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Abstract

Grasp detection from visual data is a recognition problem, where the goal is to de-
termine regions in images which correspond to high grasp-ability with respect to cer-
tain quality metric. Existing deep learning based approaches mainly focus on predicting
grasps, where the quality of the predictions is largely influenced by the choice of the CNN
architecture and the objective function used for learning grasp representations. This pa-
per presents a deep learning framework termed EnsembleNet which learns to produce
and evaluate grasps within a unified framework. To achieve this, we formulate grasp
detection as a two step procedure: i) Grasp generation - where, EnsembleNet gener-
ates four different grasp representations (regression grasp, joint regression-classification
grasp, segmentation grasp, and heuristic grasp), and ii) Grasp evaluation - where Ensem-
bleNet produces confidence scores for the generated grasps and selects the grasp with
the highest score as the output. We evaluated EnsembleNet for grasp detection on RGB-
D object datasets. The experiments show that the grasps produced by EnsembleNet are
more accurate compared to the independent CNN models and the state-of-the-art grasp
detection methods.

1 Introduction

Grasp detection is one of the fundamental problems in robotic grasping. A crucial challenge
in grasp detection is generalization to novel objects in the presence of real-world challenges
such as background clutter, variations in viewpoints, sensor noise, and scene complexity.
With the advancements in deep learning, methods (e.g., [3, 18]) have shown significant im-
provements in grasp detection accuracy compared to analytical methods (e.g., [5]) which use
hand-engineered feature learning to plan grasps from images or point clouds. In this context,
one stream of work (e.g., [15, 18]) focuses on learning grasps in the form of a 2D rectan-
gle (specified by its center position, width, height, and angle with the horizontal axis) from
input images. Another stream of work (e.g., [17]) focuses on generating grasps by learning
mapping between the images of the objects and robot’s motion parameters, thereby allowing
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the robot to iteratively refine its grasp target in the environment. These studies mainly fo-
cus on predicting grasps, where the accuracy of the predictions is largely influenced by the
choice of the objective function or the CNN structure used to learn the grasps. Therefore,
it is crucial to develop a mechanism to identify the CNN structure which learns the optimal
mapping between the image data and the grasp representations. To achieve this, we present
EnsembleNet, an ensemble of multiple CNN models which are trained to produce grasps
using different objective functions (i.e., regression-only, joint regression-classification, and
segmentation-based). The generated grasps are evaluated based on a quality metric to select
the optimal grasp. Our hypothesis is that by ensembling multiple models (trained in different
ways for a common task), our framework generates a higher performing model compared to
the individual models. The main contributions of this paper are summarized below:

1) We propose “EnsembleNet" (Sec. 3), which combines multiple CNN structures and
learns to produce and evaluate grasps within a unified framework. Experiments show
that by combining models trained using different objective functions, our EnsembleNet
produces more accurate grasps and achieves better generalization to novel objects com-
pared to the individual models (see Sec. 4).

2) We propose “SelectNet", a CNN model for grasp evaluation (Sec. 3.3). SelectNet
learns grasp quality based on the orientation difference and intersection-over-union
ratio between positive and negative grasp examples.

2 Related Work

Analytic grasp planning methods (e.g., [5]) follow a multi-stage pipeline where an input
RGB-D image or a point cloud is processed through multiple stages (e.g., segmentation, ob-
ject classification, and pose estimation). However, errors produced in the individual stages
of the grasping pipeline significantly affect the overall grasp success. An alternate approach
is to use deep learning to learn grasp representations in the form of 2D grasp rectangles [14]
or 3D object poses [23] using RGB-D images or 3D point clouds. In this context, Lenz et.
al. [14] created a database of RGB-D images annotated with human labels of good and bad
grasps, and used the dataset to train CNN-based grasp detection models. The generation of
a large annotated dataset requires significant time and human efforts. Therefore, alternative
methods such as [12, 22] learned grasp representations using simulated images, and adapted
the trained CNN models for real data. For instance, the work in [12] learned a CNN-based
grasp detector using depth images rendered through dynamic simulations. Another stream
of work learns visual-motor control by learning mapping between the images of the objects
and robot’s motion parameters allowing the robot to iteratively refine its grasp target in the
environment. For instance, the work in [17] presented another approach to large-scale data
collection by recording more than 40k grasping trials on a real robot and used the data to
train CNN models to predict grasping success. Recently, the work by Levine et al. [16]
presented an approach to predict end effector poses by learning a prediction CNN using over
800k motor commands collected by multiple robotic arms continuously performing trial-
and-error experiments for over 700 hours.

In this paper, we present a two-stage procedure to produce grasps using RGB-D images.
First, our framework produces grasps using four different grasp representations (i.e., regres-
sion grasp, joint regression-classification grasp, segmentation grasp, and heuristics-based
grasp). Next, given training examples of positive and negative grasps, our framework learns
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Flgure 1: Given a 2D object proposal from a test image, our EnsembleNet uses a segmen-
tation module (A) which refines the proposal by removing background information using a
CNN for semantic segmentation. Next, it uses a cascade of four grasp generation models
which compute grasps based on a regression loss, joint regression-classification loss, seg-
mentation loss, and based on heuristics (B). Finally, EnsembleNet uses a grasp evaluation
model termed “SelectNet" (C) which computes quality scores for the generated grasps based
on a quality metric learned from negative and positive grasp examples shown in D and E,
respectively. The grasp with the highest score is selected as the output for grasp execution.

to predict quality scores of the generated grasps. The grasp with the highest quality score is
selected as the output.

3 The Proposed EnsembleNet

Fig. 1 shows the overall architecture of the proposed framework. It consists of three main
modules: i) a segmentation module (Sec. 3.1), ii) a grasp generation module (Sec. 3.2), and
iii) a grasp evaluation module (Sec. 3.3). In the following, we describe in detail, the different
modules of the proposed framework.

3.1 Semantic Segmentation (Fig. 1-A)

The segmentation module takes an object proposal image as input and produces a segmen-
tation mask which is used to refine the proposal (e.g., background removal). Let us denote
the data structure of a single data sample as (1,Y3), where € RN*WxH represents the input
image. The terms W, H and N represent the width, the height and the number of channels
of the input image. The term Yg € RY*H represents the ground-truth object segmentation
mask. We use a CNN model based on an encoder-decoder architecture [19] which passes
the input image through a number of convolution and deconvolution layers, and generates
prediction maps of the size of the input image as shown in Fig. 2-A. The final layer is a
deconvolution layer DConvA which produces a pixel-wise labeling Y?,, € R"*W>H where
n. = 2 represents the number of classes (object and background). The loss function for N
labeled training images is given by:

1Y

\eg = ZS“ (1)
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Flgure 2: Detailed architecture of EnsembleNet. The segmentation model (A) is based on
a convolution-deconvolution CNN structure and produces a segmented image. The grasp
generation model (B) takes the segmented image as input and generates a grasp. The grasp
parameters are used to generate a grasp mask image which is concatenated with the object
image and fed to the grasp evaluation model (C) which generates a quality score. Note that
for clarity we only show one grasp generation model in (B).

where S; € R(exWxH) represents the CNN normalized scores map for a sampled image i.
It is computed by applying a SoftMax to the output of the DConvA layer of the network.
Mathematically, S; can be written as:

@

where, f(x;) represents the output of the CNN layer for a data sample x;. The terms y;, W and
b represent the class label, weights, and bias of the corresponding CNN layer, respectively.

3.2 Grasp Generation (Fig. 1-B)

The output of the segmentation module is fed to the grasp generation module which generates
four different grasps (regression grasp, joint regression-classification grasp, segmentation
grasp, and heuristics-based grasp) as shown in Fig. 1-B.

3.2.1 Regression Grasp

A regression grasp G is represented by an oriented rectangle in 2D image space defined
by a 5-dimensional vector, given by:

Greg = [x,y,W,h,G], (3)

where x and y represent the centroid of the rectangle as shown in Fig. 1-F. The term w and A
represent the width and the height of the rectangle, respectively. The term 6 represents the
orientation of the rectangle given by the angle between the width of the rectangle and the
x-axis. To learn regression grasps, we train a CNN model with an objective function given
by:

Lreg = ||Greg_GregH/||GregH2a 4)
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where Gmg represents the output of the last fully connected layer of the network (e.g., FCA
as shown in Fig. 2), and G, is a ground truth.

3.2.2 Joint Regression-Classification Grasp

Here we learn the parameters [x,y,w,h] using a regression loss and quantize the orienta-
tion component 8 into Ng = 90 classes (angular-bins), and learn 0 using a CrossEntropy
based objective function. Let R; = [x,y,w, /] and 6; denote the predicted values of the i*"
image, respectively. We define the joint regression-classification loss function for the joint
regression-classification grasp (G joins) Over Ny images as:

L joint ({ (R, 9[)5\21 )= Xi( Hﬁk}ﬁf” )— Y. 6;-log(6/), )

where R} and 6; represent the ground-truths.

3.2.3 Surface Grasp

A surface grasp is defined by a segmented region in the image as shown in Fig. 1-B. To gener-
ate surface grasps, we train a CNN model for pixel-wise labeling which produces prediction
maps Y, r € RWxH ' \where n, = 2 represents the number of classes (grasp-region and
background). The predictions map ¥ ¢ is max-pooled across the target classes to generate
a binary grasp-region image. Next, we compute a grasp representation G, r = [x,y,w,h, 0],
where x and y represent the centroid of the region. The width (w) and the height (/) param-
eters of the grasp are given by the length of the region along its minor axis and major axis,
respectively, plus a threshold distance of 20 pixels. The orientation (0) of the grasp is given
by the angle between the x-axis and the major axis of the region. Note that the pixels labelled
as grasp are considerably less compared to the background pixels. This results in large class
imbalance in the training data which causes the learning process to trap in local minima of
the objective function yielding predictions which are strongly biased towards background.
To effectively deal with class imbalance, we used a weighted cross entropy loss as the ob-
jective function. Specifically, our loss function for Ny labeled training images is given by:

S .
Lo=— LY 0y log(3)), ©)
Ny 3175
where, for a pixel location j, y is the ground truth label, ¥ is the network output, and @ is
the weight of the correct class y applied in order to adjust the imbalance of pixel frequency
across the target classes. The weight @y for a class k is computed as:

. = 1/log(1.0L+ fi/ fr), (7N

where, f; represents the frequency of a class k, and fr represents the sum of all class frequen-
cies of the training set. The number 1.01 is an additional hyper-parameter which restricts the
class weights to be in the interval of [1,100].

3.2.4 Heuristics-based Grasp

Heuristic grasp is generated from the output of the semantic segmentation network (Sec.

3.1). Specifically, the predictions map Y¢,, is max-pooled across the target classes to gen-

erate an object mask image as shown in Fig. 1-A. Next, we compute a grasp representation
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Gt = [x,y,w,h, 0], where x and y are given by the centroid location of the largest region
in the mask image. The width and the height of the grasp are given by the length of the
region along its minor axis and major axis, respectively, plus a threshold of 20 pixels. The
orientation of the grasp is given by the angle between x-axis and the major axis of the region
as shown in Fig. 1-B.

3.3 Grasp Evaluation

To select the best grasp out of the grasps produced by the grasp generation module, we
introduce a CNN model termed “SelectNet" which learns to predict a quality score Q for
an input grasp. Specifically, the input to SelectNet is the image of the object (I), and a
grasp mask image M as shown in Fig. 2-C. To generate M, we compute a 2D rectangle
from the predicted grasp and use the four corners of the rectangle to generate a binary mask
image as shown in Fig. 2-C. SelectNet is composed of five convolution layers and three fully
connected layers. The image I and its corresponding mask image M are concatenated and
fed to the model which produces a quality score as shown in Fig. 2-C. SelectNet is trained by
minimizing an Euclidean loss on a training set which is comprised of correct and incorrect
grasps. Specifically, each training image is labelled with a set of 10 correct grasps and a
set of up to 20 incorrect grasps. The correct grasps are created from the ground truth grasp
rectangles, where each grasp is assigned a quality score of 1.0. The incorrect grasps are
generated by adding random shifts to the position and the orientation of the correct grasps
with constraints to ensure coverage on the surface of the object. Let M ™ represents the mask
image of an incorrect grasp rectangle for a query image, and M = {/\/ll*, .MIJF, ,Mﬁg}
represent the mask images of the correct grasps for the query image. The quality score of
an incorrect grasp Q(M ™) is computed with respect to all the correct grasps (M) of the
query image, and the maximum of computed scores (Q1, ..., Qs ..., On, ) is assigned to M.
Mathematically, Q(M™) can be written as:

Q(M™) =max (Q1(M™),...0i(M7),...,0n, (M7)), ®)

_ 1 IMNM™|
oM) —8(MT)[] (M uM]

Qi(M™) ©))
From Eq. 9 we observe that Q is high: i) if the orientation difference between an incorrect
grasp and the correct grasp is low and, ii) if the overlap between the incorrect grasp and the
correct grasp is high. Fig. 1- (D-E) show some example grasps with their corresponding
quality scores. We train SelectNet with an objective function given by:

Lauatity =110 — Qs l1/11Qs 12, (10)

where O represents the output of the last fully connected layer of the network (i.e., FCB in

Fig. 2-C), and Qq is a ground truth. During testing, each generated grasp is fed to SelectNet
and a quality score is computed. The grasp with the highest quality score is selected as the
output, given by:

G = , 11
argmax O an

where, G = [Greg, G joint; Gsurf» Girst) 18 the set of grasps generated by EnsembleNet.
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Figure 3: GraspSeg dataset contains RGB-D images of 42 objects (A). The ground truth is
available in terms of object segmentations, grasp rectangles, and grasp segmentations.

3.4 Training and Implementation

We trained the segmentation, the grasp generation, and the grasp evaluation models inde-
pendently. For this, we initialized the weights of the common layers of the networks using
the weights pre-trained over ImageNet, and adjusted the weights by fine-tuning the models
independently over the target datasets. Specifically, we initialized the weights of the layers
Convl,...,Conv10 of SegmentNet, the weights of the layers Convl,..., FC1 of the grasp gen-
eration model, and Convl, ..., FC1 of SelectNet, with the weights pre-trained on ImageNet,
and fine-tuned the models for 300k iterations using a learning rate of 0.0001. The layers
DConvA, FCA, FC2, and FCB were initialized from zero-mean Gaussian distributions with
a standard deviation of 0.01, and trained from scratch using a learning rate of 0.01 (which
was divided by 10 at 50% and 75% of the total number of iterations) and a parameter decay
of 0.0005 (on the weights and biases). Our implementation is based on the Caffe library [10].
Training was performed by Stochastic Gradient Descent (SGD) with a batch size of 16.

4 Experiments

4.1 Datasets

We evaluated EnsembleNet on the grasp segmentation dataset (GraspSeg) of [4]. It provides
33,188 RGB-D images of 42 objects categorized into 15 different classes. The dataset also
contains 6896 test images of indoor scenes containing multiple objects placed in different
layouts. The ground truth in GraspSeg is available in the form of pixel-wise annotations
for object segmentations and ground-truth for 2D grasp rectangles and surface-based grasp
segmentations as shown in Fig. 3. The dataset was generated using an extended version
of the scene labeling framework of [2] and [1]. We also evaluated EnsembleNet for grasp
detection on the popular Cornell grasp dataset [15], which contains 885 RGB-D images of
240 objects.

4.2 Evaluation Criteria

For evaluation, we used the object-wise splitting criteria used in [15] which splits the objects
randomly into train and validation subsets (i.e., the training set and the validation set do not
share any images from the same object). This splitting strategy evaluates how well the model
generalizes to unknown objects (objects which were not seen by the model during training).
For computing grasp accuracy, we used the “rectangle-metric" proposed in [11]. It considers
a grasp to be correct if: i) the difference between the predicted grasp angle and the ground-
truth is less than 30°, and ii) the Jaccard index of the predicted grasp and the ground-truth is
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Table 1: Mean grasp detection accuracy (%) of our EnsembleNet for different CNN design
choices compared to the independent models on the GraspSeg dataset.

Model Regression (Reg.) Joint Surface EnsembleNet (Reg. + Joint + Surface)

grasp grasp grasp No-SegmentNet SegmentNet
[9] SqueezeNet 58.7 60.3 61.9 65.4 67.8
[8] MobileNet 64.4 65.8 66.6 71.1 73.7
[21] VGG-16 74.1 754 715 81.5 83.2
[7] ResNet-50 78.2 79.7  80.5 84.3 86.6

The average accuracy for the heuristics-based grasp is 55%.

Table 2: Mean grasp accuracy of our EnsembleNet for different grasp representations on the
GraspSeg dataset.

Method Reg. grasp Joint grasp Surface grasp
EnsembleNet (MobileNet+VGG16+ResNet50) 79.7% 81.3% 82.2%

Table 3: Object-wise average grasp detection accuracy on the Cornell grasp dataset [15].

Method Accuracy (%) Method Accuracy (%)
[11] Fast search 58.3 [15] Deep learning 75.6

[9] SqueezeNet (Reg.) 77.7 [9] SqueezeNet (Joint) 78.3
[20] VGG16 (Joint) 78.9 [8] MobileNet (Joint) 82.5
[20] VGG16 (Reg.) 86.1 [18] MultiGrasp 87.1

[7] ResNet50 (Reg.) 87.3 [8] MobileNet (Reg.) 88.5
[13] Deep ResNets 88.9 [6] Hybrid-Net 89.1

[7] ResNet50 (Joint.) 89.7 [4] GraspNet 90.2
EnsembleNet! 91.2 EnsembleNet* 93.7
EnsembleNet? 92.6 -

EnsembleNet' = MobileNet (Reg.) + VGG16 (Reg.) + ResNet50 (Reg.)
EnsembleNet* = MobileNet (Joint) + VGG16 (Joint) + ResNet50 (Joint)
EnsembleNet®> = MobileNet (Joint.) + VGG16 (Reg.) + ResNet50 (Joint.)

higher than 25%. The Jaccard index for a predicted grasp rectangle R* and a ground-truth
grasp rectangle R¢ is defined as:

J(RE,R*) = |[RENRY|/|REUR|. (12)

4.3 Results

First, we evaluate EnsembleNet by combining multiple grasp representations and compare
the results with the individual models (i.e., regression (Reg.), joint regression-classification
(Joint), and surface grasp models). Specifically, we evaluate EnsembleNet with four differ-
ent model choices (SqueezeNet [9], MobileNet [8], VGG-16 [21], and ResNet-50 [7]) as its
grasp generation models. The results of this experiment are provided in Table 1 which shows
that our EnsembleNet achieves the highest grasp accuracy for all the tested model choices.
The heuristics-based grasp model produces grasps which are always located at the centroid
of the object. Although, centroid-based grasps are valid for objects with simple rectangular
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A: Ground-truth B: Heuristic grasps [l Regression grasps D:Jointgrasps [ E: Surface grasps  F: EnsembleNet grasps

Figure 4: Qualitative results of grasp detection on the GraspSeg dataset produced by the
proposed EnsembleNet and the individual grasp models (Heuristic grasps shown in yellow,
regression grasps (Reg.) shown in black, joint regression-classification grasps (Joint) shown
in green, and surface grasps shown in blue). Failure cases are highlighted in red rectangles.

or cylindrical shapes, they are invalid for objects with complex shapes (e.g., see the grasps
highlighted in red in Fig. 4-B). From Table 1 we observe that on average, the surface grasps
are superior than the regression or the joint grasps however, a careful investigation of the
results reveals that there are certain situations where regression or joint grasps outperform
the surface grasps. Fig. 4-E (highlighted in red) shows some failure cases of the surface
grasp model. The corresponding results of the regression-only or the joint grasp models are
correct as shown in Fig. 4-C and Fig. 4-D, respectively. For almost all of these cases, the
surface grasp model failed to generate correct segmentations (shown in magenta in Fig. 4-E).
The proposed EnsembleNet leverage the strengths of the different grasp representations by
incorporating their corresponding trained CNN models into an ensemble architecture (Sec.
3), and learns to select the best grasp using the proposed grasp evaluation model (Sec. 3.3).
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Figure 5: Qualitative comparison of the grasps produced without (left four images), and with
(right four images) the proposed SegmentNet as a preprocessing step to grasp generation.
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Table 1 also shows that the integration of the proposed semantic segmentation (Sec. 3.1)
as a pre-processing step to grasp generation increases the grasp accuracy by almost 2% on
average on the GraspSeg dataset. The proposed segmentation module refines the object pro-
posals by removing background clutter as shown in Fig. 5.

Next, we evaluate EnsembleNet by combining different CNN structures (MobileNet,
VGG16, and ResNet50) for grasp generation. Table 2 and Table 3 show the results of these
experiments on the GraspSeg dataset and the Cornell grasp dataset, respectively. Table 2
shows that EnsembleNet produces improvements in the grasp detection accuracy for all the
tested grasp representations compared to the individual CNN structures (shown in Table 1).
This further validates that the proposed SelectNet (Sec. 3.3) enables EnsembleNet to select
the optimal grasp (from the outputs of the individual models) based on the proposed quality
metric (Sec. 9).

Table 3 shows a comparison of grasp accuracy produced by our EnsembleNet and other
methods on the Cornell grasp dataset [15]. The results show that the grasp accuracy is
strongly influenced by both the choice of the CNN structure and the objective function used
for training the model. By combining different CNN structures with different objective func-
tions for grasp generation, our model variants (e.g., EnsembleNet' or EnsembleNet*) learn
different image-to-grasp mappings compared to the individual models, and yield superior
accuracy compared to the state-of-the-art as shown in Table 3.

5 Conclusion and Future Work

We presented a deep learning based framework (termed EnsembleNet) to produce grasps
by combining a heterogeneous collection of CNN models trained using different objective
functions. Specifically, our EnsembleNet generates grasps from four different perspectives
(i.e., regression, joint regression-classification, surface-based, and heuristics-based grasps)
using RGB-D images. We also introduce a novel perspective of ensembling by evaluating
the generated grasps in terms of grasp quality to select the best grasp out of the ensemble.
In experiments we show that the proposed EnsembleNet is 2-5% more accurate compared
to independent CNN models trained on regression, joint regression-classification, or surface
grasp representations. In future, we plan to extend EnsembleNet for simultaneous object
detection, classification, and grasp inference by integrating additional CNN branches into
the cascaded architecture. We also plan to reduce the computational burden of the proposed
EnsembleNet through parameter-pruning and using memory-efficient CNN architectures for
real-time applications.
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