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Abstract

Doodling is a useful and common intelligent skill that people can learn and master.
In this work, we propose a two-stage learning framework to teach a machine to doodle in
a simulated painting environment via Stroke Demonstration and deep Q-learning (SDQ).
The developed system, Doodle-SDQ, generates a sequence of pen actions to reproduce
a reference drawing and mimics the behavior of human painters. In the first stage, it
learns to draw simple strokes by imitating in supervised fashion from a set of stroke-
action pairs collected from artist paintings. In the second stage, it is challenged to draw
real and more complex doodles without ground truth actions; thus, it is trained with Q-
learning. Our experiments confirm that (1) doodling can be learned without direct step-
by-step action supervision and (2) pretraining with stroke demonstration via supervised
learning is important to improve performance. We further show that Doodle-SDQ is
effective at producing plausible drawings in different media types, including sketch and
watercolor. A short video can be found at https://www.youtube.com/watch?
v=—5FVUQFQTaE.

1 Introduction

Doodling is a common, simple, and useful activity for communication, education, and rea-
soning. It is sometimes very effective at capturing complex concepts and conveying compli-
cated ideas [2]. Doodling is also quite popular as a simple form of creative art, compared to
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Figure 1: Cat doodles rendered using color sketch (left) and water color (right) media types.

other types of fine art. We all learn, practice, and master the skill of doodling in one way or
another. Therefore, for the purposes of building a computer-based doodling tool or enabling
computers to create art, it is interesting and meaningful to study the problem of teaching a
machine to doodle.

Recent progress in visual generative models—e.g., Generative Adversarial Networks [9]
and Variational Autoencoders [18]—have enabled computer programs to synthesize complex
visual patterns, such as natural images [4], videos [29], and visual arts [6]. By contrast to
these efforts, which model pixel values, we model the relationship between pen actions and
visual outcomes, and use that to generate doodles by acting in a painting environment. More
concretely, given a reference doodle drawing, our task is to doodle in a painting environment
S0 as to generate a drawing that resembles the reference. In order to facilitate the experiment
setup and be more focused and expedient on algorithm design, we employ an internal Simu-
lated Painting Environment (SPE) that supports major media types; for example, sketch and
watercolor (Figure 1).

Our seemingly simple task faces at least three challenges:

First, our goal is to enable machines to doodle like humans. This means that rather than
mechanically printing pixel by pixel like a printer, our system should be able to decompose
a given drawing into strokes, assign them a drawing order, and reproduce the strokes with
pen action sequences. These abilities require the system to visually parse the given drawing,
understand the current status of the canvas, make and adjust drawing plans, and implement
the plans by invoking correct actions in a painting environment. Rather than designing a
rule-based or heuristic system that is likely to fail in corner cases, we propose a machine
learning framework for teaching computers to accomplish these tasks.

The second challenge is the lack of data to train such a system. The success of modern
machine learning heavily relies on the availability of large-scale labeled datasets. However,
in our domain, it is expensive, if not impossible, to collect paintings and their corresponding
action data (i.e., recordings of artists’ actions). This is compounded by the fact that the artis-
tic paintings space features rich variations, including media types, brush settings, personal
styles, etc., that are difficult to cover. Hence, the traditional paradigm of collecting ground
truth data for model learning does not work in our case.

Consequently, we propose a hybrid learning framework that consists of two stages of
training, which are driven by different learning mechanisms. In Stage 1, we collect stroke
demonstration data, which comprises a picture of randomly placed strokes and its corre-
sponding pen actions recorded from a painting device, and train a model to draw simple
strokes in a supervised manner. Essentially, the model is trained to imitate human drawing
behaviour at the stroke level with step-by-step supervision. Note that it is significantly easier
to collect human action data at the stroke level than for the entire painting. In Stage 2, we
challenge the model learned in Stage 1 with real and more complex doodles, for which there
are no associated pen action data. To train the model, we adopt a Reinforcement Learning
(RL) paradigm, more specifically Q-learning with reward for reproducing a given reference
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Figure 2: Sketch Drawing Examples: BMVC. (top) The images produced by unrolling the
Doodle-SDQ model for 100 steps. (bottom) The corresponding reference images.

drawing. We name our proposed system Doodle-SDQ, which stands for Doodle with Stroke
Demonstration and deep Q-Networks. We experimentally show that both stages are required
to achieve good performance.

Third, it is challenging to induce good painting behaviour with RL due to the large
state/action space. At each step, the agent faces at least 200 different action choices, includ-
ing the pen state, pen location, and color. The action space is larger than in other settings
where RL has been applied successfully [19, 20, 21]. We empirically observe that Q-learning
with a high probability of random exploration is not effective in our large action space, and
reducing the chance of random exploration significantly helps stabilize the training process,
thus improving the accumulated reward.

To summarize, Doodle-SDQ leverages demonstration data at the stroke level and gen-
erates a sequence of pen actions given only reference images. Our algorithm models the
relationship between pen actions and visual outcomes and works in a relatively large action
space. We apply our trained model to draw various concepts (e.g., characters and objects)
in different media types (e.g., black and white sketch, color sketch, and watercolor). In
Figure 2, our system has automatically sketched a colored “BMVC”.

2 Related Work

2.1 Imitation Learning and Deep Reinforcement Learning

Imitation learning techniques aim to mimic human behavior in a given task. An agent (a
learning machine) is trained to perform a task from demonstrations by learning a mapping
between observations and actions [15]. Naive imitation learning, however, is unable to help
the agent recover from its mistakes, and the demonstrations usually cannot cover all the sce-
narios the agent will experience in the real world. To tackle this problem, DAGGER [22]
iteratively produces new policies based on polling the expert policy outside its original state
space. Therefore, DAGGER requires an expert to be available during training to provide
additional feedback to the agent. When the demonstration data or the expert are unavail-
able, RL is a natural choice for an agent to learn from experience by exploring the world.
Nevertheless, reward functions have to be designed based on a large number of hand-crafted
features or rules [30].

The breakthrough of Deep RL (DRL) [20] came from the introduction of a target network
to stabilize the training process and experience replay to learn from past experiences. Hasselt
et al. [13] proposed Double DON (DDQN) to solve an over-estimation issue in deep Q-
learning due to the use of the maximum action value as an approximation to the maximum
expected action value. Schaul et al. [23] developed the concept of prioritized experience
replay, which replaced DQN’s uniform sampling strategy from the replay memory with a
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sampling strategy weighted by TD errors. Our algorithm starts with Double DQN with
prioritized experience replay (DDQN + PER) [23].

Recently, there has also been interest in combining imitation learning with the RL prob-
lem [3, 26]. Silver et al. [24] trained human demonstrations in supervised learning and used
the supervised learner’s network to initialize RL’s policy network while Hester et al. [14]
proposed Deep Q-learning from Demonstrations (DQfD), which leverages even very small
amounts of demonstration data to accelerate learning dramatically.

2.2 Sketch and Art Generation

There are outstanding studies related to drawing in the fields of robotics and Al. Tradi-
tionally, a robot arm is programmed to sketch lines on a canvas to mimic a given digitized
portrait [28]. Calligraphy skills can be acquired via Learning from Demonstration [27]. Re-
cently, Deep Neural Network-based approaches for art generation have been developed [6,
8]. An earlier work by Gregor et al. [11] introduced a network combining an attention mech-
anism with a sequential auto-encoding framework that enables the iterative construction of
complex images. The high-level idea is similar to ours; that is, updating only part of the
canvas at each step. Their method, however, operates on the canvas matrix while ours gen-
erates pen actions that make changes to the canvas. More recently, a SPIRAL model [7]
used Reinforced Adversarial Learning to produce impressive drawings without supervision;
however, the model generates control points for quadratic Bezier curves, rather than directly
controlling the pen’s drawing actions.

Rather than focusing on traditional pixel image modeling approaches, Zhang et al. [31]
and Simhon and Dudek [25] proposed generative models for vector images. Graves [10]
focused on handwriting generation with Recurrent Neural Networks to generate continuous
data points. Following the handwriting generation work, a sketch-RNN model was proposed
to generate sketches [12, 16], which was learned in a fully supervised manner. The features
learned by the model were represented as a sequence of pen stroke positions. In our work,
we process the sketch sequence data and, using an internal simulated painting environment,
render onto the canvas as in the reference images.

3 Methodology

Given a reference image and a blank canvas for the first iteration, our Doodle-SDQ model
predicts the pen’s action. When the pen moves to the next location, a new canvas state is
produced. The model takes the new canvas state as the input, predicts the action based on
the difference between the current canvas and the reference image, and repeats the process
for a fixed number of steps. (Figure 3a).

3.1 Our Model

The network has two input streams (Figure 3b-A). The global stream has 4 channels, which
comprise the current canvas, the reference image, the distance map and the color map. The
distance map and the color map encode the pen’s position and state. The local stream has
2 channels—the cropped patch of the current canvas centered at the pen’s current location
with size equal to the pen’s movement range, and the corresponding patch on the reference
image. Unlike the classical DQN structure [20], which stacks four frames, the input in this
model includes only the current frame and no history information.
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Figure 3: Doodle-SDQ structure. (a) The algorithm starts with a blank canvas and an input
reference image. The neural network predicts the action of the pen and sends rendering com-
mands to a painting engine. The new canvas and the reference image are then concatenated
and the process is repeated for a fixed number of steps. (b) A: Two CNNs extract global
scene-level contextual features and local image patch descriptors. The local and global fea-
tures are concatenated for action prediction. B: Given the current position (red dot) and the
predicted action (green dot), the painting engine renders a segment to connect them. The
rectangle of blue dots represents the movement range, which is the same size as the local
image patch.

The convnet for global feature extraction consists of three convolutional layers [20]. The
first hidden layer convolves 32 8 x 8 filters with stride 4. The second hidden layer convolves
64 4 x 4 filters with stride 2. The third hidden layer convolves 64 3 x 3 filters with stride 1.
The only convnet layer of the local CNN stream convolves 128 11 x 11 filters with stride 1.
The two streams are then concatenated and input to a fully-connected linear layer, and the
output layer is another fully-connected linear layer with a single output for each valid action.

At each time step, the pen must decide where to move (Figure 3b-B). The pen is designed
to have maximum 5 pixels offset movement horizontally and vertically from its current posi-
tion.! Therefore, the movement range is 11 x 11 and there are in total 121 positional choices.

The pen’s state is determined by the type of reference image. Specifically, the pen’s state
is either up or down (i.e., draw) for a grayscale image. For a color image, the pen’s state
can be up or down with a color selected from the three options (i.e., red, green, and blue).2
Therefore, the dimension of the action space is 242 for grayscale images and 484 for color
images. Figure 3b-B shows a segment rendered given the pen’s current position and the
predicted action.

Rather than memorizing absolute coordinates of a pen on a canvas, humans tend to en-
code the relative positions between points. To represent the current location of the pen, an
L2 distance map is constructed by computing

\/(x_xo)z + (y _yo)z
L )

D(X,y) = V(xvy) €Q, (D
where Q denotes the canvas which is an L x L discrete grid, L being the length of the canvas’
side, and (x,,y,) is the current pen location. In terms of a color map, all elements are 1
when the pen is put down and 0 when the pen is lifted up for grayscale images. For an
image with red, green, and blue color, all elements are 0 when the pen is lifted up, 1 for red

The maximal offset movement of the pen is set arbitrarily; it could also be 4 or 6.
2The painting engine allows more colors; however, to simplify our experiments, we limit it to three colors.
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Figure 4: Data preparation for pre-training the network. (a) A reference image comprising
two strokes randomly placed on the canvas; (b) the current canvas as part of the reference
image; (c) the distance map of the current canvas, whose center is the pen’s location on the
current canvas; (d) the next step canvas after a one step action of the pen; (e) The distance
map of the next step canvas, which represents the pen’s location on the next step canvas.

color drawing, 2 for green color and 3 for blue color. The size of distance map and the color
map is the same as the canvas size, which is 84 x 84 (Figure 3b-A). Table 1 summarizes the
dimensionalities of the input and output for grayscale or color reference images.

Image Input global stream | Input local stream | Output action space
Grayscale 84 x84 x4 11x11x2 11 x11x2=242
RGB 84 x84 x 8 11x11x6 11x11x4=484

Table 1: Input and output dimensionalities.

3.2 Pre-Training Networks Using Demonstration Strokes

DRL can be difficult to train from scratch. Therefore, we pre-train the network in a su-
pervised manner using synthesized data with ground truth actions. The synthetic data are
generated by randomly placing real strokes on canvas (Figure 4a). The real strokes are col-
lected from recordings of a few artist paintings.

In the learning from demonstration phase, each training sample consists of the reference
image (Figure 4a), the current canvas (Figure 4b), the color map, the distance map (Fig-
ure 4c), the small patch of the reference image, and the current canvas. The ground truth
output will be the drawing action producing Figure 4d from Figure 4b. After training, the
learned weights and biases are used to initialize the Doodle-SDQ network in the RL stage.

3.3 Doodle-SDQ

To encourage the agent to draw a picture similar to the reference image, the similarity be-
tween the k™ step canvas and the reference image is measured as

L L 112
YRR )
_ M ,

Sk

@)
where P,]; is the pixel value at position (i, ;) in the k™ step canvas and lf’irj‘?f is the pixel value
at that position in the reference image.

The pixel reward of executing action at the k™ step is defined as

Tpixel = Sk — Sk+1- 3)
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Figure 5: Reference images for training and testing. 16 classes are randomly chosen from
the QuickDraw dataset [16]: clock, church, chair, cake, butterfly, fork, guitar, hat, hospital,
ladder, mountain, mailbox, mug, mushroom, T-shirt, house.

An intuitive interpretation is that rpixer is 0 when the pen is up and increases with the simi-
larity between the canvas and reference image.

To avoid slow movement or pixel by pixel printing, we penalize small steps. Specifically,
if the pen moves less than 5 pixels/step when the pen is drawing or if it moves while being
up, the agent will be penalized with Pyep. If the input is an RGB image, we additionally
penalize the incorrectness of the chosen color P.ojor-

Thus, the final reward is

Tk = Fpixel T Pstep + ﬁPCOIOU 4)

where Pyiep and Pror are constants set based on the observation, and  depends on the input
image type: O for a grayscale image and 1 for a color image.

In the RL phase, we use QuickDraw [16], a dataset of vector drawings, as the input
reference image. Since the scale of the drawings in QuickDraw varies across samples, the
drawing sequence data is processed such that all the drawings can be squeezed onto an
84 x 84 pixel canvas. We randomly selected sixteen classes, and each class includes 200
reference images (Figure 5). For RL training, the images except for the ‘house’ class are
applied. Therefore, 3,000 reference images are adopted for training.

4 Experiments

During the pretraining phase, we use a softmax cross entropy loss for the classification task.
The loss is minimized using Adam [17] with minibatches of size 128 for optimization with
the initial step size o = 0.001, and gradually decays with the training step. Instead of using
random initialization, the learned weights from the pretrained classification model are used
to initialize Doodle-SDQ’s network. Due to the large action space, the pen is likely to draw
a wrong stroke following a random action in the RL phase. Thus, exploration in action space
is rarely applied unless the pen is stuck at some point.> For the RL stage, we train for a total
of 0.6M frames and use a replay memory of 20 thousand frames. The weights are updated
based on the difference between the Q value and the output of the target Q network [23]. The
loss is minimized using Adam with & = 0.001. Our model is implemented in Tensorflow [1].
We plan to release our code, data, and the painting engine to facilitate the reproduction of
our results.

To visualize the effect of the algorithm, the model is unrolled for 100 steps starting from
an empty canvas. We chose 100 steps because more steps do not lead to further improvement.
Figure 6 shows the drawing given the reference images from different categories in the test
set using different media types. Additional sketch drawing examples are presented (Figure 7)

3From our observations, the pen is likely to stop moving at some location or move back and forth between two
spots. Only in these scenarios, the pen will be given a random action to avoid local minima.
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Figure 6: Comparisons between drawings and reference images in different media types: (a)
sketch, (b) color sketch, (c) watercolor. The left image in each pair is the drawing after 100
steps of the model and the right is the reference image. The drawings in watercolor mode
are enlarged to visualize the stroke distortion and color mixing

and the algorithm was tested on reference images not in the QuickDraw dataset, where we
found that, although it was trained on QuickDraw, the agent has the ability to draw quite
diverse doodles. For a reference image, the reward from each step is summed up and the
accumulated reward is a quantitative measure of the performance of the algorithm. The
maximum reward is achieved when the agent perfectly reproduces the reference image. In
the test phase, we used 100 house reference images and 100 reference images randomly
selected from the test sets belonging to the training classes.

Naive | SDQ + Pretrain Pretrain SDQ + Max
SDQ | Rare exp on on Rare exp + reward
random | QuickDraw | weight init
H Sketch 93 1,404 1,726 1,738 1,927 2,966
Clue | ColorSketch | =13 | 1651 | 1765 1,747 1,808 3,484
Water Color | -162 407 596 620 670 1,492
.. Sketch 67 1024 1,539 1,521 1,805 2,645
Training
Classes Color Sketch -15 1,464 1,669 1,683 1,731 3,533
Water Color | —182 363 446 473 509 1527

Table 2: Average accumulated rewards for the models tested.

Table 2 presents the average accumulated rewards and the average maximum rewards
across reference images. In the table, the ‘Naive SDQ’ model is the Doodle-SDQ model
trained from scratch following a €-greedy strategy with € annealed linearly from 1.0 to 0.1
over the first fifty thousand frames and fixed at 0.1 thereafter. The ‘SDQ + Rare exp’ is the
Doodle-SDQ model trained from scratch with rare exploration. The ‘Pretrain on random’
model is the model with supervised pretraining on the synthesized random stroke sequence
data (Figure 4). The ‘Pretrain on QuickDraw’ model is the model with supervised pretraining
on the QuickDraw sequence data. The ‘SDQ + Rare exp + weight init” model is the Doodle-
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Figure 7: Additional sketch drawing examples.

SDQ model with rare exploration and weight initialization from the ‘Pretrain on random’
model. Based on the average accumulated reward, Doodle-SDQ with weight initialization is
significantly better than all the other methods. Furthermore, pretraining on the QuickDraw
sequence data directly does not lead to superior performance over the RL method. This
indicates the advantage of using DRL in the drawing task.

5 Discussion

We now list several key factors that contribute to the success of our Doodle-SDQ algorithm
and compare it to the DDQN + PER model of Schaul et al. [23] (Table 3).

Since Naive SDQ cannot be directly used for the drawing task, we first pretrain the
network to initialize the weights. Referring to Table 2, pretraining with stroke demonstration
via supervised learning leads to an improvement in performance (Columns 4 and 7). Based
on our observations, the 4-frame history used in [23] introduces a movement momentum that
compels the agent to move in a straight line and rarely turn. Therefore, history information is
excluded in our current model. In [23], the probability for the exploration of random action
decays from 0.9 to 0.1 with increasing epochs. Since we pretrained the network, the agent
does not need to explore the environment with a large rate [3]. Thus, we initially set the
exploration rate to 0.1. However, Doodle-SDQ cannot outperform the pretrained model until
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we remove exploration.* The countereffect of the exploration may be caused by the large
action space. The small patch in the two streams structure (Figure 3) makes the agent attend
to the region where the pen is located. More specifically, when the lifted pen is within one
step action distance to the target drawing, the local stream is able to move the pen to a correct
position and start drawing. Without this stream, the RL training cannot be successful even
after removing the exploration or pretraining the network. The average accumulated rewards
for the global stream only network varies around 100 depending on the media types.

Doodle-SDQ | DDQN + PER [23]
History No Yes
Exploration Rare Yes
Pretrain Yes No
Input stream 2 1

Table 3: Differences between the proposed method and [23].

Despite the success of our SDQ model in simple sketch drawing, there are several lim-
itations to be addressed in the future work. On the one hand, the motivation of this paper
is to design an algorithm to enable machines to doodle like humans, rather than competing
with GAN [9] to generate complex image types, at least not at the current stage. However,
it has been demonstrated that an adversarial framework [7] interprets and generates images
in the space of visual programs. Therefore, it will be a promising direction to mimic human
drawing by combining adversarial training technique and reinforcement learning. On the
other hand, although the SDQ model works in a relatively large action space due to rare ex-
ploration, the average accumulated rewards introduced by the component of reinforcement
learning still suffers from the increase of the dimension of action space by allowing colorful
drawing as shown by a comparison between sketch and color sketch (Column 6 and 7 in Ta-
ble 2). Since our future work will incorporate more action variables (e.g., the pen’s pressure
and additional colors) and explore doodling on large canvases, the actions might be embed
in a continuous space [5].

6 Conclusion

In this paper we addressed the challenging problem of emulating human doodling. To solve
this problem, we proposed a deep-reinforcement-learning-based method, Doodle-SDQ. Due
to the large action space, Naive SDQ fails to draw appropriately. Thus, we designed a hybrid
approach that combines supervised imitation learning and reinforcement learning. We train
the agent in a supervised manner by providing demonstration strokes with ground truth ac-
tions. We then further trained the pre-trained agent with Q-learning using a reward based on
the similarity between the current drawing and the reference image. Drawing step-by-step,
our model reproduces reference images by comparing the similarity between the current
drawing and the reference image. Our experimental results demonstrate that our model is
robust and generalizes to classes not presented during training, and that it can be easily ex-
tended to other media types, such as watercolor.

4A random movement will be generated only when the agent gets stuck at some position, such as moving back
and forth or remaining at the same spot.
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