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Abstract

This paper addresses the problem of motion estimation using a Convolutional Neural
Network (CNN). We propose a network, called LikeNet, that at test time, receives as
input a pair of images and calculates at the output a pixel-wise distribution over motion
classes. We adopt a Siamese architecture, each branch of which receives the reference
frame and the target frame shifted by a specific motion vector. Each of the branches
calculates at the output a similarity map that at each pixel it could be interpreted as
the probability that the image features in the shifted images match, or equivalently, the
probability that the motion vector at a pixel in question is equal to the shift by which
the target frame was displaced. The individual similarity maps are merged and further
processed by RNNs that implement Conditional Random Fields and impose therefore
anisotropic smoothing constraints. The proposed network is trained in an unsupervised
manner, that is without the need for ground truth motion fields from synthetic sequences,
by optimising at training time the deviation from a feature constancy constraint — this
allows for training with unlimited training data. Our method is tested on both synthetic
and real image sequences and performs similarly with other state-of-the-art unsupervised
methods using a fraction of the number of learned parameters.

1 Introduction

The goal of dense motion estimation is to estimate a motion field that describes the dis-
placement of pixels from a reference frame to a target frame. It is a challenging problem in
computer vision with many applications, such as video coding [6, 15] and tracking [17].
Classical motion estimation methods minimize, at test time, a cost function [3, 4] that pe-
nalizes deviations from constraints. The most important ones are the intensity/brightness/
colour constancy constraint that states that the intensity/ colour of a pixel does not change by
displacement, and the smoothness constraint that states that the motion field of neighbour-
ing pixels should be similar. Several variations and improvements of these constraints have
been proposed in the literature, aiming at more realistic modelling - for example by taking
into consideration motion discontinuities or intensity changes due to shadows [3, 4, 20].
Such constraints are typically handcrafted and, with the exception of a few methods are not
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learned from data. In addition, solving an optimization problems at test time typically results
in computationally expensive iterative estimation schemes.

Inspired by the success of Deep Learning in several low-level Computer Vision problems,
some DNN-based methods have been proposed for motion estimation [5, 9, 18]. Although
they achieve promising results, most of them rely on supervised schemes and therefore re-
quire groundtruth motion fields from a synthetic datasets. Despite the progress in computer
graphics, such synthetic datasets do not accurately characterize realistic scenes. In order
to generalize well to an unseen dataset, supervised methods typically need finetuning, also
requiring ground truth data on samples from that dataset. Obtaining ground truth motion
fields from real scenes is not practical and therefore, developing an accurate method for un-
supervised training is desired. Motivated by this, in the recent years, some "unsupervised"
methods [1, 12, 16, 19, 31] have been introduced. While progress has been made, the pro-
posed methods still have drawbacks. The unsupervised method proposed recently in [19]
involves an upscaling operation at each layer of the latter half of their architecture. This up-
scaling operation helps with the estimation of motions with larger magnitude, however, since
the upscaling is embedded in the architecture, any modification in the number of upscaling
layers requires finetuning. The method proposed in [1] demonstrated good performance on
a test set using unsupervised training, however training the proposed network in practice is
hard. All of those methods treat motion estimation as a regression problem, that is, produce a
2D output with two channels corresponding to the horizontal and vertical motion component.

In this paper, we treat motion estimation as a dense labeling problem. We propose an un-
supervised trained Deep Network by adopting a Siamese architecture, with as many branches
as motion labels. Each branch of the architecture, receives as input the reference frame and
the target frame translated by the motion label in question, and produces the (not normalised)
probability map for the motion label in question - that is the (unnormalized) probability that
a pixel is translated by the motion vector corresponding to the motion label in question. To
the best of our knowledge, this is the first time the problem of motion estimation is treated
as a classification problem in a DNN-based framework.

In order to deal with motions with large magnitude, our network is embedded in a classi-
cal multiscale scheme. A major issue in multiscale methods is that errors at lower resolutions
are propagated to higher ones - for this reason, significant gains can be made by improving
the quality of the estimation at the lower levels. To this end, we use Conditional Random
Fields (CRFs) at the lowest resolution, implemented as an RNN similar to in [30], so that
one can form an end-to-end trainable framework for motion estimation which combines the
strengths of deep learning and graphical modelling. More specifically, we employ the CRF
to improve the estimated motion field at the lowest resolution of our multi-scale scheme. To
the best of our knowledge, this is the first time that CRFs are integrated into a DNN-based
framework for motion estimation.

Our network is trained on a simple cost function, without explicit smoothness or other
constraints - those are implicitly modelled in the filters of the CNN and are learned from
training data. Random, consecutive pairs of frames drawn from videos of the UCF-101
dataset [22] were used for training, while for evaluation both synthetic and realistic datasets
were used. We show that the unsupervised trained LikeNet, although is not finetuned on any
of the evaluation datasets, performs better, or in par with other unsupervised trained DNN-
based methods on both synthetic and real data, even in the case that the other methods are
finetuned (in an unsupervised manner) on the target dataset. In addition, when compared to
other DNN-based methods, LikeNet model is the smallest in terms of learned parameters -
respectively 98% and 42% smaller than FlowNet [7, 19] and SpyNet [18] architectures.
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The remainder of the paper is organised as follows. In Section 2 we discuss some works
related to ours. In Section 3.1 we present the proposed method, and in Section 4 experimental
results and comparisons with other methods in the literature. Finally in Section 5 we draw
some conclusions.

2 Related Work

Intensive research has been conducted in the field of motion estimation since Horn and
Schunk [8] proposed their classical optical flow variational formulation. Horn and Schunk
[8] propose an energy function which minimization penalizes the deviation from the inten-
sity constancy assumption and relaxes a spatial smoothness constraint. For a detailed review
of early methods, we refer to [23, 26] and divide more recent methods into two groups:
DNN-based methods and other methods which we refer to as classic methods.

To tackle the problem of motion estimation, one of the main assumptions is that the
intensity value of the pixels should not change by a displacement. This is referred to as the
brightness constancy constraint. Brox et al. [4] consider two more constraints, gradient
constancy, and a spatiotemporal smoothness constraint, to derive a variational formulation.
Gradient constancy assumption allows for slight intensity changes under a displacement.
The smoothness assumption takes into account the neighbouring pixels to take care of the
situation where there is no gradient or in the case of aperture problem. Minimizing the energy
function in [4] allows for estimation of accurate dense motion field for small motions. Their
multi-scale coarse-to-fine approach allows for estimation of larger motions. Several effective
methods have been published following the same principle [8, 28].

State-of-the-art approaches [3, 27] use descriptors matched between two frames inte-
grated into a variational approach. Brox et al. in [3] combines the advantage of both en-
ergy minimization methods which yield dense motion field for small motions and descriptor
matching which allows finding large displacements. They use a segmentation method to find
regions in the frame and produce region descriptors that are later used to find a sparse set
of hypothesis for correspondences. These hypotheses, initial matches, are then integrated
into a variational approach. Their energy function is similar to [4] but, with one additional
term which integrates the correspondence information. Most of the descriptor matching ap-
proaches rely on rigid descriptors which mean rigid motion hypothesis. Weinzaepfel et al.
in [27] first propose a new non-rigid matching algorithm which can retrieve smooth dense
correspondence and then they suggest a method for combining the matchings with a varia-
tional approach for motion estimation. The method proposed in [20] has three steps: First,
to find the matched features between the two frames which forms a sparse set. Second, to
perform a densification of this sparse set of matches by computing a sparse-to-dense edge-
aware interpolation. Third, they perform one step of variational energy minimization using
the dense interpolation as initialization. Although this method does not suffer from previous
shortcomings, like the other, it is still relaxing handcrafted constraints.

Inspired by the great success of Deep Neural Networks in several Computer Vision prob-
lems [14], a CNN has been proposed by Dosovitskiy et al. in [5] for motion estimation.
The method showed performance that was close to the state-of-the-art in a number of syn-
thetically generated image sequences. Dosovitskiy et al. in [5] propose two convolutional
hourglass architectures which are trained for motion estimation and differ in some of the
lowest convolutional layers. One is fully composed of conventional convolutional layers
as receives the input pair as a 2 channel data, FlowNetS. In the other one, the two input
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frames are fed into two convolutional streams and after 3 convolutional layers, the com-
puted featuremaps are joined through a correlation layer, FlowNetC. The idea behind their
architecture is to learn strong features at multiple scales and abstractions and to ease finding
the actual correspondences based on these features. They reported outperforming some of
the classical state-of-the-art methods. In Flownet 2.0 [9] the concept of end-to-end learning
of optical flow was used to improve the quality of the estimation and the performance by
slightly sacrificing the speed. To train both FlowNet and Flownet2.0 supervised, synthet-
ically made datasets were used as the existing optical flow datasets are too small. These
synthetic datasets consist of random background images on which are overlaid segmented
images. These data do not characterize real-world data, but allows for generating arbitrary
amounts of samples with custom properties. Another method has been proposed by Ran-
jan and Black [18] which employs DNNSs in a coarse-to-fine scheme for motion estimation.
They let the coarse-to-fine scheme to handle larger motions and get a considerable reduction
of learned parameters compared to FlowNet while achieving a higher performance compared
to FlowNet. However, those methods require ground truth motion fields for training.

The first unsupervised DNN-based methods were proposed in [1, 12]. [1] minimizes the
classic intensity constancy constraint linearized by Taylor expansion for training and applies
it in a multi-scale scheme during the test. However, this method is not easy to train and there
is no mechanism to improve the quality of estimation in the lower resolutions to prevent
the propagation of the errors across scales. [12] adopts a similar approach, however instead
of linearisation of the motion compensated intensity differences, they utilise a spatial trans-
former layer Jaderberg et al. [10] and explicitly penalise motion discontinuities. [19] adopt
the FlowNetS architecture [5] and train it using the method proposed in Jaderberg et al. [10]
considering also gradient and smoothness constancy assumptions. They use an upscaling
operation at each layer of the latter half of the exploited architecture. This upscaling oper-
ation helps with the estimation of motions with larger magnitude. However, the upscaling
is embedded in the architecture and therefore any modification in the number of upscaling
layers requires finetuning. All of the methods above treat motion estimation as a regres-
sion problem, this is produce a 2 channel output with dimensions equal to those of the input
images.

3 LikeNet: a CNN for Motion Estimation

In this section, we present in detail our approach for a CNN for motion estimation, or more
precisely a CNN for pixel-level motion class prediction. More specifically, LikeNet treats
motion estimation as a classification problem and at test phase, it predicts for each pixel, the
motion label/class of the pixel in question. More specifically, at test time, LikeNet receives
as input a pair of consecutive frames and outputs a pixel-level distribution over K motion
labels/classes.

Formally, let L be a Random Field defined over a set of N discrete variables {L1,--- ,Ly},
where N is the number of image pixels. The domain of each variable L; is a set of motion
labels M = {my,--- ,mg}, each label corresponding to a motion vector. Clearly, an instan-
tiation of the label field L corresponds to a dense motion field and in this paper, the term
will be used to denote both the k" label and the k" motion vector - the interpretation should
be clear from the context. Also, let I € R2*N denote an input pair of consecutive frames, each
of size N. LikeNet receives [ as input and outputs a pixel-level distribution over the motion
classes, P(L|I;0), where 6 denotes the model parameters, that is the parameters of the net-
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work. The mode of P(L|I;0) could be then used as a point estimate of the motion/label field.
That is L* = argmax P(L|I; ).
L

3.1 Architecture
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Figure 1: The proposed architecture of LikeNet. For simplicity, only two branches out of K
branches (motion classes) are illustrated. The input to the k' branch is the concatenation of
the first frame and the second frame shifted with the corresponding motion vector my. Block
Wy warps its input along with motion vector my. LikeNet outputs a pixel-level distribution
over the motion classes, P(L|I; ).

An overview of the proposed architecture of LikeNet at test time is given in Fig. 1(a).
More specifically, to calculate P(L|I; 6), we propose a Siamese CNN with number of branches
equal to K. The input to the k" branch is the concatenation of the first frame and the sec-
ond frame shifted by the corresponding motion vector my. Each branch consists of a Local
Contrast Normalization (LCN) layer [11] and three convolutional layers, and calculates a
single channel, pixel-level heat-map, which indicates whether the pixels at the same location
in the reference and the shifted target frames, match. Since the target frame has been shifted
by the motion vector my this heat-map can be interpreted as the probability (not normalized)
that a pixel has moved by my. In order to obtain a normalized distribution over all motion
classes/labels, the concatenation of the heat-maps, calculated by all branches, are passed
through a Softmax layer. In other words, the kK’ branch is responsible for calculating pixel-
level probability map P(L = my|l;8) € [0,1]" that expresses the probability that each pixel
in I is displaced by my. An arbitrary k’" branch and P(L|I; ) are highlighted in blue dotted
squares in Fig. 1(a).

During training we would like to learn parameters such that at pixel i the probability
P(L; = my|I;0) produced by LikeNet is high for the true motion label my and low for the
other labels. Our assumption is that, under an appropriate distance measure, the feature
differences/distances under the correct motion vector will be lower than the feature distance
under an arbitrary motion vector. That is, the features F(x;,#) extracted at location x; (pixel
i) in the reference frames, will be more similar to their correspondences F(x; +my,f +dr) in
the target frame shifted by the correct my (Fig. 1). Formally, we train the network so as to
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minimize the following cost function:

C(1;:0)=Y Y P(Li=my|I,6)D(i,my), (D)

i meM

where D(i,my) is the distance between F(x;,¢ 4+ dt) and its corresponding aligned pixel in
the shifted target frame F(x; +my, 7 + dr). The distance that we use in this paper is:

D(i,my) = JSD(F (x; + my,t +dr)||F(x;,7)) (2)

where JSD denotes the Jensen-Shannon divergence.In our experiments, we chose F in Eq.
(2) to be the features calculated by the first convolutional layer of VGG-16 [21]. While
raw intensities/colour could also be used, we have found that those features perform better.
These distances are calculated by the branch of the network depicted in Fig. 1(b), which
clearly, is used only during training.

Intuitively, we would like that the network outputs higher probability P(L = my|l;0)
at pixels where, under a shift by my, the distance between the corresponding features is
smaller. Given that the probability of the motions for each pixel sums to one, minimizing
Eq. (1) forces the network to increase the probability of the motion classes for which their
corresponding values in D are small.

The proposed formulation relies on a quantisation of the motion vectors to motion labels.
With a quantization of each of the horizontal/vertical components to integers, in order to be
able to estimate motions of magnitude V, K = V2 branches are needed at test time. For large
V this is not practical. For this reason, at test time we embed the trained network in a multi-
scale scheme as described in Algorithm 1. In our experiments we use 5 scales with 121, 169,
49, 9, 9, branches from the lowest resolution to the highest resolution, respectively.

AlgOl‘ithm 1 The algorithm of our proposed framework during the test time.

1: procedure
: I,,I,: The two input frames
3 Y: The estimated motion field
4 B: The number of image pyramid levels
5: I{,I3: The downsampled versions of /; and I, by a factor of 2"
6: 13 - The warped version of the second frame
T Y0, I <15 nep
8 while n > 0 do
9 AY <~ CNN(1},13,) : Calculate the update on the motion field

10: if n =3 then

11: AY < CRF (I} ,AY) : Correcting the motion field in the lowest resolution
12: AY < GaussFilt(AY) : Gaussian filtering of the motion field

13: Y < Y+ AY : Update Y using the motion field

14: Up-sample Y by a factor of <

15: n«n—1

16: I3 < warp(I5,Y) : Warp I} towards [} using the motion field

17: end while
18: Return Y

3.2 Graphical model - CRFs

To avoid the propagation of errors across scales, we improve the quality of the estimated
motion at the lowest resolution of the multi-scale scheme by using a graphical model, CRF
(Fig. 2). In this Section, we provide a brief overview of the CRFs, how we learn their
parameters and how we use them at inference for pixel-wise labeling. The Random Variable
L that models pixel motion labels form a Markov Random Field when conditioned upon the
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Figure 2: A CRF block at the lowest resolution during test time.

observation /. Given a graph G = (V,E), where V = {L;,L,,...,Ly} and the observation
I, the pair (1,L) can be modeled as a CRF characterized by a Gibbs distribution P(L|I) =
ﬁexp(fE (L|)). Here E(L) and Z(I) are the energy and partition function, respectively.
For convenience, we will drop the conditioning on /. In our CRF model, similar to [30], the
energy of the label assignment L is given by:

N
E(L)=Y w(L)+ Y, wp(LiL)) 3)
i=1 jen(i\i

where y,(L;) is the unary energy of the pixel i taking the label L;, and the pairwise energy
component y,(L;,L;) measures the cost of assigning labels L;, L; to pixels i,j simultane-
ously. Also, n(i) represents the neighborhood of pixel i. The unary is obtained from LikeNet
which predicts the labels without any smoothness or consistency assumption. The pairwise
energies provide an image data-dependent smoothing term that encourages assigning similar
motion labels to pixels with similar properties. As in [13], we model pairwise potentials as
weighted Gaussians:

W g £, )
1

Wp(Li,Lj) = u(Li,Lj)

M=

nt

where each yg"),m =1,...,K, is a Gaussian kernel applied on feature vectors. The feature
vector at pixel i, denoted by f;, are spatial location and intensity values. The function u(.,.),
called the label compatibility function, captures the compatibility between different pairs of
labels. Minimizing the above CRF energy E(L) yields the most probable motion label as-

signment L. To obtain the parameters, we follow the RNN-like training scheme proposed
B (L;-L)?

in [30]. We set w™ to 1 and use a compatibility matrix u(Li,L;) = %e 20¢  that is

parametrized by a single parameter o.. This is different to [30] that addresses a labeling

problem where there is no natural order/structure in the labels and learns a pairwise compat-

ibility matrix u(.,.) € RE*K (where K is the number of labels) — in our case, the labels are

structured. An overview of the CRF block, drawn from [30], is illustrated in Fig. 2.

4 Experiments

In order to evaluate our work, we compare LikeNet with a number of state-of-the-art clas-
sical and DNN-based methods, supervised and unsupervised, on a number of benchmarks.
Likenet is trained for 7k iterations on samples drawn from the realistic action recognition
dataset UCF101 and is not fine-tuned on any synthetic dataset. We trained for 7k iterations
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RS

Figure 3: MPI-Sintel examples. (top-to-bottom) Input first frames, groundtruth flows, and
predicted flows from LikeNet.

Method Number of learned parameters
FlowNetS 32,070,472
FlowNetC 32,561,032

SpyNet 1,200,250

LikeNet 697,028

Table 1: Compared to other DNN-based methods, LikeNet is the smallest in terms of learned
parameters. DSTFlow [19] follows the FlowNetS architecture. UnFlow-C [16] follows
the FlowNetC architecture and UnFlow-CS is a FlowNetS architecture stacked on top of
a FlowNetC. UnFlow-CSS architecture is composed of a FlowNetS stacked on top of the
UnFlow-CS.

on samples drawn from the action recognition dataset named UCF101, and optimized its pa-
rameters by adopting Nesterov momentum method with momentum 0.9 [25]. The learning
rate starts from 0.1 and drops aggressively by a factor of 2 every 1000 iterations. In our
experiments, during training, K is set to 121 to deal with horizontal and vertical motions of
maximum magnitude 5 pixels. The motion distribution in the training data can be controlled
by resizing the drawn frames, we resized the frames to 96 x 128 for training.

Visualization of the motion field of some examples, estimated by LikeNet, from MPI-
sintel are illustrated in Fig. 3. To quantitatively evaluate our method we report the Average
End-point Error (AEE) on both synthetic and real datasets in Table 2. All measures in-
clude the occluded areas. We find that LikeNet is performing better than other unsupervised
methods that do not use bidirectional schemes even without being fine-tuned on any other
synthetic or real dataset, and close to UnFlow, that adopts a bidirectional scheme that helps
significantly with occlusions. Let us note that in our Siamese architecture, each branch does
the easier task of computing the similarity between corresponding pixels. This consider-
ably reduces the model complexity of LikeNet, each branch of which consists of only 4
layers. The number of parameters that are learned is 697,028 compared to 1,200,250, and
32,070,472 and 32,561,032 parameters SpyNet [18], FlowNetS and FlowNetC respectively
learn, Table 1. LikeNet is about 42% smaller than SpyNet and 98% smaller than FlowNet.
While the number of the parameters are not explicitly reported, the DSTFlow method pro-
posed in [19] uses the FlowNetS architecture, and the UnFlow methods build on the FlowNet
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Method Fine Sintel clean Sintel final KITTI2015 Middlebury

tuned  train test train test train train
DeepFlow N 2.66  5.38 3.57 7.21 10.63 0.25
@] LDOF (CPU) [3] N 4.64 756 5.96 9.12 18.19 0.44
§ LDOF (GPU) [24] N 4.76 - 6.32 - 18.20 0.36
& EpicFlow [20] N 227 412 3.56 6.29 9.27 0.31
FlowFields [2] N 1.86 3.75 3.06 5.81 8.33 0.27
PCA-Layers [29] N 322 573 4.52 7.89 12.74 0.66
PCA-Flow [29] N 4.04  6.83 5.18 8.65 14.01 70
o FlowNetS [5] N 450 696 5.45 7.52 - 1.09
g ©  FlowNetC [5] N 431 685 5.87 8.51 - 1.15
'g S SpyNet [18] N 412 6.69 5.57 8.43 0.33
g FlowNet2 [9] N 202 396 3.14 6.02 10.06 0.35
B UnFlow-CS-ft-(KITTI supervised) [16] Y - - 11.99 - (2.25) 0.64
5 UnFlow-CSS-ft(KITTI supervised) [16] Y - - 13.65 - (1.86) 0.64
§ UCNNME [1] N 894 124 10.60 13.78 14.94 2.79
:_ DSTFlow [19] N 6.93 1040 7.82 11.11 24.30 -
2 < DSTFlow(KITTI) [19] Y 7.10 1095 795 11.8 16.79 -
a z DSTFlow(Sintel) [19] Y 6.16 1041 738 11.28 23.69 -
S DSTFlow(C+K) [19] Y 7.51 - 8.29 - 22.93 -
DSTFlow(C+S) [19] Y 647 10.84 6.81 11.27 25.98 -
UnFlow-C-Cityscapes [16] N - - 8.23 - 10.78 0.85
UnFlow-C [16] N - - 8.64 - 8.80 0.88
UnFlow-CS [16] N - - 7.92 - 8.14 0.65
UnFlow-CSS [16] N - - 791 10.22 8.10 0.65
LikeNet N 57 1002 649 10.69 14.66 0.78

Table 2: Average End-point Error (in pixels) of classic and DNN-based methods. LikeNet
performs better or in par with other unsupervised methods although it is not finetuned on any
of the evaluation datasets and its capacity is considerably smaller that all other DNN-based
methods.

architectures, in some cases of considerable complexity (e.g., UnFlow-CSS architecture is a
FlowNetC followed by a two FlowNetS).

5 Conclusions

In this work, we propose a new Siamese CNN which solves the motion estimation as a clas-
sification problem, named LikeNet. We show that a feature constancy constraint can be used
for successfully training LikeNet in an unsupervised manner and without the need for any
handcrafted regularization or other constraints. Our CNN is trained on the realistic UCF101
dataset. We show that it performs better than the other state-of-the-art unsupervised methods
that do not use bi-directional constraints, and that it can generalize very well to unknown
datasets without the need for finetunning. The architecture of the network allows for com-
putational flexibility and prediction of as many motion classes as required. The proposed
method is among the very few studies conducted on the unsupervised training of DNNs
for motion estimation. For future work, we intend to incorporate bi-directional constraints
(i.e., perform motion estimation based on three frames) and investigate on computationally
efficient schemes.
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