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Abstract
3D pose estimation from a single 2D image is an important and challenging task in

computer vision with applications in autonomous driving, robot manipulation and aug-
mented reality. Since 3D pose is a continuous quantity, a natural formulation for this task
is to solve a pose regression problem. However, since pose regression methods return a
single estimate of the pose, they have difficulties handling multimodal pose distributions
(e.g. in the case of symmetric objects). An alternative formulation, which can capture
multimodal pose distributions, is to discretize the pose space into bins and solve a pose
classification problem. However, pose classification methods can give large pose estima-
tion errors depending on the coarseness of the discretization. In this paper, we propose a
mixed classification-regression framework that uses a classification network to produce
a discrete multimodal pose estimate and a regression network to produce a continuous
refinement of the discrete estimate. The proposed framework can accommodate different
architectures and loss functions, leading to multiple classification-regression models, so-
me of which achieve state-of-the-art performance on the challenging Pascal3D+ dataset.

1 Introduction
A fundamental problem in computer vision is to understand the underlying 3D geometry of
the scene captured in a 2D image. This involves describing the scene in terms of the objects
present in it (i.e. object detection and classification) and predicting the relative rigid trans-
formation between the camera and each object (i.e. object pose estimation). The problem of
estimating the 3D pose of an object from a single 2D image is an old problem in computer
vision, which has seen renewed interest due to its applications in autonomous driving, robot
manipulation and augmented reality, where it is very important to reason about objects in
3D. While general 3D pose estimation includes both the 3D rotation and translation between
the object and the camera, here we restrict our attention to estimating only the 3D rotation.

Since 3D pose is a continuous quantity, a natural way to estimate it is to setup a pose
regression problem: Given a dataset of 2D images of objects and their corresponding 3D
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pose annotations, the goal is to learn a regression function (e.g. a deep network) that predicts
the 3D pose of an object in an image. This requires choosing, e.g. a network architecture,
a representation for rotation matrices (Euler angles, axis-angles or quaternions) and a loss
function (mean squared loss, Huber loss or geodesic loss). However, a disadvantage of
regression-based approaches is that they are unimodal in nature (i.e. they return a single pose
estimate), hence they are unable to properly model multimodal distributions in the pose space
which occur for object categories like boat and dining-table that exhibit strong symmetries.

An alternative approach that is able to capture multimodal distributions in the pose space
is to setup a pose classification problem. Specifically, we discretize the pose space into bins
and, instead of predicting a single pose output, we return a probability vector on the pose
labels associated with these bins. This formulation is better at handling cases where two
or more competing hypotheses have a high probability of being correct, for example due to
symmetry. However, the drawback of this formulation is that we will always have a non-zero
pose-estimation error even with perfect pose-classification accuracy due to the discretization
process. Moreover, this error might be large if the binning is very coarse.

In this paper, we propose a mixed classification-regression framework that combines the
best of both worlds. The proposed framework consists of two main components. The first
one is a classification network that predicts a pose label corresponding to a “key pose” ob-
tained by discretizing the pose space. The second one is a regression network that predicts the
deviation between the (continuous) object pose and the (discretized) key pose. The outputs
of both components are then combined to predict the object pose. The proposed framework
is fairly general and can accommodate multiple choices, for the pose classification and re-
gression networks, for the way in which their outputs are combined, for the loss functions
used to train them, etc. Experiments on the Pascal3D+ dataset show that our framework
gives more accurate estimates of 3D pose than using either pure classification or regression.

Related work. There are many non-deep learning methods for 3D pose estimation given
2D images. Due to space constraints, we restrict our review to only methods based on deep
networks. The current literature on 3D pose estimation using deep networks can be divided
in two groups: (i) methods that predict 2D keypoints from images and then recover the 3D
pose from these keypoints, and (ii) methods that directly predict 3D pose from an image.

The first group of methods includes the works of [2, 5, 18, 19, 24]. The works of [18, 24]
train on 2D keypoints that correspond to semantic keypoints defined on 3D object models.
Given a new image, they predict a probabilistic map of 2D keypoints and recover 3D pose
by comparing with some pre-defined object models. In [5], [19] and [2], instead of semantic
keypoints, the 3D points correspond to the 8 corners of a 3D bounding box encapsulating the
object. The network is trained by comparing the predicted 2D keypoint locations with the
projections of the 3D keypoints on the image under ground-truth pose annotations. [5] uses
a Huber loss on the projection error to be robust to inaccurate ground-truth annotations and
is the current state-of-the-art on the Pascal3D+ dataset [25] to the best of our knowledge.

The second group of methods includes the works of [4, 13, 14, 15, 21, 22, 23]. All these
methods, except [13], use the Euler angle representation of rotation matrices to estimate the
azimuth, elevation and camera-tilt angles separately. [22], [21] and [4] divide the angles into
non-overlapping bins and solve a classification problem, while [23] tries to regress the angles
directly with a mean squared loss. [15] proposes multiple loss functions based on regression
and classification and concludes that classification methods work better than regression ones.
On the other hand, [13] uses the axis-angle and quaternion representations of 3D rotations
and optimizes a geodesic loss on the space of rotation matrices.
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(b) Overview of the network architecture

Figure 1: A high level overview of our problem statement and proposed network architecture

In this work we also use the axis-angle representation but within a mixed classification-
regression framework (which we also call Bin & Delta model) instead of the pure regression
approach of [13]. The proposed framework can be seen as a generalization of [6, 7, 12, 16],
which also use a Bin & Delta model to combine classification and regression networks.
Specifically, [16] is a variation of the Geodesic Bin & Delta model we propose in Eqn. (12)
with a cos−sin representation of Euler angles, while [12] is a particular case of the Simple
Bin & Delta model we propose in Eqn. (11) with a quaternion representation of 3D pose.
On the other hand, the quantized regression model of [6, 7] uses the Bin & Delta model
to generate dense correspondences between a 3D model and an image for face landmark
and human pose estimation. [6] learns a modification of our Simple Bin & Delta model in
Eqn. (5) with a separate delta network for every facial region while [7] is a particular case of
the Probabilistic Bin & Delta model we propose in Eqn. (10). [7] also makes a connection
between a Bin & Delta model and a mixture of regression experts proposed in [10], where
the classification output probability vector acts as a gating function on regression experts.

Broadly speaking, there has been recent interest in trying to design networks and rep-
resentations that combine classification and regression to model 3D pose but the authors of
these different works have treated this as a one-off representation problem. In contrast, we
propose a general framework that encapsulates prior models as particular cases.

Paper outline. The remainder of the paper is organized as follows. In §2 we define the 3D
pose estimation problem along with our network architecture, 3D pose representation and
some common-sense baselines that use only regression or classification. In §3 we describe
our mixed classification-regression framework and discuss a variety of different models and
loss functions that arise from the framework. Finally, in §4 we demonstrate the effectiveness
of these models on the challenging Pascal3D+ dataset for the task of 3D pose estimation.

2 3D Pose Estimation

Given an image and a bounding box around an object in the image with known object cate-
gory label, in this paper we consider the problem of estimating its 3D pose. We assume the
bounding box around the object is given by an oracle, but the output of an object detection
system like [20] can also be used instead. An overview of our problem is shown in Fig. 1(a).

Network architecture. We use a standard network architecture shown in Fig. 1(b) where we
have a feature network shared across all object categories and a pose network per object cate-
gory. The final pose output is selected as the output of the pose network corresponding to the
input object category label. We use the ResNet-50 network [8, 9] minus the last classifica-
tion layer as our feature network. Each pose network is essentially a multi-layer perceptron,
with fully connected layers containing ReLU nonlinearities and Batch-Normalization layers
in between, whose output depends on whether it is a classification, regression or mixed pose
network. We describe the proposed Bin & Delta pose network in more detail in §3.
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Representations of 3D pose. Let SO(3) = {R ∈ R3×3 : RT R = I, det(R) = +1} denote
the Special Orthogonal group of rotation matrices of dimension 3. We use the axis-angle
representation R = exp(θ [v]×) of a rotation matrix R ∈ SO(3) with the corresponding axis-
angle vector defined as y = θv, where θ is the angle of rotation, v = [v1,v2,v3]

T (‖v‖2 = 1)
is the axis of rotation, [v]× = [[0,−v3,v2], [v3,0,−v1], [−v2,v1,0]], and exp is the matrix
exponential. Assuming θ ∈ [0,π) and defining R = I3 iff y = 0 sets up a bijective mapping
between axis-angle vector y and rotation matrix R. With the above notation, we can write the
input-output map of the network architecture in Fig. 1(b) as y = Φ(x;W ), where x denotes
the input image, W denotes the network weights, and y denotes the axis angle representation.
Technically, the output y is also a function of the object category label c, i.e. y = Φ(x,c;W ).
For the sake of simplicity, we will omit this detail in further analysis.
Regression baseline. A natural baseline is a regression formulation with a squared Eu-
clidean loss between the ground-truth 3D pose y∗n and the predicted pose yn = ΦR(xn;W ) for
image xn. This involves solving the following optimization problemRE during training:

RE : min
W

1
N ∑

n
‖y∗n−ΦR(xn;W )‖2

2. (1)

However, as recommended by [13], it makes more sense to minimize a geodesic loss on the
space of rotation matrices instead of the Euclidean loss as it better captures the geometry of
the problem. This involves solving the following optimization problemRG during training:

RG : min
W

1
N ∑

n
Lp(y∗n,ΦR(xn;W )), (2)

where Lp(y1,y2) ≡ L(R1,R2) =
1√
2
‖ log(R1RT

2 )‖F is the geodesic distance between two
axis-angle vectors y1 and y2 with corresponding rotation matrices R1 and R2 respectively.
Classification baseline. An alternative to the regression baselinesRE andRG is a classifica-
tion baseline C. Here, we first run K-Means clustering on the ground-truth pose annotations
{y∗n}N

n=1 to obtain two things: (i) a pose label l∗n associated with every image xn and (ii) a
K-Means dictionary {zk}K

k=1 which also acts as the set of key poses in the discretization pro-
cess. We then train a network to predict the pose labels by minimizing the cross-entropy loss
Lc between the ground-truth pose labels l∗n and the predicted pose labels ΦC(xn;W ):

C : min
W

1
N ∑

n
Lc(l∗n ,ΦC(xn;W )). (3)

3 Mixed Classification-Regression Framework
This section presents the proposed classification-regression framework. §3.1 presents an over-
view of the Bin & Delta model and its network architecture, while §3.2-§3.5 present various
loss functions that arise from different modeling choices within our general framework.

3.1 Overview of the Bin & Delta model
Instead of a single multi-layer perceptron as the pose network like we have in our re-
gression and classification baselines, the Bin & Delta model has two components: a bin
network and a delta network as shown in Fig. 2. They both take as input the output of
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the feature network, fn = ΦF(xn;WF), where ΦF is the feature network parameterized by
weights WF and xn is the input image. Given feature input fn, the bin network predicts a
pose label, ln = ΦB( fn;WB), where ΦB is the bin network parameterized by weights WB.

Delta 
Network

Bin 
Network

Feature

Key 
Poses

3D Pose

Figure 2: Overview of the Bin&Delta model

The pose label ln references a key pose
zln in the discretization process. The delta
network predicts a pose residual, δyn =
ΦD( fn;WD), where ΦD is the delta network
parameterized by weights WD. The discrete
pose zln and the pose residual δyn are com-
bined to predict the continuous pose yn as

yn = g(zln ,δyn), (4)

where different choices for g lead to different ways of combining the outputs of the Bin &
Delta models. We denote all the parameters of the Bin & Delta model as W = [WF ,WB,WD].

The above framework for combining classification and regression is very general and
there are many design choices that lead to different models and loss functions. For example:

1. How to combine the classification and regression outputs? Choosing the function g to
be the addition operation, i.e. yn = zln +δyn, leads to our models in §3.2, §3.3 and §3.5.
Alternatively, taking the log of the product of the rotations associated to the outputs of
the Bin & Delta models, i.e. yn = log(exp(zln)exp(δyn)), leads to our model in §3.4.

2. Where to apply the regression loss? We can choose to provide supervision during
training at either the final pose output or at the intermediate output of the delta network.
The former leads to our model in §3.3 and the later leads to our model in §3.2.

3. Hard or soft assignment in the pose-binning step? Instead of assigning a single pose
label for every image (a hard assignment), we can assign a probability vector over
pose-bins (a soft assignment). This leads to our model in §3.5.

4. Single delta network for all pose-bins or one per pose-bin? This is a decision choice
we can make for all the models in §3.2-§3.5 and we discuss it in §3.6.

Also, note that even though we present everything in the context of axis-angle representation
of 3D pose, all our proposed models can be generalized to any choice of pose representation.

3.2 Simple/Naive Bin & Delta
Given training data {xn,y∗n}N

n=1, of images xn and corresponding ground-truth pose-targets y∗n,
we run the K-Means discretization process outlined in the classification baseline to associate
a pose label l∗n with every image. Given this label and the key poses {zk}K

k=1, we can obtain
a ground-truth delta δy∗n = y∗n− zl∗n for every image. Now, the Bin & Delta networks can
be trained on modified training data {xn, l∗n ,δy∗n}N

n=1 with a cross-entropy loss Lc for the bin
network and a Euclidean loss ‖ · ‖2

2 for the delta network. More specifically, the parameters
W are learned by solving the following optimization problem:

MS : min
W

1
N ∑

n

[
Lc(l∗n , ln)+α‖δy∗n−δyn‖2

2
]
, (5)

where α ≥ 0 is a relative weighting parameter for balancing the two losses.
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3.3 Geodesic Bin & Delta
The Simple Bin & Delta model penalizes incorrect predictions in the individual Bin & Delta
networks. It is not cognizant of the fact that what we care about is the final predicted pose.
To address this issue, we propose a new Bin & Delta model that regresses the final output
pose instead of the intermediate output of the delta network. We call this a Geodesic Bin &
Delta model because we apply a geodesic regression loss Lp between the ground-truth pose
and predicted pose by solving the following optimization problem:

MG : min
W

1
N ∑

n
[Lc(l∗n , ln)+αLp(y∗n,zln +δyn)] . (6)

Notice that that this model has strong connections to the regression baseline RG, except
that we now model multimodal 3D pose-distributions and have an additional classification
loss. As noted in [13], the geodesic loss is non-convex with many local minima and a good
initialization is required. We initialize the networks by training on problemMS for 1 epoch.

3.4 Log-Euclidean Bin & Delta

Figure 3: Toy example of
the Log-Euclidean Bin &
Delta model for a circle

In the two models discussed so far, we have assumed that
δyn = yn− zln , which does not truly capture the geometry of
the rotation group SO(3). Technically, the delta model δyn
should capture the deviations between the continuous pose Rn
and the discrete pose R̃k = exp(zk) associated with key pose
zk. Specifically, δyn should be a tangent vector at R̃k in the
direction of Rn whose norm is equal to the geodesic distance
between R̃k and Rn. Mathematically, this is expressed using
exponential and logarithm maps as:

δyn = logR̃ln
(Rn) = log

(
R̃T

lnRn
)

or Rn = R̃ln exp(δyn). (7)

The geodesic loss between the ground-truth and predicted rotations L(R∗n, R̃ln exp(δyn)) =
L(R̃T

lnR∗n,exp(δyn)) can be approximated by the Euclidean distance on the tangent space at
the identity as ‖ log(R̃T

lnR∗n)− log(exp(δyn))‖2. This new regression loss gives us the Log-
Euclidean Bin & Delta model, which is based on solving the following optimization problem

MLE : min
W

1
N ∑

n

[
Lc(l∗n , ln)+α‖ log(R̃T

lnR∗n)−δyn‖2
2
]
, (8)

where the term log(R̃T
lnR∗n) can be precomputed for efficiency of training. Fig. 3 shows a toy

example of our proposed model in the context of a circle. We show a circle with 5 tangent
planes corresponding to key poses R̃i, i = 1, ...,5. The rotation R (shown in red) is now a
combination of the key pose R̃1, with pose label l = 1, and the delta δy (shown in orange).

3.5 Probabilistic Bin & Delta
In all the models discussed so far we have used a deterministic (hard) assignment obtained
from K-Means in which we assign a single key-pose to an image. A more flexible and
possibly more informative model would be to do a probabilistic (soft) assignment to all key-
poses. Specifically, post K-Means we can generate a probabilistic assignment as:
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p∗nk =
exp(−γ‖y∗n− zk‖2

2)

∑k exp(−γ‖y∗n− zk‖2
2)
. (9)

Now, the classification loss can be modified to be a Kullback-Leibler (KL) divergence be-
tween ground-truth and predicted probabilities. The regression loss is also updated to fully
utilize this probabilistic output as shown in the following optimization problem:

MP : min
W

1
N ∑

n

[
LKD(p∗n, pn)+α ∑

k
pnkLp(y∗n,zk +δyn)

]
. (10)

The predicted pose is now yn = zln +δyn, where ln = argmaxk pnk. Another variation that is
of relevance here is that instead of using K-Means followed by the probabilistic assignment
of Eqn. (9), one could learn a Gaussian Mixture Model (GMM) in the pose-space to do the
soft assignment in a more natural way. We did not explore this variation but mention it to
demonstrate that many more models can be described as particular cases of our framework.

3.6 One delta network per pose-bin

Bin 
Network

Feature

Key 
Poses

3D Pose

Delta Networks

Figure 4: One delta network per pose-bin

An implicit assumption in all the models dis-
cussed so far is that there is a single delta
model for all pose-bins. An alternative model-
ing choice, as shown in Fig. 4, is to have a delta
model for every single pose-bin. This model-
ing decision is equivalent to deciding whether
to have a common covariance matrix across all
clusters or have a different covariance matrix for every cluster in a GMM. If we choose
to now have one delta network per pose-bin, we can update all the previous optimization
problems as follows (the change is highlighted in red):

MS+ : min
W

1
N ∑

n

[
Lc(l∗n , ln)+α‖δy∗n−δyln

n ‖2
2

]
, (11)

MG+ : min
W

1
N ∑

n

[
Lc(l∗n , ln)+αLp(y∗n,zln +δyln

n )
]
, (12)

MLE+ : min
W

1
N ∑

n

[
Lc(l∗n , ln)+α‖ log(R̃T

lnR∗n)−δyln
n ‖2

2

]
, (13)

MP+ : min
W

1
N ∑

n

[
LKD(p∗n, pn)+α ∑

k
pnkLp(y∗n,zk +δyk

n)

]
. (14)

4 Results
First, we describe the Pascal3D+ dataset [25], which is the benchmark dataset used for evalu-
ating 3D pose estimation methods. Then, we demonstrate the effectiveness of our framework
with state-of-the-art performance on this challenging task. Finally, we present an ablation
study on two hyper-parameters: size of the K-Means dictionary K and relative weight α .
Dataset. The Pascal3D+ consists of images of twelve object categories: aeroplane (aero),
bicycle (bike), boat, bottle, bus, car, chair, diningtable (dtable), motorbike (mbike), sofa,
train and tvmonitor (tv). These images were curated from the Pascal VOC [1] and ImageNet
[3] datasets, and annotated with 3D pose in terms of the Euler angles (az,el,ct). We use
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the ImageNet-trainval and Pascal-train images as our training data and the Pascal-val images
as our testing data. Following the protocol of [21, 22] and others, we use ground-truth
bounding boxes of un-occluded and un-truncated objects. We use the 3D pose-jittering data
augmentation strategy of [13] and the rendered images of [21] to augment our training data.
Evaluation metrics. We evaluate our models on the Pascal3D+ dataset under two standard
metrics: (i) median angle error across all test images MedErr and (ii) percentage of images
that have angle error less than π

6 , Acc π

6
. Here the angle error is the angle between predicted

and ground-truth rotation matrices given by 1√
2
‖ log

(
R1RT

2
)
‖F . For all the results, we run

each experiment three times and report the mean and standard deviation across three trials.
3D pose estimation using Bin & Delta models. As can be seen in Tables 1, 2 and Fig. 5, we
achieve state-of-the-art performance with our Geodesic and Probabilistic Bin & Delta models
with one delta network per pose-bin, namely models MG+ and MP+, respectively. We
improve upon the existing state-of-the-art [5], from 10.88◦ to 10.10◦ in the MedErr metric
and from 0.8392 to 0.8588 in the Acc π

6
metric under modelMG+. Due to space constraints

Table 2 shows results for four of our models only. Please see the supplementary material for
additional results. Other important observations include: (1) ModelsMG+ andMP+ that
have one delta network per pose-bin perform better than the models MG and MP with a
single delta network for all pose-bins, as they have more freedom in modeling the deviations
from key pose even though the discretization of the pose space is coarser. (2) Models that use
a geodesic loss on the final pose output (MG,MP,MG+ andMP+) perform better than
the pure classification & regression baselines C,RE ,RG as well as models that put losses on
the individual components (MS,MR,MS+ andMP+). (3) Pure regression with a geodesic
loss RG worked better than pure classification C under the MedErr metric but worse under
the Acc π

6
metric. (4) Geodesic regressionRG is better than Euclidean regressionRE .

Ablation analysis. There are two main hyper-parameters in our model, (i) the size of the K-
Means dictionary K and (ii) the relative weighting parameter α . In Tables 3 and 4, we vary
the size of the K-Means dictionary for modelsMG (K = {24,50,100,200}) andMG+ (K =
{4,8,16,24}). We see that usually, a larger K-Means dictionary is better. We also note that
even with a very coarsely discretized pose space (K = 4),MG+ is better than the very highly
discretized pose space (K = 200) ofMG. In Tables 5 and 6, we tried three different values of
α = {0.1,1,10} for modelsMG andMG+ and observed that performance improves with
higher α . This is because higher α gives more importance to the geodesic loss on the final
predicted pose which is the quantity we care about.
Implementation details. Please see the supplementary material for more details.

5 Conclusion
3D pose estimation is an important but challenging task and current deep learning solutions
solve this problem using pure regression or classification approaches. We designed a frame-
work that combines regression and classification loss functions to predict fine-pose estimates
while modeling multi-modal pose distributions. This was implemented using a flexible Bin
& Delta network architecture where different modeling choices led to different models and
loss functions. We analyzed these models on the Pascal3D+ dataset and demonstrated state-
of-the-art performance using two of them. We also tested various modeling choices and
provided some guidelines for future work using these models.
Acknowledgement. This research was supported by NSF grant 1527340.
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(a) MedErr metric (lower is better) (b) Acc π

6
metric (higher is better)

Figure 5: Performance on the Pascal3D+ dataset under two metrics (averaged over all object
categories). Red bars are current state-of-the-art methods, green bars are our baselines and
blue bars are our proposed models (best seen in color)

Method aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
[22] 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.59
[21] 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.68
[16] 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.15
[5] 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.88
RE 14.5 17.7 39.3 7.4 4.0 7.8 15.2 26.6 17.5 10.5 11.5 14.1 15.50
RG 11.8 15.9 27.2 7.2 2.9 5.2 11.6 15.0 14.3 10.8 5.4 12.4 11.63
C 11.7 15.3 21.5 9.3 4.1 7.4 11.2 17.8 17.0 11.0 7.0 13.1 12.20

MS 11.0 15.5 21.0 8.8 3.8 7.0 10.8 21.0 16.6 10.7 6.5 13.1 12.14
MG 10.6 16.4 21.6 8.1 3.2 6.0 9.9 14.6 16.0 11.1 6.3 13.4 11.44
MR 12.8 15.2 23.4 9.0 4.0 7.4 11.1 16.8 16.1 10.7 6.6 12.3 12.11
MP 11.4 16.3 25.6 7.0 2.6 5.1 11.3 16.0 13.6 10.2 5.5 12.0 11.38
MS+ 12.2 15.7 24.4 9.9 3.6 6.5 12.0 14.8 14.4 11.9 6.4 11.6 11.95
MG+ 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7 10.10
MR+ 12.3 16.7 24.7 7.5 3.6 6.5 11.5 15.5 15.1 11.1 7.3 12.1 11.99
MP+ 10.6 15.0 23.9 6.7 2.7 4.7 9.8 12.6 13.9 9.7 5.3 11.7 10.54

Table 1: Performance of our models under the MedErr metric (lower is better). Best results
are highlighted in bold and the second best are shown in red (best seen in color).

Method aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
[22] 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.8075
[21] 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.8200
[16] 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.8103
[5] 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.8392
RE 0.77 0.75 0.41 0.96 0.91 0.83 0.72 0.56 0.75 0.90 0.75 0.87 0.7656
RG 0.80 0.78 0.54 0.97 0.95 0.93 0.83 0.59 0.82 0.91 0.81 0.86 0.8166
C 0.84 0.77 0.60 0.95 0.97 0.95 0.90 0.63 0.78 0.94 0.81 0.87 0.8350
MS 0.83 0.78 0.61 0.96 0.96 0.94 0.90 0.56 0.79 0.95 0.82 0.87 0.8303
MG 0.84 0.76 0.62 0.96 0.98 0.94 0.92 0.65 0.80 0.96 0.82 0.87 0.8439
MLE 0.83 0.77 0.58 0.96 0.96 0.94 0.91 0.71 0.81 0.93 0.81 0.87 0.8410
MP 0.80 0.77 0.56 0.97 0.97 0.93 0.82 0.57 0.81 0.92 0.82 0.88 0.8185
MS+ 0.82 0.80 0.59 0.94 0.97 0.94 0.91 0.63 0.81 0.97 0.83 0.87 0.8387
MG+ 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88 0.8588
MLE+ 0.81 0.77 0.56 0.96 0.97 0.92 0.86 0.73 0.79 0.93 0.80 0.89 0.8329
MP+ 0.84 0.82 0.59 0.97 0.97 0.95 0.88 0.68 0.84 0.93 0.81 0.89 0.8470

Table 2: Performance of our models under the Acc π

6
metric (higher is better). Best results

are highlighted in bold.
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Metric K aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

MedErr

24 12.4 16.3 23.5 8.7 2.7 5.4 11.6 17.4 16.3 13.7 6.2 15.6 12.48
50 12.9 16.0 21.1 8.3 3.3 6.1 11.2 22.2 17.7 11.8 5.8 13.9 12.53
100 12.1 16.0 19.9 8.9 3.4 6.5 10.8 15.2 16.4 9.6 5.9 13.0 11.48
200 10.6 16.4 21.6 8.1 3.2 6.0 9.9 14.6 16.0 11.1 6.3 13.4 11.44

Acc π

6

24 0.84 0.82 0.58 0.95 0.97 0.94 0.89 0.57 0.77 0.91 0.81 0.86 0.8266
50 0.82 0.80 0.59 0.95 0.97 0.94 0.92 0.54 0.78 0.91 0.83 0.89 0.8281
100 0.83 0.76 0.63 0.96 0.97 0.93 0.91 0.57 0.78 0.95 0.82 0.88 0.8335
200 0.84 0.76 0.62 0.96 0.98 0.94 0.92 0.65 0.80 0.96 0.82 0.87 0.8439

Table 3: Ablation analysis of the size of K-Means dictionary in model MG under the
MedErr (first row) and Acc π

6
(second row) metrics.

Metric K aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

MedErr

4 10.4 13.3 21.9 7.2 2.9 5.3 9.9 16.3 14.1 10.4 5.0 12.5 10.78
8 10.5 14.8 21.5 6.8 2.7 4.9 9.7 16.1 14.9 10.2 5.6 12.3 10.85

16 9.9 14.3 21.3 7.3 2.7 4.9 9.6 13.0 14.7 10.8 5.2 11.7 10.46
24 9.7 15.3 23.5 7.1 2.9 5.0 10.0 13.3 14.4 11.3 5.3 13.1 10.91

Acc π

6

4 0.85 0.80 0.61 0.97 0.97 0.95 0.87 0.67 0.84 0.93 0.83 0.86 0.8453
8 0.83 0.79 0.60 0.97 0.96 0.95 0.91 0.62 0.81 0.95 0.83 0.89 0.8427

16 0.84 0.82 0.61 0.96 0.98 0.96 0.92 0.67 0.82 0.97 0.82 0.90 0.8553
24 0.87 0.80 0.60 0.96 0.97 0.95 0.90 0.65 0.83 0.94 0.82 0.87 0.8467

Table 4: Ablation analysis of the size of K-Means dictionary in model MG+ under the
MedErr and Acc π

6
metrics.

Metric α aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

MedErr
0.1 11.8 16.1 20.8 8.4 3.3 6.4 10.6 28.5 15.0 11.2 6.0 12.3 12.53
1 12.1 16.0 19.9 8.9 3.4 6.5 10.8 15.2 16.4 9.6 5.9 13.0 11.48

10 12.1 14.5 22.8 8.7 3.1 6.5 10.9 15.1 16.3 10.6 6.0 13.0 11.63

Acc π

6

0.1 0.84 0.77 0.62 0.96 0.96 0.94 0.91 0.51 0.82 0.96 0.81 0.88 0.8306
1 0.83 0.76 0.63 0.96 0.97 0.93 0.91 0.57 0.78 0.95 0.82 0.88 0.8335

10 0.82 0.79 0.59 0.96 0.97 0.94 0.91 0.67 0.81 0.95 0.82 0.88 0.8424
Table 5: Ablation analysis of the weighting parameter α in modelMG under the MedErr
and Acc π

6
metrics.

Metric α aero bike boat bottle bus car chair dtable mbike sofa train tv Mean

MedErr
0.1 10.3 16.0 24.0 7.1 3.2 5.5 10.3 11.8 15.2 10.6 6.0 12.3 11.01
1 9.9 14.3 21.3 7.3 2.7 4.9 9.6 13.0 14.7 10.8 5.2 11.7 10.46

10 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7 10.10

Acc π

6

0.1 0.86 0.81 0.59 0.96 0.98 0.95 0.90 0.65 0.80 0.96 0.82 0.89 0.8473
1 0.84 0.82 0.61 0.96 0.98 0.96 0.92 0.67 0.82 0.97 0.82 0.90 0.8553

10 0.87 0.81 0.64 0.96 0.97 0.95 0.92 0.67 0.85 0.97 0.82 0.88 0.8588
Table 6: Ablation analysis of the weighting parameter α in modelMG+ under the MedErr
and Acc π

6
metrics.
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