
STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 1

Classification-Based Supervised Hashing
with Complementary Networks for Image
Search
Dong-ju Jeong
jeongdj@ispl.snu.ac.kr

Sungkwon Choo
chewry@ispl.snu.ac.kr

Wonkyo Seo
cusisi@ispl.snu.ac.kr

Nam Ik Cho
nicho@snu.ac.kr

Department of Electrical and
Computer Engineering, INMC
Seoul National University
Seoul, Republic of Korea

Abstract

For realizing an efficient image search system, the binary hash code representation
of images is essential to reduce memory consumption and computation time. In this
paper, we present a new supervised hashing method using complementary networks.
We construct the framework that performs classification tasks for discriminative hash
codes and regularizes them with the assistance of adversarial networks. Specifically, our
framework has an encoder network that generates relaxed hash codes and is trained with
a classifier to make the codes discriminative. A discriminator network takes as inputs
the instances from a desired distribution and generated hash codes to learn to distinguish
true and false samples. The classifier presents resulting one-hot labels to the desired
instances, which complements the main classification task. As simultaneously trained
with the discriminator, the encoder network produces the hash codes with the desired
properties. Experiments on widely used datasets show that the proposed framework can
help to produce effective hash codes for image search, and applies to hashing with both
single- and multi-label classification tasks.

1 Introduction
As one of the important visual recognition topics, content-based image retrieval [38] tackles
the problem to transform images into their visual descriptors and search the images relevant
to queries. To generate the visual descriptors, many studies proposed the algorithms for
necessary procedures such as feature extraction, embedding, and aggregation [17, 19, 21].
However, image search with these real-valued descriptors would bring about heavy mem-
ory consumption and computation time, which makes a visual search system less practical.
Thus, it is necessary to highly compress the visual descriptors while leaving them visually or
semantically meaningful. This is of much more importance in the large-scale visual search
scenarios. To design a practical image retrieval system, one would need not only meaningful
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Figure 1: The structure of our proposed model consisting of its encoder, classifier, and dis-
criminator networks. The encoder network produces the hash codes xi, and the discriminator
tells the desired examples z from the hash codes xi with the assistance of the classifier. z vec-
tors are randomly sampled from {−1,+1}B and combined with their classification results,
while xi vectors are concatenated to their true labels.

descriptors but also a hashing method with a fast search algorithm [1]. In this paper, we
focus on devising a hashing method to turn images into binary hash codes to boost searching
efficiency.

In contrast to the data-independent algorithms such as locality sensitive hashing (LSH)
[8], the data-dependent methods utilize the structure of data to produce similarity-preserving
hash codes. For example, ITQ(-CCA) [10], KSH [32], MLH [36], SSH [46], PQ [18, 19], and
SDH [13, 42] optimize their hashing functions in (semi-)supervised or unsupervised man-
ners. These methods transform image descriptors into their hash codes, which can also com-
plement the image retrieval systems based on deep convolutional neural networks (CNNs)
[12, 20, 35]. In addition, CNN-based hashing methods have been proposed to receive raw
images as inputs, and learn image features and optimal hash codes simultaneously. In [29],
an additional hash layer is inserted between fully-connected layers of a deep CNN model,
and it constrains input values into the range of [0,1] with sigmoid activation. This hash layer
learns relaxed hash codes with the classification of labeled data, which are binarized with
simple thresholding. The methods of [26, 28, 30] utilize siamese/triplet networks so that this
directly tightens the distances between the hash codes of similar images, whereas those of
dissimilar images become more dispersed. In particular, a loss function is added to trigger
the absolute value of each bit to get close to 1 in [30]. This loss function is also used for
unsupervised hashing in [7]. Likewise, the method of [16] uses additional entropy-based loss
functions to produce the concatenations of one-hot codes.

Meanwhile, deep generative models have recently been proposed to exploit the useful
frameworks such as generative adversarial networks (GANs) [11]. GAN-based models are
used not only to generate realistic samples but also to treat image-to-image translation tasks
[15, 49] and other computer vision problems such as semi-supervised classification [41],
super-resolution [27], and image retrieval [39, 43]. Moreover, this framework can also be
utilized to lead certain latent variables to follow a specific distribution, which is used to
train generative models and learn the side information of images [33]. It is notable that
generative model frameworks can facilitate the tasks where CNNs play important roles, and
they can also be applied to the hashing for image search. In [39, 43], the adversarial networks
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generate synthetic images, which are used to minimize multiple loss functions for image
search. In this work, we focus on treating the distribution of hash codes with such adversarial
framework rather than generating the training images.

Considering the issues stated above, we propose a supervised hashing method using com-
plementary networks. In the proposed method, semantically meaningful descriptors can be
learned with the assistance of a classification framework. Given the trained classifier and
the supervision with labeled data, adversarial networks can help to regularize the useful de-
scriptors to obtain relaxed hash codes. In this situation, an encoder CNN acts as a generative
model adversarially trained with a discriminator network. The instances from a specific de-
sired distribution are input to the discriminator as "true" samples, and then the encoder CNN
learns to produce the hash codes that are desired from the perspective of the discriminator.
Furthermore, the label information and classification results can be utilized to preserve the
discriminability of the hash codes. During the training phase, the ground-truth labels of im-
ages and the classification results of desired samples are combined with the hash codes and
desired samples respectively, as shown in Fig. 1. When the inputs to the discriminator are
modified in such way, it can be complementary to the classifier. Trained together with the dis-
criminator, the encoder network learns to turn input images into similarity-preserving codes
following the user-defined distribution. Our experiments show that the proposed method
well preserves the similarity relationships of the visual descriptors and performs the image
search task with effective binary codes.

2 Approach

2.1 Formulation

Given a set of training images {Ii,ci}N
i=1, where N is the number of training data, our goal is

to obtain relaxed hash codes {xi}N
i=1 and transform them into binary hash codes {x̃i}N

i=1. Ii
and ci ∈ {0,1}L are the i-th training image and its L-class one-hot label vector respectively. If
we let f (·;θ f ) denote a function transforming an image into a relaxed hash code with a base
CNN and its parameters θ f , we can say xi = f (Ii;θ f ) ∈ RB and x̃i = sign(xi) ∈ {−1,+1}B,
where B is the code length of x̃i and sign(·) is the element-wise sign function that outputs
+1 if an element is nonnegative and −1 otherwise. We treat the Hamming space {−1,+1}B

rather than {0,1}B because the Hamming distance between x̃i, x̃ j ∈ {−1,+1}B corresponds
to their Euclidean distance in RB [32], so this helps to optimize the relaxed hash codes instead
of strictly binary codes.

As in [13, 16, 29, 31, 42], discriminative hash codes can be optimized with the assis-
tance of classifiers, which does not need pairwise labels that are necessary for siamese or
triplet networks [26, 30]. Given a classifier g(·;θg) with its parameters θg, implemented as a
fully-connected layer combined with its activation function, we obtain the probabilistic clas-
sification result of an image yi = g(xi;θg) ∈ RL. This is used to optimize the discriminative
relaxed hash codes xi.1 With the defined functions and variables, an optimization problem
can be set for the supervised hashing as below:

min
θ f ,θg

N

∑
i=1

(
Lcls(yi,ci;θ f ,θg)+Lreg(xi;θ f )

)
(1)

1We use the terms g(·;θg) and D(·;θD) interchangeably with g(·) and D(·) respectively in this paper.
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where Lcls is the classification loss related to ci and yi = g(xi;θg), and Lreg is a regularizer
to lead xi to follow a desired distribution, considering its discriminability and quantization
error when transformed into x̃i. The overall structure of the proposed method is described in
Fig. 1.

2.2 Regularization with Adversarial Networks
It is desired that xi should be a similarity-preserving and discriminative code and its elements
be independent and identically distributed. For this, we define the regularizer Lreg and its
auxiliary loss function Laux(z,xi;θd) to constrain xi to follow some instances z sampled
from the desired distribution specified below. To define Laux, we construct a discriminator
network D(·;θD) that distinguishes desired instances z from generated hash codes xi. In this
setting, Lreg and Laux can be defined, treating the encoder f (·;θ f ) and the discriminator D(·)
as adversarial networks [11]:

L′reg =−
N

∑
i=1

log [D(xi)] , L′aux =−∑
j

log[D(z j)]−
N

∑
i=1

log [1−D(xi)] (2)

where L′reg and L′aux are the summed loss functions for all the training data, minimized with
the encoder f (·;θ f ) and the discriminator D(·) respectively. In Eq. (2), each negative log-
likelihood term can also be seen as a cross-entropy loss with consistent labels 1 or 0. The loss
term for the encoder network L′reg is modified following the proposition of [11] for stronger
gradients at the beginning of training.

While many GAN-based generative models receive random noise and some auxiliary
information in order to output random generated images [2, 3, 11, 40], other methods for
image-to-image translation process input images to obtain pixel-wise resulting maps [15,
49]. The common feature of these methods is to treat "real" training data as inputs to their
discriminators with "true" labels. In addition, adversarial networks can also be used to con-
strain some latent variables to follow a specific distribution [33]. In this case, "real" inputs
to the discriminator are samples from the desired distribution, and "fake" ones are gener-
ated latent variables. To this end, we need to define the desired distribution from which the
instances z are sampled. Then, the discriminator D(·) and the encoder f (·,θ f ) are trained
to distinguish z from the generated latent variables xi and lead them to follow the desired
distribution.

2.3 Desired Distribution of Hash Codes
Basically, we begin with defining z in the form of z = b+ n, where b ∈ {−1,+1}B, n ∼
N(0,σ2I). If b is uniformly sampled from {−1,+1}B, minimizing the loss functions of
Eq. (2) means that xi should be similar to any binary codes with the length of B. In order
to allow for rooms around b, we add n to b, which facilitates the adaptation of xi. This is
also related to the observation that excessively fitting relaxed codes to strictly binary ones
results in unsatisfactory performance [30]. In other words, this helps the classification and
regularization tasks to be compatible with each other, where the former one is for similarity-
preserving codes and the latter one for the codes with lower quantization error.

However, using xi and z = b+n stated above as the inputs to the discriminator is insuf-
ficient to obtain similarity-preserving and discriminative codes, even likely to corrupt these
desired properties. Hence, we propose several simple modifications to tackle this problem.
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Figure 2: The illustration showing the behaviors of xi and z. Red circles are training samples
of the class "100" and should approach the desired instances located in the decision region
of their class. As training the encoder f (·,θ f ) with the discriminator, the red circles in R100
get similar to the z vectors in R100, while those in the other decision regions find appropriate
positions in the right region R100.

First, we concatenate two kinds of one-hot label vector to xi and z. A probability vector
g(z;θg) tells us the decision region of which class z is located in with the currently given
classifier g(·;θg). If we let h(·) denote the function transforming a probability vector into a
one-hot vector, which changes the largest element into 1 and 0s for others, we can use h(g(z))
as an indicator that tells us z belongs to the l-th class, where h(g(z))l = 1. In other words,
the vectors z concatenated with one-hot labels of the same class are commonly located in the
decision region of that class and are probably close to each other. In this case, we can also di-
vide the set {z} into disjoint subsets Z1, ...,ZL, where Zl = {z|h(g(z))l = 1, z∈ {−1,+1}B}.
On the other hand, to make full use of ground truth labels, these one-hot vectors ci are at-
tached to xi, indicating that xi should be located in the decision region of its true class. Thus,
we can define the extended versions of the desired instances and generated latent variables:

z+ = [z,h(g(z))] , x+i = [xi,ci] ∈ RB+L. (3)

If z+ and x+i are input to the discriminator instead of z and xi, it is trained to recognize z+
as "real" instances and reject "fake" ones x+i . Specifically, if a training sample xi of the l-th
class is not similar to the elements of Zl , it should obtain a low value of D(x+i ). 1) In the
case of ci = h(g(xi)), xi is forced to be close to the neighboring z in the decision region of
its class. 2) In the case of ci 6= h(g(xi)), the discriminator also leads the encoder network
f (·,θ f ) to locate xi in its true decision region as illustrated in Fig. 2. Thus, the optimiza-
tion with the adversarial networks is also complementary to the classification task with Lcls.
The adversarially learned inference (ALI) [6] also utilizes two types of concatenated vec-
tors as the inputs to its discriminator. It generates the pairs of real/generated images and
inferred/sampled features, while the proposed method can be said to use the ground-truth
label vectors and classification results instead of the real and generated images respectively
for the discriminative codes.

Moreover, we need to make the hash codes xi discriminative, but the support of the
desired distribution is too large. Hence, we define an anchor point set P = {p1, ...,pL},
where pl ∈ {−1,+1}B, and replace b ∈ {−1,+1}B with b̃ ∈ P. The anchor points can be set
out of randomly generated samples from {−1,+1}B by simply clustering them and finding
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their cluster centers with k-means clustering. This process in our experiments is repeated
many times, and the most dispersed cluster centers are selected. However, the anchor points
generated in such way cannot reflect the differences in semantic information and correlation
between classes. Thus, we can set these vectors as initial anchor points and update them
during the training process. If pt

l denotes the l-th anchor point at the t-th step of training, the
anchor points can be updated using moving averages as below:

p̃t+1
l = αp̃t

l +(1−α)
1

NT,l

NT

∑
k=1

1
[
ck,l = 1

]
xk, pt+1

l = sign(p̃t+1
l ), p̃1

l = p1
l (4)

where xk is the k-th hash code in the current mini-batch of the size NT , ck,l is the l-th element
of ck, and NT,l = ∑

NT
k=11

[
ck,l = 1

]
. The anchor points are initialized out of random samples

by the clustering step and are updated with moving averages of hash code samples that
belong to each class.

2.4 Integrated Loss Functions
Given the concrete loss functions and variables, the precise form of our optimization problem
can be specified as below:

min
θ f ,θg

N

∑
i=1

(
Lcls(yi,ci;θ f ,θg)−λ log

[
D(x+i )

])
,

min
θD
−∑

j
w jlog[D(z+j )]−

N

∑
i=1

log
[
1−D(x+i )

]
, w j = 1 [max(g(z j))≥ τ]

(5)

where Lcls is the cross-entropy loss function of yi and ci, and λ is the controlling parameter
that balances the classification loss and the encoder loss. This optimization procedure has
two training phases, each of which corresponds to each problem of Eq. (5). Even though one
may perform three-phase training, separating the optimization of the classifier and encoder,
our model can be stably optimized in the two-phase training partly because our adversarial
networks are optimized complementing the classification task. In addition, we discard part
of desired samples z that are close to their decision boundaries using a threshold τ . This
helps the discriminator to ignore less discriminative instances from the perspective of the
currently given classifier g(·;θg).

3 Experimental Results

3.1 Experimental Setup
In our experiments, two widely used datasets with category labels, CIFAR-10 [23] and NUS-
WIDE [4], are used to evaluate the performance of our method and compare it with others.
The CIFAR-10 dataset consists of 10 classes, each of which includes equally 6,000 images
of the size 32× 32, and is divided into 50,000 and 10,000 images for training and testing
respectively. The NUS-WIDE dataset is composed of 269,648 Flickr images and each image
has its multi-label vector connecting it to part of 81 concepts. For comparison with previous
works [26, 30], 21 most frequent concepts are selected, each of which has 5,099 or more im-
ages, and contain 195,834 images in total. In the literature, CNN-based models process raw

Citation
Citation
{Krizhevsky} 2009

Citation
Citation
{Chua, Tang, Hong, Li, Luo, and Zheng} 2009

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015

Citation
Citation
{Liu, Wang, Shan, and Chen} 2016



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 7

images as their inputs, while input images are transformed into fixed-length descriptors such
as GIST [37] for many other methods [10, 32, 42]. Following [30], we define the relevance
of test images using the category labels of CIFAR-10 and NUS-WIDE. In particular, as for
NUS-WIDE, two images are considered relevant to each other if they have one or more com-
mon concepts. To select 10,000 test query images, we repeatedly sample random test query
sets and choose the one with the concept labels the distribution of which is most similar to
that of the whole dataset. Then, the rest of the database images are used for training.

For each evaluation dataset, the performance is measured with three widely used criteria:
the mean average precision (mAP), the precision-recall (PR) curves, and the mean precision
scores within several Hamming radii. The code length B is set to one of {12,24,36,48} for
comparison. The average precision can be calculated with the area under the PR curve, and
it is approximated by summing the areas of rectangles never deviating from the curve, which
is slightly different from the standard evaluation protocol of [38].

The networks of our proposed model are based on the base CNN commonly used in
[16, 30]. This base CNN consists of three 5×5 convolutional layers, which have 32, 32, and
64 channels respectively, and two fully-connected layers with 500 and B units, respectively.
As illustrated above, we add a classifier output layer to the base CNN and construct a dis-
criminator network consisting of two fully-connected layers with rectified linear unit (ReLU)
activation and batch normalization [14], and one output unit with sigmoid activation. The
base CNN behaves as the encoder (or a generator), and this network and discriminator play
the roles of adversarial networks. All of our network weights are initialized with the Xavier
method [9], and the network is trained by the stochastic gradient descent algorithm with the
Adam solver [22]. We set the learning rate to 0.001, and the momentum parameters are set to
0.9 for f (·,θ f ) and g(·,θg), and 0.1 for D(·,θD). The weight decay is set to 0.004. The last
layer of f (·,θ f ) contains the linear or tanh activation function for CIFAR-10 or NUS-WIDE
respectively. The classifier g(·,θg) performs the softmax or sigmoid activation for CIFAR-10
or NUS-WIDE respectively. As for NUS-WIDE, the training images are resized to 64×64,
irrespective of their original sizes and aspect ratios. We select NUS-WIDE as an evaluation
dataset to confirm the applicability of our proposed method to multi-label classification, so a
few modifications are applied to our method. When ci is concatenated to xi, only one out of
the several 1s in ci is randomly selected and the others are set to zero at each training step.
In such way, xi is led to get close to decision boundaries of its concepts. Furthermore, w j
in Eq. (5) is not used since we should provide the discriminator with the desired instances
z close to decision boundaries. We consistently set λ and α to 1.0 and 0.999 respectively,
where in particular, it was confirmed that the results are not sensitive to the value of λ in
our experiments. We use τ = 0.3 (for CIFAR-10) and σ = 0.7, and also conduct grid search
experiments for τ and σ to ensure that we choose the appropriate values of these parame-
ters. In addition, we replace the negative log-likelihood loss functions for the encoder and
discriminator with mean squared error terms [34, 49], and smooth the positive labels of the
adversarial networks to 0.9 [41] for stable training and better performance.

3.2 Comparison with the State-of-the-Art
With the evaluation criteria stated above, we compare the proposed supervised hashing
method (SHAN) with other major algorithms. In the literature, researchers have conducted
experiments in different settings, varying in base CNNs, training/query-test data, image size,
the number of retrieved data, and so on. Thus, we carefully select the comparable methods
whose results can be given in the same settings with few exceptions. They range from the
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Table 1: Quantitative comparison on the CIFAR-10 and NUS-WIDE datasets with the mean
average precision (mAP) measure.

Method CIFAR-10 NUS-WIDE
12 bits 24 bits 36 bits 48 bits 12 bits 24 bits 36 bits 48 bits

LSH [8] 0.1277 0.1367 0.1407 0.1492 0.3329 0.3392 0.3450 0.3474
SH [47] 0.1319 0.1278 0.1364 0.1320 0.3401 0.3374 0.3343 0.3332
BRE [25] 0.1589 0.1632 0.1697 0.1717 0.3556 0.3581 0.3549 0.3592
MLH [36] 0.1844 0.1994 0.2053 0.2094 0.3829 0.3930 0.3959 0.3990
ITQ [10] 0.1080 0.1088 0.1117 0.1184 0.3425 0.3464 0.3522 0.3576
ITQ-CCA [10] 0.1653 0.1960 0.2085 0.2176 0.3874 0.3977 0.4146 0.4188
KSH [32] 0.2948 0.3723 0.4019 0.4167 0.4331 0.4592 0.4659 0.4692
CNNH [48] 0.5425 0.5604 0.5640 0.5574 0.4315 0.4358 0.4451 0.4332
DLBHC [29] 0.5503 0.5803 0.5778 0.5885 0.4663 0.4728 0.4921 0.4916
DNNH [26] 0.5708 0.5875 0.5899 0.5904 0.5471 0.5367 0.5258 0.5248
BDNN [5] — 0.6521 — 0.6653 — — — —
DSH [30] 0.6157 0.6512 0.6607 0.6755 0.5483 0.5513 0.5582 0.5621
SUBIC [16] 0.6349 0.6719 0.6823 0.6863 — — — —
SHAN 0.7105 0.7556 0.7634 0.7681 0.5660 0.5779 0.5803 0.5829

ones that process transformed image descriptors to CNN-based ones that receive input im-
ages and encode them into binary codes: LSH, SH, BRE, MLH, ITQ(-CCA), KSH, CNNH,
DLBHC, DNNH, BDNN, DSH, and SUBIC. The mAP scores of BDNN are produced with
AlexNet [24], but it is deeper than the base CNN used in this work.

First, the quantitative results with mAP values are shown in Table 1, where it can be
seen that our proposed method outperforms the other compared ones in image search tasks.
Even though the scores of LSH to KSH are given with the GIST descriptors as in many
previous works, [28] conducted the experiments with CNN features, which showed that such
methods performed worse than the CNN-based ones nonetheless. It is noteworthy that the
CNN-based methods vary in the strategies of optimizing relaxed hash codes. For example,
some hashing methods such as DLBHC [29] and DNNH [26] design their hash layers with
sigmoid or tanh activations and apply thresholding to the real-valued codes to obtain binary
hash codes. In addition to this, others such as DSH [30], SUBIC [16], and [44] proposed to
create additional loss functions for hash codes to have intended forms (i.e., close to one-hot
codes or ones from {−1,+1}B) and desired statistical properties, which means that different
bits are uncorrelated with each other. However, these loss functions are not complementary
to the main classification loss or contrastive loss for siamese networks. In contrast, the
proposed regularization losses assist the main classification task, simultaneously leading the
hash codes to the desired regions in their space. In our experiments, this aspect is especially
effective for the single-label classification with CIFAR-10 as can be seen in Table 1. On
the other hand, the DNNH [26] and DSH [30] methods exploit the siamese/triplet networks
to produce similarity-preserving hash codes using the contrastive losses, which can be said
to be well suited for multi-label datasets such as NUS-WIDE. Even though the proposed
method simply performs the multi-label classification task, it shows competitive or better
performances compared to the above mentioned methods.

Secondly, Fig. 3(a) shows the PR curves of ours and several compared methods drawn
with their 48-bit codes. As can be seen in the PR curve for CIFAR-10, the proposed method
results in the highest precision in the whole range of recall. The PR curve for NUS-WIDE
indicates that the proposed model is less effective for the multi-label data, but it shows com-
petitive performance compared to the state-of-the-art methods especially in the lower range
of recall. This is probably more important in terms of the image search tasks. Fig. 3(b) shows
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Figure 3: (a) Quantitative comparison on the CIFAR-10 and NUS-WIDE datasets with the
PR curves, which show the precision values corresponding to the recall values in the range
of [0.05,1.0]. (b) Mean precision curves within Hamming radius 2 with 48-bit hash codes
for CIFAR-10 (left) and NUS-WIDE (right). These curves show the performances of the
compared methods in the lower range of recall.

(a) (b)
Figure 4: (a) Mean precision within several Hamming radii of our method for CIFAR-10
(left) and NUS-WIDE (right). (b) Left: the t-SNE visualization for the 48-bit hash codes of
the test query images in CIFAR-10. It is notable that the points of each class are densely
located, which helps to improve image search performance. Right: the histogram of the
48-bit relaxed hash codes with σ = 0.7.

the precision curves within Hamming distance 2, where the proposed method significantly
outperforms the others regarding every number of bits in our experiments. This shows the
precision for several top-ranked results, which is the proxy for the precision in much lower
range of recall that is not shown in Fig. 3(a). In contrast to the other methods, the precision
values of our method monotonically increase with the number of bits for both two datasets.
This indicates that the test query images relevant to each other robustly agglomerate and
semantic differences between images are well reflected to the Hamming distances. The pre-
cision values are also related to the quantization errors that occur when relaxed hash codes
are quantized to binary ones. If longer codes are allowed, it helps to produce more discrim-
inative hash codes, but at the same time, the quantization errors may be more accumulated
along with the bits. Even when more quantization errors occur, the binary codes of our
method sustain their neighboring relationships within each class, benefiting from more bits
for discriminative codes. Fig. 4(a) shows the mean precision values over several Hamming
radii of our method. As expected, the values for shorter codes decrease more rapidly with
the Hamming radius, which means that more neighboring test images share the same hash
codes or have the ones very similar to each other.

In addition, Fig. 4(b) shows our 48-bit hash codes of the test query set in CIFAR-10.
Their dimensionality has been reduced with t-SNE [45] to represent them on a 2D plane.
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This shows that the test hash codes agglomerate well, forming the cluster of each class. At
the same time, the test hash codes follow the distribution of the desired instances that are
input to the discriminator as shown in the histogram of Fig. 4(b).

3.3 Parameter Analysis
The grid search experiments are conducted to find the appropriate values of σ and τ . Table 2
shows the mAP scores along with certain ranges of these parameters. As can be seen in the
upper side of Table 2, the most effective values for CIFAR-10 and NUS-WIDE are similar to
each other, which are around 0.7, so we can choose the decent values of σ . However, the pro-
posed method produces fine results with the lower values of σ for CIFAR-10, while higher
values are suitable for NUS-WIDE. This difference is related to the selection of activation
functions at the last layer of f (·;θ f ). In our experiments for the multi-label classification,
we observe that it is difficult to force the values of xi to be around±1 with linear activations.
Thus, we apply the tanh activations to NUS-WIDE, and truncate the elements of z into the
range of [−1,+1]. On the other hand, the linear activations are applied to CIFAR-10, which
produces the distribution of xi more similar to that of z, as shown in Fig. 4(b). We also
confirm the influences of τ on the mAP results as shown in Table 2. It is notable that the
proposed model is not sensitive to the value of τ , so the decent value of τ can be selected.
The value of σ used by the proposed method is not large to provide each anchor point with
many distant neighbors, so the value of τ does not largely affect the distribution of z. On the
other hand, the use of τ for the multi-label classification tends to obstruct the training of our
model, so τ is not used for NUS-WIDE.

Table 2: Grid search results (mAP) for σ and τ with CIFAR-10 and NUS-WIDE.

Dataset σ τ

0.1 0.4 0.7 1.0 1.3 0.1 0.3 0.5 0.7
CIFAR-10 0.758 0.763 0.768 0.698 0.724 0.761 0.768 0.765 0.766

NUS-WIDE 0.509 0.580 0.583 0.576 0.570 — — — —

4 Conclusions
We have proposed a supervised hashing method using complementary networks, which con-
sists of its encoder, classifier, and discriminator networks. This model performs the two-
phase training to fit the relaxed hash codes to the specific desired distribution. The encoder
network learns to produce effective hash codes for both the classification and adversarial
training. The produced hash codes and desired instances are concatenated to ground-truth
label vectors and classification results respectively, which are input to the discriminator net-
work as real and fake instances to be distinguished. Experimental results show that the
proposed algorithm produces the hash codes that are effective for the image search task,
following the desired distribution.
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