
: 1

Non-smooth M-estimator for Maximum
Consensus Estimation
Huu Le1

huu.le@qut.edu.au

Anders Eriksson2

anders.eriksson@qut.edu.au

Michael Milford2

michael.milford@qut.edu.au

Thanh-Toan Do2

thanh-toan.do@adelaide.edu.au

Tat-Jun Chin2

tat-jun.chin@adelaide.edu.au

David Suter3

d.suter@ecu.edu.au

1 School of Electrical Engineering and
Computer Science, Queensland Univer-
sity of Technology, Australia.

2 School of Computer Science, The Uni-
versity of Adelaide, Australia.

3 School of Science, Edith Cowan Univer-
sity, Australia.

Abstract

This paper revisits the application of M-estimators for a spectrum of robust estimation
problems in computer vision, particularly with the maximum consensus criterion. Cur-
rent practice makes use of smooth robust loss functions, e.g. Huber loss, which enables
M-estimators to be tackled by such well-known optimization techniques as Iteratively
Re-weighted Least Square (IRLS). When consensus maximization is used as loss func-
tion for M-estimators, however, the optimization problem becomes non-smooth. Our
paper proposes an approach to resolve this issue. Based on the Alternating Direction
Method of Multiplier (ADMM) technique, we develop a deterministic algorithm that is
provably convergent, which enables the maximum consensus problem to be solved in the
context of M-estimator. We further show that our algorithm outperforms other differen-
tiable robust loss functions that are currently used by many practitioners. Notably, the
proposed method allows the sub-problems to be solved efficiently in parallel, thus entails
it to be implemented in distributed settings.

1 Introduction
Robust model estimation, especially with the maximum consensus criterion, is a crucial
problem that underpins a large number of geometric estimation tasks in computer vision [13].
It is employed extensively as an intermediate step in many important applications; for in-
stance, image stitching [4], Simultaneous Localization and Mapping (SLAM) [19], large-
scale Structure from Motion (SfM)[24], to name a few. Due to the noisy and imperfect na-
ture of data acquisition devices, the quality of estimated models depend heavily on the ability
to discard bad measurements (outliers) present in the dataset. Practically, consensus maxi-
mization is arguably one of the most popular criteria for robust geometric fitting. It has been
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established that consensus maximization is NP-hard [5], thus finding its globally optimal so-
lution is computationally challenging. Although there has been much research on developing
exact algorithms for this problem with encouraging results [6, 9, 18, 20, 27], globally optimal
algorithms are still impractical for many real-world applications where fast processing time
is crucial. Therefore, consensus maximization is mainly approached by using randomized
hypothesize-and-verify methods such as the well-known RANSAC algorithm [12], and its
improved variants [7, 8, 17]. While those methods are quite efficient for input data contain-
ing low proportion of outliers, they can become exceptionally slow for highly contaminated
measurements. Furthermore, besides the probabilistic stopping criterion, there exists no fur-
ther information about the convergent characteristics for such randomized approaches.

In contrast to the class of randomized algorithms, M-estimators are preferred in many
scenarios as its convergence – up to local optimality – can be guaranteed with proper choices
of robust loss functions. Indeed, it has been shown in [1] that if the robust loss functions are
designed in such a way that they satisfy some pre-defined criteria, IRLS can be used to solve
M-estimators with provable convergent property. Among the criteria required by [1], being
a smooth function is mandatory. Unfortunately, that does not apply to the maximum con-
sensus problem as its loss function is non-smooth (which will be illustrated in the following
sections). Consequently, the common practice is to estimate the model parameters with a
smooth robust loss function, then evaluate the consensus set based on the returned estimate.
Clearly, the real problem is not tackled with the above-mentioned approach.1

Contributions Currently, there exists no methods in the literature that can solve M-estimator
with maximum consensus loss function such that the analytical convergence is guaranteed.
This paper fills that gap by proposing a provably convergent ADMM-based algorithm that
is deterministic to iteratively solve the consensus optimization problem up to local optimal-
ity. By introducing auxiliary variables, our algorithm splits the main problem into smaller
sub-problems that can be solved efficiently using bisection. This allows our algorithm to be
easily parallelized for efficient computation of large scale geometric estimation problems.
Our method can be used as a refinement scheme to improve the solution quality for con-
sensus maximization from a rough estimate provided by RANSAC [12] or other heuristic
strategies.

Related work We would like to remark that besides the class of smooth M-estimators,
there are other deterministic approaches for the problem [16, 20, 21]. However, those meth-
ods do not tackle the original cost function of the consensus maximization problem, as they
either solve the relaxed version [21] or depend solely on heuristic that may remove genuine
inliers, which can result in bad estimate if the data is not well balanced [20]. Recently, an
exact penalty approach was introduced by the authors in [16] that converges to a local so-
lution of the maximum consensus problem. Their approach, however, can only handle the
`1 or `∞ norm of the residual functions. A similar refinement scheme was proposed by [23],
where a surrogate function is used to approximate the original problem, which can be solved
by Iterative Re-weighted `1 (IRL1). Our proposed method is distinguished from the rest by
its capability to handle the `2 quasi-convex transfer errors and the ability to be implemented
in a parallel manner.

1Later, we will show in the experiment section that using smooth loss functions for the maximum consensus
problem may lead to poor solutions.
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2 Preliminaries
2.1 Maximum Consensus

Given a set of N measurements, the maximum consensus problem aims to find an estimate θθθ
∗

that is consistent with as many of the data points as possible. All the consistent data instances
(inliers) with respect to the solution θθθ

∗ form the optimal consensus set I∗. Mathematically,
consensus maximization can be written as the following optimization problem

max
θθθ ,I⊆P(N)

|I|, subject to fi(θθθ)≤ ε, ∀i ∈ I, (1)

where |I| denotes the cardinality of the consensus set I, and P(N) represents the powerset
(set of all subsets) of the set {1,2, . . . ,N}. The functions fi(θθθ) are the residual functions and
ε is the inlier threshold. In this work, we focus on the quasi-convex residual functions that
has the fractional form of

fi(θθθ) =
‖aiθθθ +bi‖2

cT
i θθθ +di

, s.t. cT
i θθθ +di > 0. (2)

Such type of residuals can be found in many geometric estimation problems, e.g. ho-
mography estimation, triangulation, structure from motion with known rotation, camera re-
sectioning, etc. Note that (2) can also be generalized well to many robust linear regression
problems. Interested readers are referred to [15] for more detailed discussions about quasi-
convexity and its applications.

To put consensus maximization into the context of M-estimation, let us first rewrite (1)
as an outlier minimization problem:

min
θθθ

∑
i

Φ( fi(θθθ)). (3)

Note that from the restriction on the denominator of (2), all the residuals functions must be
non-negative, i.e., fi(θθθ) ≥ 0 ∀i. Taking advantage of this, in order for (3) to be equivalent
to (1), the function Φ can be defined as:

Φ(x) =

{
0 if 0≤ x≤ ε,

1 otherwise.
(4)

Intuitively, a data point that is not an inlier with respect to the estimate θθθ will be penalized
by (4), thus by solving (3), one gets the estimate that maximizes the consensus size.

2.2 Traditional M-estimators

The formulation (3) of the consensus maximization problem does indeed resemble the com-
monly used formulation of a wide class of traditional M-estimators, where the Φ function (4)
has been put in place of the smooth robust loss functions Ψ that are often discussed in many
relevant works [1, 14]. For instance, the Huber loss function

Ψhuber(x) =

{
1
2 x2 for |x| ≤ b,
b(|x|−b), otherwise,

(5)
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where b is a scalar, is quite popular for many practitioners. For smooth loss functions,
iterative reweighted least squares (IRLS) is a commonly used technique to obtain the M-
estimate. As proven by [1], if the selected robust function satisfies some conditions, IRLS is
guaranteed to converge.

The Φ function (4) for the maximum consensus problem, however, does not enjoy the
properties required for convergence due to its non-smoothness. Certainly, one can get over
this problem by performing a robust fitting using one of the smooth loss functions, e.g.
(5), then obtain the consensus set using the returned results. However, the cost function of
the consensus maximization problem and the M-estimators with smooth loss functions are
totally different in nature. Thus, using the approximation technique mentioned above does
not really solve the maximum consensus problem.

In this paper, we introduce a provably convergent approach to solve the problem (1)
within the context of M-estimators using the non-smooth loss function (4). Our method relies
on the Alternating Direction Method of Multiplier (ADMM) optimization scheme. The use
of ADMM for computer vision problems has gained much interest recently [10, 11, 28] as
ADMM provides a convenient way to solve an optimization problem by solving multiple
sub-problems in parallel. Its use for robust geometric estimation, however, has not been
thoroughly explored. To the best of our knowledge, this is the first work that apply ADMM
technique for the task of robust model fitting by the M-estimator approach.

3 ADMM-Based formulation for Consensus Maximization

In this section, we will show how the consensus maximization problem (1) can be tackled
by using ADMM and demonstrate that with this technique, the task of solving (1) can be
performed in a distributed setting by tackling smaller sub-problems at the same time. Inter-
estingly, the sub-problems are special instances of Quadratic Program (QP) with only one
Quadratic constraint [2], which can be solved up to global optimality using bisection.

By introducing N auxiliary variables θθθ 1,θθθ 2 . . .θθθ N , (1) can be rewritten equivalently as a
constrained optimization problem:

min
θθθ ,θθθ 1,...θθθ N

N

∑
i=1

Φ( fi(θθθ i)), s.t. θθθ = θθθ 1 = · · ·= θθθ N . (6)

Furthermore, to support the convergence of our algorithm2, observe that solution of (6)
does not change if we write it in the following form

min
θθθ ,θθθ 1,...θθθ N

N

∑
i=1

(
Φ( fi(θθθ i))−µ‖θθθ i‖2)+µN‖θθθ‖2, s.t. θθθ = θθθ 1 = · · ·= θθθ N . (7)

Here, µ acts as a regularization parameter, which is fixed during the optimization process.
In our experiments, this parameter is set to 0.001. Note, however, that at convergence, µ

does not change the nature of the problem, i.e., the solution of (7) is also the solution that we
would like to seek for problem (6). See the convergence proof provided in the supplementary
material for more details.

2See supplementary material
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The augmented Lagrangian of (7) with a penalty parameter ρ can be formulated as

Lρ({θθθ i},θθθ ,{λλλ i}) =
N

∑
i=1

(
Φ( fi(θθθ i))−µ‖θθθ i‖2)+Nµ‖θθθ‖2

+ρ

N

∑
i=1

(
‖θθθ i−θθθ +λλλ i‖2−‖λλλ i‖2) (8)

where each λλλ i represents the scaled Lagrangian multiplier that associates with the auxiliary
variable θθθ i. Note that (8) was written in the scaled form of ADMM [3].

3.1 ADMM update
The core idea behind ADMM is to iteratively update the variables, starting from the auxiliary
variables {θθθ i}, then the original variables θθθ , by minimizing the augmented Lagrangian (8)
with respect to that particular variable, while the rest of the other variables are fixed. Finally,
the Lagrangian multipliers λλλ i are also updated by accumulating the difference between the
auxiliary variable and the original ones. Specifically, the update steps at the (t + 1)−th
iteration include:
θθθ i update:

θθθ
(t+1)
i ← argmin

θθθ i

Lρ({θθθ t+1
j }i−1

j=1, θθθ i, {θθθ t
k}N

k=i+1,θθθ
t ,λλλ t) (9)

θθθ update:
θθθ
(t+1)← argmin

θθθ

Lρ({θθθ t+1
i }N

j=1, θθθ ,λλλ t) (10)

λλλ i update:
λλλ

t+1
i ← λλλ

t
i +θθθ

t+1
i −θθθ

t+1 (11)

3.2 Detailed update steps
3.2.1 θθθ i update

Interestingly, by dissecting further into the sub-problems, it can be observed that the updating
steps for {θθθ i} can be solved efficiently up to global optimality.

From (9), updating θθθ i amounts to solving the problem:

min
θθθ i

Φ( fi(θθθ i))−µ‖θθθ i‖2 +ρ‖θθθ i−θθθ +λλλ i‖2
(12)

Clearly, (12) is a non-smooth optimization problem caused by the non-smoothness of the
Φ function. Fortunately, since the outcome of the Φ function can only be either 0 or 1,
the solution of (12) can be achieved by considering the solutions of the following two sub-
problems:

min
θθθ i

−µ‖θθθ i‖2 +ρ‖θθθ i−θθθ +λλλ i‖2 s.t. 0≤ fi(θθθ i)≤ ε, (13)

min
θθθ i

1−µ‖θθθ i‖2 +ρ‖θθθ i−θθθ +λλλ i‖2 s.t. fi(θθθ i)> ε or fi(θθθ i)< 0 (14)

The intuition behind the sub-problems (13), (14) lies in the fact that in other to solve (12)
to update θθθ i, we search for its solution θθθ

∗
i over two sub-domains, where the first sub-domain
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contains θθθ i such that Φ(θθθ i) = 0 (or 0 ≤ fi(θθθ i) ≤ ε) and the other sub-domains contain θθθ i
such that Φ(θθθ i) = 1 (or fi(θθθ i) > ε ∨ fi(θθθ i) < 0). Generally speaking, these sub-problems
are non-convex. However, due to the fact that each of them contains only one quadratic
constraint, they are special cases of quadratic programs with one quadratic constraint [2].
Therefore, the optimal solutions to these subproblems can be achieved by employing well-
known methods such that SDP relaxation, or bisection [2, 22]. In this work, we employ
the bisection approach described in [22]. After obtaining the solutions to (13) and (14),
the solution that induces smaller objective value is then used to update θθθ i. More details are
provided in the supplementary material.

3.2.2 θθθ update

Finally, after all {θθθ i} are updated, θθθ can be revised by solving a convex quadratic optimiza-
tion problem:

min
θθθ

µN‖θθθ‖2−ρ ∑
i
‖θθθ i−θθθ +λλλ i‖2, (15)

which, then can be computed by:

θθθ =
ρ

N(ρ−µ) ∑
i
(θθθ i +λλλ i) (16)

3.3 Convergence
Theorem 1 With a sufficiently large ρ , the ADMM iterations in (9), (10) and (11) converge
after a finite number of steps:

lim
t→∞
‖θθθ (t)−θθθ

(t−1)‖2 = 0

Also, it converges to a stationary point ({θθθ ∗i },θθθ
∗) of the Lagrangian (8) such that

θθθ
∗
1 = θθθ

∗
2 = · · ·= θθθ

∗
N = θθθ

∗

Proof This section outlines the proof. The detailed proof is provided in the supplementary
material. Firstly, we prove that with a sufficiently large ρ , the Lagrangian function (8) is
monotonically non-increasing.

Consider the (t + 1)-th update iteration. As the update steps of θθθ i can be solved up to
global optimality, it follows that

Lρ({θθθ i}(t+1),θθθ t
i,{λλλ i}t)≤ Lρ({θθθ i}t ,θθθ t

i,{λλλ i}t). (17)

Then, after θθθ and all the variables {λλλ i} are updated, it can be proven that with a sufficiently
large ρ , the following inequality holds [see supplementary material]

Lρ({θθθ i}(t+1),θθθ
(t+1)
i ,{λλλ i}(t+1))≤ Lρ({θθθ i}(t+1),θθθ t

i,{λλλ i}t) (18)

From (17) and (18), it can be assured that after each update iteration,

Lρ({θθθ i}(t+1),θθθ
(t+1)
i ,{λλλ i}(t+1))≤ Lρ({θθθ i}t ,θθθ t

i,{λλλ i}t), (19)

given that ρ is sufficiently large.
Moreover, it can also be proven that the Lagrangian is lower-bounded. Therefore, it

convergence is guaranteed. See supplementary material for more details.
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3.4 Main algorithm

Algorithm 1 ADMM-based M-estimator (AMES).

Require: Data {ai,bi,ci,di}N
i=1 , initial

model parameter θθθ 0, initial penalty
value ρ0, increment rate σ , threshold δ .

1: t← 0
2: θθθ

(t)← θθθ 0.
3: θθθ i

(t)← θθθ 0; λλλ i
(t)← 0 ∀i = 1 . . .N.

4: while true do
5: t← t +1
6: Update θθθ i

(t) by solving (9) ∀ i = 1..N

7: Update θθθ
(t) using (16)

8: Update λλλ
(t) using (11)

9: if ‖θθθ (t)−θθθ
(t−1)‖ ≤ δ then

10: θθθ
∗← θθθ

(t)

11: Break.
12: end if
13: ρ(t)← σ ·ρ(t−1).
14: end while
15: return θθθ

∗.

Based on the analysis developed in the previous sections and the convergence proof dis-
cussed in Sec. 3.3, this section provides the pseudo-code for the main algorithm. Note,
however, that although we have proved that the algorithm converges with a sufficiently large
ρ , setting ρ to a large value at the first few iterations may lead to a poor solution as the
problem is non-convex in general. Therefore, similar to other ADMM-based algorithms, we
propose to initialize the parameter ρ with a small value of ρ0 (0.1≤ ρ0 ≤ 5.0) and increase
ρ after each iteration by an incremental rate σ > 1.0. The algorithm terminates once first
order conditions are sufficiently satisfied, i.e., the norm of the difference between the two
successive θθθ is less than a threshold δ .

4 Experiments
Our proposed algorithm (AMES) can be used for a wide range of robust model fitting ap-
plications in computer vision, including problems with linear constraints (algebraic errors)
and quasi-convex residuals with `2 norm. In this section, the performance of AMES com-
pared to other approaches will be evaluated. As the main goal of this work is to develop
an algorithm for M-estimator with the maximum consensus loss function, we focus on
benchmarking our algorithm against other smooth robust loss functions, including Huber
(HB) and Cauchy (CC) loss. In addition, we also compare AMES against other representa-
tive deterministic methods that solve consensus maximization sub-optimally, which include
`∞ outlier removal [25], `1 approximate method [21], IRL1 [23] and exact penalty (EP)
method [16]. We execute RANSAC [12](RS) to get the baseline results and use them as
initializations for all other local methods. Note that RANSAC’s variants are not compared
as we would like to focus on benchmarking the proposed algorithm among the class of de-
terministic algorithms. All methods were implemented in MATLAB on a Ubuntu machine
with 8 cores and 32GB of RAM. For M-estimators with smooth loss function, we use the
robust fitting packages from MATLAB’s toolboxes. Our AMES implementation is available
at: https://github.com/intellhave/AMES.

4.1 Linear regression with synthetic data
First, we test our proposed algorithm on the problem of robust linear regression with syn-
thetic data. The input data X∈RN×6, where N = 2000, and an estimate θθθ ∈R6 are generated
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randomly, with each row xi of X represents a data point. The vector y is generated by first
computing y = Xθθθ , then each yi is perturbed with a Gaussian noise of σnoise = 0.1. Outliers
are simulated by randomly selecting a subset of p% elements of the vector y and corrupt
them by adding a Gaussian noise of σoutliers = 1. The data is then shifted to make it unbal-
anced, i.e., most of the points are distributed on one side of the hyperplane [16]. The residual
function with respect to an estimate θθθ is fi(θθθ) = |xiθθθ − yi|. It can be realized that this is a
special case of the quasi-convex residual (2) by setting all ci to a vector of all zeros and all
di to 1.
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Figure 1: Consensus size (top) and run times in log scale (bottom) for different methods in
linear estimation experiment. RS: RANSAC [12], `1: [21], `∞: [25], IRL1: [23], EP: [16]

Figure 1 plots the consensus size and the runtime at termination for all the methods with
different values of the outlier rate p, where p = 10,15,20, . . . ,70 . It can be observed that
AMES outperformed other M-estimators with smooth loss functions. This justifies the fact
that one can get a better estimation quality by using the right loss function. Approximate
methods such as `1 and `∞ outlier removal, as anticipated, perform well when the outlier
rate is low. However, when the number of outliers increases, as shown in Figure 1, their
performance start to deteriorate.

Our algorithm is comparable to the exact penalty method proposed in [16], although
our algorithm can converge faster. We would like to emphasize, however, that the weak-
ness of [16] is that they can not handle the residuals functions in the form of (2) (with `2
norm), which makes our method a strong candidate for applications that require `2 norm.
Henceforth, we focus on experiments with quasi-convex residuals, namely, the homography
estimation and affine image registration.

4.2 Homography estimation with quasi-convex residuals
With this experiment, we show that by using the right loss function, one gets an estimate
with better quality (larger consensus size) for many popular computer vision applications.
We randomly select the image pairs from the AdelaideRMF dataset [26], and the Zurich
Building dataset3 to test our proposed algorithm for the task of of estimating a homography
matrix with quasi-convex residuals. The pairs of images are listed in Table 1. For each
image pair, SIFT feature was extracted by VFleat toolbox to get a set of approximately 500
to 1000 putative correspondences. All the methods are initialized with the same starting
point (using RANSAC). Table 1 summarizes the results for all the methods. AMES has
demonstrated its ability to consistently upgrade the initial solution to better solutions with
higher consensus size. Observe that, similar to the linear case, we are able to get higher
consensus size compared to other methods, with faster run time. It can be seen from Table 1

3http://www.vision.ee.ethz.ch/showroom/zubud/
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Algorithms RS `1 `∞ HB CC IRL1 EP AMES
Union House

N = 836
|I| 434 430 409 453 447 440 462 462

time (s) 0.64 6.95 1.14 9.75 25.11 4.86 22.84 12.67
Classic Wing

N = 916
|I| 512 425 411 507 504 450 512 524

time (s) 0.72 8.53 1.18 19.03 22.97 3.65 26.74 16.74
Elder Hall
N = 553

|I| 333 299 276 352 337 296 352 345
time (s) 0.72 8.53 1.18 19.03 22.97 3.65 26.74 16.74

Napier
N = 792

|I| 601 601 577 609 597 588 618 618
time (s) 0.67 5.66 0.63 14.34 33.6 1.25 20.63 13.31

University
N = 692

|I| 516 575 484 549 534 576 576 576
time (s) 0.54 3.88 0.96 17.73 14.2 0.63 13.77 10.54

Valbonne
N = 789

|I| 512 476 446 514 476 490 520 520
time (s) 0.64 5.57 1.23 17.19 29.66 1.33 16.29 18.11

Invalides
N = 558

|I| 330 310 314 335 329 308 342 338
time (s) 0.41 2.01 0.49 9.97 12.91 1.19 10.11 10.3

Building 39
N = 660

|I| 373 390 295 415 400 406 412 412
time (s) 0.52 3.15 2.15 7.16 13.41 1.91 15.8 11.28

Table 1: Homography estimation results with quasi-convex residuals. RS: RANSAC [12],
`1: [21], `∞: [25], IRL1: [23], EP: [16]. HB/CC: Huber/Cauchy loss function, respectively.

Algorithms RS `1 `∞ HB CC IRL1 EP AMES
Bikes

N = 666
|I| 589 619 619 613 281 621 620 622

time (s) 4.63 3.15 0.25 8.66 6.62 0.31 7.12 7.68
Tree

N = 636
|I| 475 596 598 477 277 361 598 598

time (s) 4.63 3.15 0.25 8.66 6.62 0.31 7.12 7.68
Boat

N = 896
|I| 350 423 481 458 429 450 486 488

time (s) 4.63 3.15 0.25 8.66 6.62 0.31 7.12 7.68
Graff

N = 663
|I| 279 203 334 331 280 330 335 336

time (s) 4.66 3.14 0.7 10.26 8.39 2.56 9.21 9.09
Raglan
N = 519

|I| 160 132 165 160 163 180 192 202
time (s) 3.52 1.33 1.55 7.37 4.9 0.75 9.5 9.6

Bld 192
N = 507

|I| 258 242 216 261 259 193 267 276
time (s) 3.38 1.18 0.42 12.47 8.91 0.66 7.14 13.19

Bld 155
N = 308

|I| 269 265 274 269 270 259 274 274
time (s) 2.01 0.21 0.1 5.54 5.53 0.13 2.71 9.12

Table 2: Affine image registration results with quasi-convex residuals. RS: RANSAC [12],
`1: [21], `∞: [25], IRL1: [23], EP: [16]. HB/CC: Huber/Cauchy loss function, respectively.
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that the performance of M-estimators with smooth loss functions are inconsistent, and with
the same starting points, most of the time their solutions are worse than AMES.

4.3 Affine image registration
The proposed algorithm is also tested on affine image registration with the image pairs from
the Oxford VGG dataset4 and the Zurich Building dataset (the pairs are listed in Table 2).
The list of methods in the homography estimation experiment are also compared agains
AMES. Results are shown in Table 2. Similar to the homography experiments, with the same
starting point, AMES consistently converges to better solution quality (larger consensus size)
compared to other smooth robust functions and we also outperform other refinement schemes
in term of consensus size with comparable run time.

5 Conclusions
We introduced an ADMM-based approach to solve the consensus maximization in the con-
text of M-estimator. Unlike traditional M-estimators with smooth robust loss functions, our
algorithm is the first algorithm to tackle the non-smooth loss function such that its conver-
gence is guaranteed. We provided the proof for our algorithm together with the experiments
to show that by using the right loss function, one gets a better solution quality than using
smooth loss functions as approximation. Our algorithm can easily be parallelized, which
makes it a promising candidate for deploying to distributed optimization frameworks.
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