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Abstract

Scene understanding is an essential technique in semantic segmentation. Although
there exist several datasets that can be used for semantic segmentation, they are mainly
focused on semantic image segmentation with large deep neural networks. Therefore,
these networks are not useful for real time applications, especially in autonomous driv-
ing systems. In order to solve this problem, we make two contributions to semantic
segmentation task. The first contribution is that we introduce the semantic video dataset,
the Highway Driving dataset, which is a densely annotated benchmark for a semantic
video segmentation task. The Highway Driving dataset consists of 20 video sequences
having a 30Hz frame rate, and every frame is densely annotated. Secondly, we propose
a baseline algorithm that utilizes a temporal correlation. Together with our attempt to
analyze the temporal correlation, we expect the Highway Driving dataset to encourage
research on semantic video segmentation.

1 Introduction
Recent advance in convolutional neural networks (CNNs), which started from image classi-
fication, have resulted in great improvements in the majority of computer vision tasks. Thus,
their applications have evolved to become more complex and advanced, and they thus re-
quire deeper scene understanding. Among the numerous computer vision tasks, we tackle
the problem of semantic video segmentation for a driving scenario. Semantic segmentation is
fundamentally a classification task. What differentiates semantic segmentation from image
classification is that semantic segmentation requires class prediction for entire pixels in the
given image. Therefore, the semantic segmentation task also requires a subtle understanding
of local relationships whereas image classification focuses on abstracting the given image
globally.

Recent research on semantic segmentation is focused on images rather than videos. Var-
ious approaches have been proposed for semantic segmentation [17, 28, 29, 31], and they
have been successfully applied for segmenting images. In order to improve the semantic im-
age segmentation performance, the network architectures have been made wider and deeper.
The residual network [10] has been commonly used as a feature extraction module, and
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Figure 1: Samples from the collected dataset. Each image is overlaid with its annotation.
The first row presents the first frames of sequences while the second row presents the last
frames

additional modules that are specialized in semantic segmentation are supplemented subse-
quently. However, it is still challenging compared to the human-level, since small region
and rare objects remain troublesome. In particular, their application to driving scenario is in
demand, as autonomous driving is an application that would directly benefits from semantic
segmentation [14, 18, 20]. The two major requirements for autonomous driving are reliabil-
ity and real-time computation. They are complementary to each other as reliability can be
interpreted as the characteristic of having no delay in decision making. However, they also
have an adversarial relationship as real-time computation often implies small and therefore,
less powerful networks in CNN-based algorithms.

In the literature, it is known that wider and deeper networks exhibit a more reliable
performance [7, 30]. However, they are not purely beneficial from the standpoint of semantic
video segmentation. In the case of video segmentation, time consumption should be taken
into consideration during the design of an algorithm because there exists a time limit for
segmenting each frame. The size of the networks would be compromised in order avoid
delaying the segmentation of the following frames. Although several studies on the time
budget have been published recently [19, 32], the runtime constraint is still underestimated
in terms of its importance in real-world applications.

The underestimation of the runtime constraint is related to the lack of a semantic video
segmentation dataset with temporally dense annotation as research progress depends greatly
on the existence of datasets [3]. In the field of semantic segmentation, there exist well-
annotated datasets, such as the Cityscape [3], KITTI Vision Benchmark Suite [6], Daim-
ler Urban Segmentation [25], CamVid [1], PASCAL VOC [5], and Microsoft COCO [16]
datasets. These datasets include various scenes, such as indoor, outdoor, office, urban, or
driving scenes. However, the common shortcoming of these datasets is that of the temporal
density. Although the CamVid dataset provides annotated frames at 1Hz, we argue that it
is still insufficient for autonomous driving. Therefore, we introduce the Highway Driving
dataset, which is spatially and temporally densely annotated.1 Short video clips with frame
rate of 30Hz were captured under a highway-driving scenario. Every frame of each clip was
then densely annotated. Moreover, each frame is annotated while considering the correlation
between the adjacent frames. They were annotated sequentially, such that the annotation was

1The dataset is available at https://sites.google.com/site/highwaydrivingdataset/
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consistent. We also propose a baseline algorithm for semantic video segmentation using our
dataset. The major objective of our algorithm is to label the driving scene with a limited
time budget. Therefore, the provided baseline algorithm focuses more on time efficiency. In
other words, the objective is to predict the pixel-level scene labels much faster then existing
algorithms with a comparable performance.

The remainder of this paper consists of five additional sections. In the following section,
we introduce the previous research related to our work. We present the Highway Driving
dataset in Section 3. In Sections 4 and 5, we introduce our baseline algorithm and its exper-
imental results with the Highway Driving dataset, respectively. We then conclude this paper
in the last section.

2 Related Works
In this study, we introduce a new dataset for driving scenarios and provide a baseline algo-
rithm for fast inference in video datasets. In this section, we attempt to prove the necessity
of the new dataset by exploring works related to the present research.

Semantic Segmentation Datasets: While PASCAL VOC [5] and Microsoft COCO [16]
provide semantic segmentation labels for objects, our paper is focused on driving scenarios.
Recent works [1, 3, 6, 15, 25, 27] have been focused on building a segmentation dataset for
various environments. KITTI Vision Benchmark Suite [6] recorded 6 hours of traffic sce-
narios and provides the 3D and 2D annotations for five categories. CamVid [1] offers pixel
level annotations of over 700 images at 1Hz in driving scenarios. Furthermore, Leuven [15]
consists of 3D segmentation labels of 1175 image pairs. Huge 3D-2D pair datasets for traf-
fic environments can be found in a paper written by Xie et al. [27]. More recently, a large
dataset Cityscape [3] has been presented, which comprises street scenarios from 50 different
cities. This dataset also provides high quality pixel-level annotations for 5000 images. How-
ever, this dataset still has the disadvantage that its application is limited to a single image; it
cannot be directly used with a video input. Therefore, our proposed dataset is essential and
is a unique dataset that provides accurate pixel-level annotations for video frames of 30Hz
such that it dataset can be used to train deep neural networks (DNNs) for a video input.

Semantic Segmentation algorithms: Recent achievements in semantic segmentation
have resulted from improvements in DNNs. As DNNs provide great performance in image
classification task [7, 10, 12, 26], several researchers [2, 17, 28] use pretrained DNNs for
segmentation tasks. As pretrained DNNs have a small spatial size feature maps in high
layers, researchers [21] use the deconvolutional layers after the last layer of the pretrained
DNNs such that DNNs can make pixel-level predictions. There are research [2, 28] that
proposed the dilated convolutional layer that can make large spatial size feature maps while
using the weights of pretrained DNNs. Although they have the drawback that the dilated
convolution layer requires a large amount of memory, this approach helps DNNs to have
various important information in the high layers. Furthermore, FCN [17] uses not only the
high level features but also the low-level features to achieve fine-level prediction. Similarly,
PSPnet [31] uses the pyramid pooling module to predict coarse and fine level prediction.

Despite the absence of a dataset for semantic video segmentation, several algorithms
have been proposed in the literature recently [14, 18, 19, 20]. Luc et al. [18] proposed an
algorithm for semantic video segmentation using self-supervision. By predicting the future
frames, the network can learn the context of the data without video annotation. There was
also an attempt to utilize the optical flow by Nillson et al. [20]. These various approaches
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have successfully improved the scene labeling performance. However, these algorithms are
rather heavy, so that they require a long time budget. In contrast, Mahasseni et al. [19]
proposed an algorithm that emphasizes the time budget.

Fast inference algorithms: Several researchers have proposed various methods to allow
DNNs to infer faster. Han et al. [9] proposed pruning methods that erase less-meaningful
parameters of DNNs such that the network can contain a small number of parameters. Fur-
thermore, by using weight compression methods [8, 22], DNNs can also infer an input signal
quickly. In particular, the weight binarization method [4], which is an extreme case of the
weight compression method, can be used to compress the network under the 4%. In addition,
the knowledge distillation methods [11, 23] can also be used to reduce the size of a network
by distilling the knowledge from the high-performance network to the small network.

3 Dataset for Semantic Video Segmentation

An autonomous driving system is a real-world application that would greatly require reli-
ability. Unexpected incidents may occur at any time, and they require immediate, and yet
appropriate, responses. In order to make a good decision, the system should fully understand
the situation. Unfortunately, existing datasets do not contain sufficient information that the
system requires. Some of the dataset provide annotations of independent images [3, 6], and
the others provide temporally sparse annotations [1, 25]. In the following subsection, we
introduce the Highway Driving dataset and describe its annotation procedure.

3.1 Annotations

The dataset consists of 20 sequences of 60 frames with a 30Hz frame rate. Therefore, we
provide a total of 1200 frames with annotations. Originally, longer clips were recorded, and
we trimmed 2 seconds from each clip. As we believe that a correlation between adjacent
frames is key information in semantic video segmentation, every sequence is carefully an-
notated while maintaining consistency. The frames in a single sequence were annotated in
chronological order. Each annotator was asked to annotate adjacent frames, and formerly an-
notated results for prior frames were provided as their reference. On average, 2.2 annotators
had annotated a single sequence.

The provided annotations are spatially dense as well. In order to build spatially dense
annotations, we had annotated through adversarial procedure. If an annotator completes the
annotation, another annotator identifies defects in it. This procedure was repeated until they
could not find defects in the produced annotation. Including the time for quality control,
annotating a single image requires over 1 h on average. Using the adversarial annotating
procedure, we have obtained spatially dense pixel-level annotations. Table 3.2 presents the
spatial [3] and temporal density of annotations for several driving scene datasets. Except in
the case of the DUS dataset [25], the spatial densities of all the datasets are comparable. In
the case of our dataset, the majority of non-annotated pixels come from the bonnet of the
data collecting vehicle. On the other hand, the temporal density shows greater significance.
Although some other datasets provide video frames, fine annotations are deficient in terms
of temporal density. This shows that our dataset is compactly annotated as compared to other
widely used datasets [1, 3, 25].
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spat. density[%] temp. density[Hz]
HighwayDriving 97.8 30
CityScapes 97.1 -
CamVid 96.2 1
DUS 63.0 3

Table 1: Spatial and temporal density of annotations for the Highway Driving, CityScapes,
CamVid, and DUS datasets

3.2 Classes and Evaluation

We defined 10 classes that commonly appear in driving scenarios: road, lane, sky, fence,
construction, traffic sign, car, truck, vegetation, and unknown. The unknown class includes
undefined objects, the bonnet of the data-collecting vehicle, and ambiguous edges. The most
relevant classes to autonomous driving were selected from the high-speed driving standpoint.
As the majority of selected classes have an intuitively interpretable definition, we only define
some classes here. The lane class is literally the lane on the road. Other marks printed on the
road in order to inform the drivers are excluded. We define the fence as the structures on both
side of the road. The fence class can be considered as a sub-class of the construction class.
However, we have separated this class from the construction class as the fence class is one
of the most notice-worthy structures observed during driving. In Figure 1, the fence class
is in red. The construction class contains every man-made structure except for the road and
fence. It is indicated in purple in Figure 1. More detailed information regarding the dataset
can be found in the supplementary material.

In order to evaluate the labeling performance for each class, we use the intersection
over union (IoU) [5]. A pixel that is annotated as an unknown class is not considered as a
performance measure. However, as a performance measure for the whole dataset, the IoU
metric is considerably biased to certain classes that cover a large area. That is undesirable as
the classes covering a relatively small area are not less important. Therefore, as a metric for
the whole dataset, we use the mean IoU (mIoU) [3], which is the IoU averaged over all the
classes, so that every class contributes equally to the performance measure.

We split the dataset into training and test sets. The training set consists of 15 sequences
while the test set consists of the remaining five sequences. Rather than randomly splitting
the sequences, we split the training and test sets to have a similar class distribution. More
detailed statistics are presented in the supplementary material.

4 Baseline Algorithm

In this section, we present a baseline algorithm for the Highway Driving dataset, which
utilizes a temporal correlation to reduce the prediction time. As a video is a collection of
sequential images, the adjacent frames are highly correlated. The more we emphasize on
the real-time computation, the shorter the time budget we can use, and thus, the correlation
between the adjacent frames is the key information for achieving a high performance. We
propose the use of a simple architecture that combines information from two adjacent frames
such that the scene labels can be predicted with a limited time budget. The overall architec-
ture of our algorithm is illustrated in Figure 2. The entire system consists of three networks:
the priming network, transition network, and approximating network. Except for the initial
frame, our algorithm recurrently predicts the scene label without the priming network.
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Figure 2: Overall architecture of the proposed baseline algorithm. Three different networks
recurrently predict the scene labels

Priming Network The priming network is a relatively larger and deeper network for the
initial frame. It is simply an image segmentation network that uses any temporal relations
between adjacent frames. As compared to other networks, the priming network can more
accurately predict the scene labels while it requires a longer time budget. The major role of
the priming network is to generate and deliver an accurate prior knowledge to the transition
network for the following frames. As the priming network initializes the entire system, the
performance of the priming network directly affects the performance of the entire algorithm.
In addition, we can control the priming frequency depending on the time budget.

Approximating Network The approximating network is designed to approximately seg-
ment the current frame. We assume that every motion is continuous and smooth. This may
be an incomplete argument under non-driving scenarios; a person can appear to be opening
a door, or an object may emerges from behind an obstacle. However, the majority of the
counterexamples in the dice are the urgent situations in driving scenarios, and we believe
they require a specialized alert system. From this perspective, the approximating network
should provide a rough scene labeling result, so that the following ensemble network can
finalize the fine scene labeling.

In order to shorten the runtime of the approximating network, we downsample the input
frame and feed it into the approximating network. Here, there exists a trade-off between
the output performance, which benefits from a high resolution, and the runtime. From the
viewpoint of scene labeling performance, there is no harm in feeding high-resolution images.
The images with a high resolution naturally contain more information and the objects have
sharper edges. However, we still downsample the input frame because we put a greater
emphasis on the runtime constraint. The same trade-off exists for the priming network; the
runtime is more weighted for the approximating network while the performance is for the
priming network, and thus, we use a wider and deeper architecture for the priming network.

Ensemble Network The ensemble network is a shallow network that transforms the
knowledge from the former frame and ensemble the two information from adjacent frames.
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This network is required to be extremely thin and shallow as it takes the full-sized scene
labeling result as its input. Despite its small network size, it plays a key role in utilizing the
correlation between adjacent frames. Without the ensemble network, the overall algorithm
is no different from frame-by-frame scene labeling with one of the approximating network
and priming network.

The feature maps from the current frame, which are obtained from the approximating
network, should be upsampled as the frame is formerly downsampled. We apply bilinear
interpolation to the feature maps before it is fed into the ensemble network. This implies
that there exists an upper limit to the approximating network. This limitation is measured by
control experiments in Section 5.1.

As the priming network, we use DRN [29] which is known to show great performance on
scene labeling [3]. In advance of the other networks, the priming network is independently
trained with all the training frames. The approximating network and ensemble network
are then jointly trained. Every parameter in both the priming network and approximating
network is initialized from the pretrained model using ImageNet [24], while the parameters
in the ensemble network are initialized randomly.

5 Experimental Results

5.1 Control and Baseline Experiments

As the resolution of the input image directly affects the computation time of the network,
the most convenient method for resolving the issue of the runtime constraint is to downsam-
ple the input frames. As the upper bounds for the downsampling approach, we evaluate the
performance of the subsampled ground-truth labels in advance to the other existing semantic
segmentation algorithms. In Table 2, the methods named sub-N represent the control exper-
iments: the ground-truth labels subsampled with stride N. The subsampled labels, which
have a smaller resolution, are upscaled to the original resolution using nearest neighbor in-
terpolation for the purpose of the evaluation. The performance of the classes that cover a
relatively large area, such as road, sky, and vegetation, are less degraded. Notable deteri-
oration occurs in the case of several classes that cover a small area. In particular, the lane
class is severely deteriorated. That is a natural consequence as the lane class not only covers
a small portion of images but is also thin, which makes it vulnerable to interpolation degra-
dation. The deterioration of these classes implies that a complementary method is required
for the downsampling method. However, the robustness of the performances in the case of
large classes, such as road, sky, or vegetation, underscores another message that downsam-
pled images are still informative. This result justifies our baseline approach as our algorithm
keeps providing coarsely labeled results by downsampling.

A straight forward approach for the semantic video segmentation is to segment each
frame independently. Under this scheme, every sequence can be disassembled into indepen-
dent images and the existing semantic image segmentation algorithms [17, 29, 31] are easily
applicable. This approach is computationally expensive but has been intensively researched
over the recent years. Table 2 shows the quantitative results. Each method is evaluated
without considering the runtime constraint. Similar to many other CNN-based approaches,
they require plenty of data in order to realize a high performance. Although we provide
1200 images, our dataset is less rich from the viewpoint of variability as compared to other
existing datasets [1, 3, 25], because the 60 frames are severely correlated with each other.
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sub-4 98.0 77.3 99.2 96.8 94.1 91.8 96.8 98.2 97.7 94.4 -
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sub-16 93.5 45.7 97.6 88.8 83.2 73.5 89.1 93.6 93.1 84.2 -
sub-32 89.4 28.7 96.1 80.1 74.7 58.3 80.1 88.1 88.5 76.0 -
FCN-32s 83.5 36.6 96.0 59.9 16.6 31.8 12.3 14.9 82.3 48.2 -
DRN† 91.1 45.8 96.1 69.9 21.2 26.9 53.1 69.2 87.8 62.3 1
PSPnet 92.5 50.4 97.0 69.3 17.3 15.4 66.4 69.5 88.2 62.9 2.18

87.2 45.4 93.3 66.5 19.0 22.5 54.3 55.7 86.2 58.9 0.78
Ours 83.8 44.9 90.7 63.3 17.7 19.5 55.4 46.3 84.8 56.3 0.58

83.2 44.8 90.3 62.6 17.4 18.6 55.5 44.4 84.5 55.7 0.36
Table 2: Quantitative result of control and preliminary experiments for semantic scene label-
ing. † represents the priming network of our method
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[13] 80.4 85.5 90.1 86.4 67.9 93.8 73.8 64.5 50.8 91.7 54.6 76.3 Bmax
[19] 77.1 81.9 86.2 81.7 65.1 88.7 69.3 61.8 49.1 88.2 52.8 72.9 0.5 ·Bmax
[19] 60.3 60.1 64.8 56.7 50.3 60.1 46.8 42.3 33.7 59.4 31.6 51.5 0.1 ·Bmax
DRN† 92.5 87.5 94.6 86.4 57.1 97.7 67.9 46.0 26.3 83.5 51.8 71.9 1
Ours 91.3 87.4 93.3 78.0 47.3 97.4 63.7 31.8 25.2 78.8 44.9 66.8 0.81

91.2 83.3 93.1 76.9 46.5 97.4 63.4 30.8 25.0 78.3 44.0 66.5 0.35

Table 3: Quantitative result of our algorithm with CamVid dataset. † represents the priming
network of our method

The insufficient variability forces algorithms to focus more on the correlation between the
frames.

Table 2 presents the performance of our algorithm in terms of both scene labeling and
runtime. The relative runtime shows how fast the algorithm can segment each frame. As we
have used DRN as our priming network, we normalized the runtime of each algorithm with
the runtime of DRN. Table 2 shows that our algorithm can achieve a comparable result with
a short time budget. Our algorithm is also capable of controlling its runtime by adjusting the
priming frequency. The priming network is a large but slow network. Therefore, the more
frequently we use the network, the longer the time budget that we require while the better
performance we can acquire.

Figure 3 illustrates qualitative scene labeling result obtained for the Highway Driving
dataset. In the Figure 3, only the first frame is labeled with the priming network. The other
frames are labeled with the approximating network and ensemble network. Since the top row
is the first frame of the sequence, the prediction result on the top row is predicted with the
priming network, while the other two results are predicted with the approximating network
and ensemble network. As the bottom row represents the 60-th frame, in order to predict
the scene label, information from the priming network should come through 59 time steps.
It can still be observed that the results are not severely deteriorated. This implies that the
recurrent framework is operating properly.
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Input frame

Input frame
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Annotation

Annotation

Annotation Prediction

Prediction
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Figure 3: Qualitative results of baseline algorithm. From the left to right: image frame,
ground truth, and scene labeling result with the baseline algorithm. From top to bottom, the
first, middle, and the last frame of the sequence

Figure 3 also plainly shows how similar the sequential frames can be. As the sequence
consists of 60 frames, there are another 28 frames between the adjacent rows in Figure 3.
Still, the most part of the frames seems identical except in the case of the moving objects.
These objects contain the most important information for autonomous driving as they are the
objects with different velocity from the ego-motion. If the annotations are not temporally
dense, it is difficult to localize the moving objects because the ego-motion itself causes large
differences between the frames. With dense annotations, the ego-motion becomes negligible,
so that the network can focus on the moving objects.

5.2 Experiments on CamVid Dataset
We evaluated our baseline algorithm using the CamVid dataset [1] as a verification. The
CamVid dataset provides 1Hz annotations over five videos. We used identical model ar-
chitectures with the experiment presented in Section 5.1. In addition, we did not apply
fine-tuning or additional learning algorithms to improve the performance. The experimen-
tal settings used were based on the prior works [13, 19]. Table 3 shows the performance
of our algorithm with the CamVid dataset. For the CamVid dataset, we have evaluated the
performance with the average class accuracy. As shown in Table 2, we have evaluated the
performance with different runtimes by controlling the priming frequency.

Mahasseni et al. [19] provided similar experimental results for the CamVid dataset. Al-
though we cannot directly compare the results obtained due to the difference between the
architecture and the time budget used, we can still use their results as a reference for verifi-
cation. In the case of both algorithms, natural degradation of the performance is detected as
the time budget is reduced. Table 3 shows that our baseline algorithm is not a dataset-specific
algorithm.

Citation
Citation
{Brostow, Shotton, Fauqueur, and Cipolla} 2008

Citation
Citation
{Kendall, Badrinarayanan, and Cipolla} 2015

Citation
Citation
{Mahasseni, Todorovic, and Fern} 2017

Citation
Citation
{Mahasseni, Todorovic, and Fern} 2017



10 KIM, YIM, AND KIM: HIGHWAY DRIVING DATASET

6 Conclusion

We introduced the Highway Driving dataset-a new benchmark for semantic video segmenta-
tion task. The Highway Driving dataset has significance in temporally dense pixel-level fine
annotations. The provided annotation is denser than other existing datasets in both a spatial
and temporal manner. In addition, we proposed a baseline algorithm for the Highway Driving
dataset and verified the algorithm using the CamVid [1] dataset. The algorithm showed that
we could predict the scene labels with a short time budget by using the correlation between
the adjacent frames.

Prior to the introduction of the Highway Driving dataset, it has been troublesome to study
the semantic video segmentation task owing to the lack of temporally dense annotation. We
expect the temporally dense annotation of the Highway Driving dataset to promote various
future research on semantic video segmentation.
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