpointing the
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Figure 7: Visualizing the time estimation loss for two webcams and varying number of
images (darker is lower). The red arrows show the gradient and the green dot is the true
location.
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Figure 8: Quantitative evaluation of marginal time estimation performance, shown as cu-
mulative error plots for the YFCC dataset. Both methods perform better than the random
chance and including the known location results in a significant reduction in error for the
hour-estimation task.
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Figure 9: When using our location-conditioned time estimator, the marginal probability over
hours changes significantly as we vary the latitude and longitude provided to the location
context network.
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month. We suspect this is because most of our imagery is in the northern hemisphere, and
changing the location within a hemisphere doesn’t change the season. However, this is not
the case when estimating the hour. To visualize this, we show in Figure 9 the impact of
changing the location on the hour estimate. We compute the marginal hour distribution at
different latitudes and longitudes. When performing a sweep over latitude, we fix the longi-
tude value to be the ground truth (and vice versa). We found that the longitude of the image
corresponds more with the hour prediction than the latitude, which matches expectations.

5 Conclusion

When learning about the world using images, the location and time an image was captured
are useful pieces of metadata that are often available, but commonly overlooked. We pre-
sented a novel architecture for learning useful representations from images that takes ad-
vantage of this metadata. We found that for the task of transient attribute estimation, our
method, despite being trained without manually obtained image-level annotations, learned
image representations that outperform the representations learned using ImageNet. This is
a rarely achieved feat in self-supervised representation learning against a frequently used
baseline. One important area for future work is in investigating alternative architectures for
the context networks. We did not conduct a thorough study in this regard and expect to
see improvements in using newer image CNNs and higher capacity time and location net-
works. In addition, we expect that richer time and location input representations will result
in improved geo-temporal image features.

Acknowledgement

We gratefully acknowledge the support of NSF CAREER award IIS-1553116 and ARPA-E
Award DE-AR0000594. The views and opinions of authors expressed herein do not neces-
sarily state or reflect those of the United States Government or any agency thereof.

References

[1] Ryan Baltenberger, Menghua Zhai, Connor Greenwell, Scott Workman, and Nathan Jacobs. A
Fast Method for Estimating Transient Scene Attributes. In IEEE Winter Conference on Applica-
tions of Computer Vision, 2016.

[2] Carl Doersch. Supervision Beyond Manual Annotations for Learning Visual Representations.
PhD thesis, Carnegie Mellon University, 2016.

[3] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning
by context prediction. In IEEE International Conference on Computer Vision, pages 1422—-1430,
2015.

[4] Roman Fedorov, Piero Fraternali, and Marco Tagliasacchi. Snow phenomena modeling through
online public media. In IEEE International Conference on Image Processing, 2014.

[5] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pages 249-256, 2010.



MZ, TS, CG, SW, NJ, RP: LEARNING GEO-TEMPORAL IMAGE FEATURES 11

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

James Hays and Alexei A. Efros. im2gps: estimating geographic information from a single
image. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32Nd International Conference on Inter-
national Conference on Machine Learning - Volume 37, ICML’15, pages 448-456. IMLR.org,
2015.

Mohammad T. Islam, Nathan Jacobs, Hui Wu, and Richard Souvenir. Images+weather: Collec-
tion, validation, and refinement. In IEEE CVPR Workshop on Ground Truth, 2013.

Nathan Jacobs, Nathaniel Roman, and Robert Pless. Consistent temporal variations in many
outdoor scenes. In IEEE Conference on Computer Vision and Pattern Recognition, 2007.

Nathan Jacobs, Scott Satkin, Nathaniel Roman, Richard Speyer, and Robert Pless. Geolocating
static cameras. In IEEE International Conference on Computer Vision, 2007.

Nathan Jacobs, Mohammad T. Islam, and Scott Workman. Cloud motion as a calibration cue. In
IEEE Conference on Computer Vision and Pattern Recognition, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Pierre-Yves Laffont, Zhile Ren, Xiaofeng Tao, Chao Qian, and James Hays. Transient attributes
for high-level understanding and editing of outdoor scenes. ACM Transactions on Graphics
(SIGGRAPH), 33(4):149, 2014.

Jean-Frangois Lalonde, Srinivasa G Narasimhan, and Alexei A Efros. What do the sun and the
sky tell us about the camera? International Journal of Computer Vision, 88(1):24-51, 2010.

Tsung-Yi Lin, Yin Cui, Serge Belongie, and James Hays. Learning deep representations for
ground-to-aerial geolocalization. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015.

Cewu Lu, Di Lin, Jiaya Jia, and Chi-Keung Tang. Two-class weather classification. In /EEE
Conference on Computer Vision and Pattern Recognition, 2014.

Kevin Matzen and Noah Snavely. Scene chronology. In European Conference on Computer
Vision, 2014.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

Deepak Pathak, Ross Girshick, Piotr Dollar, Trevor Darrell, and Bharath Hariharan. Learning
features by watching objects move. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017.

Genevieve Patterson and James Hays. Sun attribute database: Discovering, annotating, and rec-
ognizing scene attributes. In IEEE Conference on Computer Vision and Pattern Recognition,
2012.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.



12

MZ, TS, CG, SW, NJ, RP: LEARNING GEO-TEMPORAL IMAGE FEATURES

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

Tawfiq Salem, Scott Workman, Menghua Zhai, and Nathan Jacobs. Analyzing Human Appear-
ance as a Cue for Dating Images. In IEEE Winter Conference on Applications of Computer Vision,
2016.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data and new challenges in multimedia re-
search. CoRR, abs/1503.01817, 2015.

Anna Volokitin, Radu Timofte, and Luc Van Gool. Deep features or not: Temperature and time
prediction in outdoor scenes. In CVPR Workshop on Robust Features, 2016.

Jingya Wang, Mohammed Korayem, and David J Crandall. Observing the natural world with
flickr. In IEEE International Conference on Computer Vision Workshops, 2013.

Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with convolutional
neural networks. In European Conference on Computer Vision, pages 37-55. Springer, 2016.

Scott Workman and Nathan Jacobs. On the location dependence of convolutional neural net-
work features. In IEEE/ISPRS Workshop: Looking From Above: When Earth Observation Meets
Vision, 2015.

Scott Workman, R. Paul Mihail, and Nathan Jacobs. A pot of gold: Rainbows as a calibration
cue. In European Conference on Computer Vision, 2014.

Scott Workman, Richard Souvenir, and Nathan Jacobs. Wide-area image geolocalization with
aerial reference imagery. In IEEE International Conference on Computer Vision, pages 1-9,
2015.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European
Conference on Computer Vision, 2016.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.



