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Abstract

Image based localization is one of the important problems in computer vision due to
its wide applicability in robotics, augmented reality, and autonomous systems. There is a
rich set of methods described in the literature on how to geometrically register a 2D image
w.r.t. a 3D model. In particular, data augmentation methods such as synthetic image gen-
eration have been shown to be useful for this task. In this work, we propose a synthetic
data augmentation technique and design a deep neural network, that can be trained to
estimate the absolute pose of an image from synthesized sparse feature descriptors. Our
choice of using sparse feature descriptors has two major advantages: first, our network is
significantly smaller than the CNNs proposed in the literature for this task—thereby mak-
ing our approach more efficient and scalable. Second—and more importantly—, usage
of sparse features allows to augment the training data with synthetic viewpoints, which
leads to substantial improvements in the generalization performance to unseen poses.
The synthetic views are further employed to augment realistic RGB images which again
surpasses recent deep learning based synthetic image generation technique. A detailed
analysis of the proposed networks and a rigorous evaluation on the existing datasets are
provided to support our method.

1 Introduction
In recent years deep learning has become the method of choice to address many computer
vision tasks. Despite many successful applications deep learning methods still require huge
amounts of training data, and they can have very limited generalization ability when faced
with small training sets (e.g. [29]). Leveraging synthetic datasets for training can improve the
accuracy of deep learning methods, when limited real training data is available [5, 6]. In this
work we utilize structure-from-motion (SfM) to generate synthetic data that improves the
performance of the deep networks employed for pose regression and RGB image synthesis.

Traditionally, absolute pose estimation has been tackled either by direct 2D-3D match-
ing (e.g. [14, 18]) or by inserting an image retrieval stage to narrow down the search space
(e.g. [8, 19, 30]). Synthetic views have been useful in the latter cases [8, 25]. These syn-
thetic poses may cover regions in pose space not available in the training data and boost the
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Figure 1: Two examples of 6DOF pose estimation results on heads sequence of the 7-scenes
dataset [21] where PoseNet [11] fails to predict accurate pose (marked by red, positional
error = 0.31m and angular error = 27.4◦) whereas the proposed SPP-Net predicts a pose
(marked by green, positional error = 0.06m and angular error = 2.18◦) closer to the ground
truth (marked by blue).

localization performance. PoseNet [11] and subsequent approaches [10, 26, 27] demonstrate
that deep learning methods—which have shown excellent performance in numerous classi-
fication and regression problems—can estimate camera poses directly from input images.
Despite the good performance of these methods and related architectures for image-based
pose regression [3, 10, 11, 26], we believe that PoseNet-like methods are fundamentally
limited in the following ways:

1. Forward regression architectures such as CNNs have no built-in reasoning about geometry
and most likely do not extract an “understanding” of the underlying geometric concepts
(such as the pinhole camera model) during the training phase. Consequently, we postu-
late (and empirically validate) that PoseNet-like approaches suffer from poor extrapolation
ability to unseen poses significantly different from the ones in the training set. In many ap-
plication settings the distributions of training poses and test poses can differ substantially:
training images might be chosen such that structure-from-motion computation to obtain
a 3D model is made easier, whereas test poses may be arbitrarily distributed within the
maneuverable space. Hence, direct pose regression typically faces a domain adaptation
problem in general. For instance, Li et al. [13] address this problem by augmenting the
training set with synthetically warped RGB images using depth maps (but depth images
may not be always available, and image synthesis is limited to nearby poses).

2. A lot of computation (and trainable parameters) in PoseNet-like architectures goes into
the feature extraction stage, which is based on rather heavy-weight CNNs such as VGG-
Net [22] or GoogleNet [23]. In light of empirical evidence supporting gold-standard fea-
ture descriptors (such as SIFT [15]), we conjecture that heavy-weight dense feature ex-
traction via CNNs is not necessary for this task. The networks used in our approach are
significantly smaller and faster to train than existing CNN-based solutions for pose regres-
sion. Using sparse features will also be beneficial for the domain adaptation problem.

The goal in this work is to generate realistic synthetic “images” in order to improve the
performance of pose regression networks for unseen poses. In Fig. 1 we depict two examples
where our proposed method predicts significantly superior poses than PoseNet [11]. We
take a different route than e.g. DSAC [2, 3], which mimics a RANSAC approach within a
differentiable architecture. It produces very competitive results, but requires about 0.2s per
image on a high-end GPU (whereas our approach runs at up to 100 Hz).
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The general advantages of using deep learning for pose regression over the direct 2D-
3D matching (e.g. [14, 18]) are the benefits of end-to-end training, the reduced memory
requirements (e.g., ≈36MB for the proposed network instead of several GB for a typical 3D
point cloud database), and real-time performance (e.g., our proposed method needs ≈10ms
to estimate the pose per image).
Our contributions can be summarized as follows:
• We propose a probabilistic selection method to generate synthetic “images” leveraging the

3D map and feature correspondences. We experimentally show that proposed synthetic
image generation technique is very accurate and can replace ad-hoc techniques [8].
• We address the domain adaptation problem in pose estimation by augmenting the training

set with synthetically generated training images and poses.
• We propose a DNN architecture based on an ensemble of spatial pyramid max-pooling

units [7] for pose regression. This network can be trained (from scratch) on those real +
synthetic datasets without pretraining and is significantly smaller than PoseNet-like net-
works reported in the literature.
• To demonstrate the quality of the proposed synthetic image generation method, we also

include results for color image synthesis and compare to several existing baseline methods.
Overall, we demonstrate in this work that a relatively light-weight pose regression network
trained on synthetic data substantially improves its generalization ability to novel poses.

2 Mining synthetic views

In this section, we discuss our proposed method to mine synthetic poses and feature descrip-
tors “images”. We leverage an SfM framework to obtain a set of geometrically consistent
inlier 3D points X . The outlier pointsO, i.e. features detected on the training images but not
participating in the reconstruction, are also stored. Inlier and outlier points follow different
probabilistic models as explained below.

In the first step we ensure that no information about the test images remains in the training
data: we remove all points Xi ∈ X in the original point-cloud that are only seen in the test
images. Further, feature points observed in fewer than two training images are placed intoO.
The observed image indices and the respective feature descriptors for the remaining points
corresponding to the test images are also removed.

Each point Xi in the reconstructed 3D point cloud X contains the 3D location, the in-
dices of the images where the point Xi was observed and the indices of the keypoints in the
observed image. Moreover, the positions and the orientations {Pi j} of the observed images
I j at the point Xi are also available, which enable us to model the detectability of a 3D point
at a particular pose. The detectability of an outlier is also modeled as follows: each de-
scriptor from O is assigned to the NN of a fixed vocabulary set O. Thus, the poses {Pi j}
of the observed images I j at the points of O are available, which are utilized to model the
detectability of an outlier in O.

Inspired by the idea of view synthesis in the context of absolute pose estimation [8, 17,
25] we employ a probabilistic sampling strategy as described below. Note that aforemen-
tioned methods utilize ad-hoc techniques which do not necessarily produce accurate samples
that can serve our purpose (validated in Section 5). Let us denote the joint probability distri-
bution of pose-point space by pP×X (P,X), where P is the 6D pose space and X is the 3D
point space of the scene. The pose space P ⊂ R4×4 can be realized as a special Euclidean
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group SE(3) of intrinsic dimension 6 where expP : R6→P and logP : P → R6 are the ex-
ponential and logarithm maps of P respectively. We use a conditional model for the joint
probability,

pP×X (P,X is visible) = pP(P)pX |P(X is visible|P). (1)

pP(P) determines the probability of a particular pose P∈P , and pX |P(X is visible|P) essen-
tially determines the visibility and detectability of a 3D point X ∈X w.r.t. the pose P∈P . We
estimate the parameters of the distributions pP and pX |P from the training poses (described
in the following Sections 2.1 and 2.2) and then generate synthetic “images” by sampling
from the learned distributions.

2.1 Modeling pP(P)

pP(P) is modeled as a mixture distribution, i.e. pP(P) = φ0N 0
P +∑

K
j=1 φ jNP(P;Q j,C j).

Each mixture component is a Gaussian in the 6D Lie algebra representation,NP(P;Q j,C j)∝

exp(−‖ logP(PQ−1
j )‖2

E j
/2) (with ‖ · ‖C denoting the Mahalanobis distance w.r.t. the covari-

ance C). Let p := logP(P) and q j := logP(Q j), then p follows a multivariate Gaussian
distribution with mean q j and covariance matrix C j. The number of mixtures K is chosen
as the number of training images, hence our mixture model is essentially a kernel density
estimator. For each training pose Pj the 10 nearest neighbor poses {Pi j} within 20◦ of the
Pj’s viewing direction are selected to estimate the mean q j and covariance C j of logP(Pi j).

We use the 0-th mixture component N 0
P to add domain knowledge (in order to also

sample poses far from the given training poses): For outdoor datasets, N 0
P is induced by all

training cameras with camera centers near a robustly fitted plane, and for indoor datasetsN 0
P

is estimated using all training poses. Hence, N 0
P allows to sample poses that are very differ-

ent from the training data. The intrinsic camera parameters i.e, focal length, radial distortions
of the synthetic views were chosen to be the same as the training image corresponding to the
chosen Gaussian. Overall, no prior knowledge of the test poses is leveraged.

2.2 Modeling pX |P(X is visible|P)
pX |P(X is visible|P) models the visibility and detectability of a 3D point X in an image de-
fined by the camera pose P. As a simplifying assumption we ignore the co-occurrence of 3D
points in images and use a fully factorized model for sets of 3D points, pX |P(Xi is visible∀i∈
I|P) = ∏i∈I pX |P(Xi is visible|P). This independence assumption also allows to easily
sample 3D points that are predicted to be visible for any query pose. In our formulation
pX |P(X is visible|P) is the product of two probabilities,

pX |P(Xi is visible|P) =NX (P; Q̂i, Ĉi) · p(Xi is inside frustum of P)

∝ exp(−‖ logP(PQ̂−1
i )‖2

Ĉi
/2) · p(Xi is inside frustum of P). (2)

p(Xi is inside frustum of P) ∈ {0,1} captures the viewing frustum test, which modulates the
underlying Gaussian model. In analogy to the model for pP the 6D mean Q̂i and covariance
Ĉi is estimated using the training poses the 3D point Xi is visible in. Since 3D points might
be visible in only a few images, and therefore Ĉi could be rank-deficient, we augment Ĉi with
a diagonal matrix 1

5 · I6×6 to ensure full rank of Ĉi. Rejection sampling is used to draw visible
points for a pose P: random variables ui ∼ U[0,1] are sampled for all i and compared against
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the probability in Eq. (2). Once a 3D point is chosen, the feature descriptorF j is copied from
the nearest training image I j. The pixel coordinate (pi,qi) of the feature point is computed
under the perspective projection of the 3D point Xi on the image plane. The rotation of the
feature descriptor is copied from the selected image. In order to make the synthesized view
robust to noise and outliers, we also apply the following:
• Additive Gaussian noise with diagonal co-variance Σx is added to the feature descriptors
Fi. The matrix Σx is determined based on the descriptors in the training data. Further,
Gaussian noise with 1 pixel variance is added to the projected pixel locations (pi,qi).
• Outlier keypoints O are also tested the detectability in similar manner to the synthetic

poses. In this case, we pick 5 training images containing most number of detected outliers—
fit an homography through all the inlier points of the synthesized pose and the training
pose—then use the same homography to project the outliers (20%) to the target synthetic
image. This step is omitted if the number of common inliers is less than 50.

2.3 Feature processing
Let S = {x1,x2, . . .xN} be the feature descriptors detected or synthesized in the image plane.
The i-th keypoint xi is described by its pixel coordinates (pi,qi), scale si, orientation θi,
and a feature descriptor Fi of dimensionality D. The number of of sparse features extracted
from input images varies, and there are two complementary approaches to facilitate the use
of a CNN on sparse features: the method used in [4] embeds the sparse features into a
dense grid (and has to handle feature collisions and empty locations), and PointNet [16]
(and similarly [24]) processes each input feature independently and uses max-pooling to
symmetrize the network output. Our approach combined elements of both by using spatial
binning, independent feature processing and global max-pooling: we arrange the set of key-
points on a 2D regular grid based on the pixel locations (pi,qi) and split the input image
of size W ×H into d1× d2 cells (where each cell is of size W/d1×H/d2 pixels). If a cell
occupies multiple features, we select a feature randomly and obtain a (D+ 5)-dimensional
vector

(
Fi, pi mod d1,qi mod d2,sinθi,cosθi, log(1+ si)

)
corresponding to a keypoint xi.

This results in a spatially organized array of at most d1×d2 feature descriptors (with D+5
dimensions), which is the input to the network. Empty cells are represented by a zero feature
vector. In all of our experiments, we used d1 = d2 = 16. The rationale behind our spatial
binning approach is to reduce the amount of processing and to balance the spatial distribution
of features across the image.

3 Spatial pyramid pose net for pose regression
Given a set of sparse feature descriptors S detected on a test image, the task is to estimate
the pose of the camera (R,T ) with respect to the global coordinate frame. In the follow-
ing we describe our proposed DNN architecture for pose regression, which we term “spatial
pyramid pose net” or SPP-Net. SPP-Net takes a set of sparse feature descriptors as input
and estimates 6 d.o.f. camera pose. The input descriptors undergo a number of 1×1 convo-
lutions/ReLU layers, followed by an ensemble of multiple parallel max-pooling layers and
three subsequent fully connected pose regression layers. The proposed SPP-Net is light-
weight and fast, and it performs competitively with the original PoseNet [11]. Moreover, the
proposed architecture has an additional advantage that it can be further trained on augmented
images generated from the reconstructed 3D map. Being trained on such synthetic poses, it
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Figure 2: Left: Precision vs. recall curve of proposed probabilistic detection method and ad-
hoc method [8]. Middle: training and testing losses when using only real training images.
The testing loss quickly stalls. Right: training and testing losses when utilizing real training
images and synthetic data corresponding to test poses.

improves results on benchmark datasets.
Network Architecture The proposed network consists of an array of deep feed-forward
subnets, an ensemble layer of max-pooling units at different scales and two fully connected
layers followed by the output pose regression layer. The detailed descriptions and a compar-
ison of different architectures can be found in the supplementary material.
Loss function We follow [10] in the choice of the loss,

Lσ (q,T ) ∝ σ
−2
q

∥∥q†−q/‖q‖
∥∥+σ

−2
T ‖T

†−T‖+ logσ
2
q + logσ

2
T (3)

where q† and T † are the ground truth orientation and position of the image, respectively.
Note the reprojection error could be a geometrically more meaninful loss function, especially
since SPP-Net takes sparse features as input. As also pointed out in [10], we found it difficult
to train a network directly using the reprojection loss, hence we rely on (3) instead.

4 Realistic RGB image generation

The underlying task is to synthesize realistic RGB images for novel viewpoints given multi-
ple input images. It has a number of applications in computer vision and virtual reality, e.g.
it can create realistic video footage given a set of images. In a small baseline setting view
synthesis can be solved by explicit dense correspondence search and subsequent interpola-
tion. It also has been addressed by using CNNs recently [31]: instead of predicting a new
image at the target pose (which often produces blurry outputs), the appearance flow (relative
pixel shifts) is predicted, which is then leveraged (interpolated, differentiable) to synthesize
the target RGB image. However, the method suffers from poor generalization ability in a
large baseline setting.

In this work, we utilize synthetic sparse feature descriptors [sec. (2.2)] to further syn-
thesize realistic RGB images. A conditional Generative adversarial network (GAN) [9]
is proposed for this task. We use an architecture similar to [9]—consisting of a genera-
tor and a discriminator. The generator network takes a sparse feature descriptors of size
d1×d2× (D+5) as input and generates an RGB image of size 256×256×3 as an output.
The discriminator takes (descriptors, RGB) image pair as input and predicts if the input pair
is real or synthetic. We train both the networks from scratch and discard the discriminator
once the network is trained. A detailed description of the network architecture can be found
in the supplementary material.
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5 Experiments
The proposed pose regression network SPP-Net is trained on a number of widely used
datasets for absolute pose estimation. The loss (3) is minimized using ADAM [12] with
a batch size of 100. The weight decay is set to 10−5. The network is trained for 400 epochs
with an initial learning rate 0.01 which is gradually decreased by a factor of 10 after every
100 epochs. All the experiments are evaluated with Tensorflow [1] on a desktop equipped
with a NVIDIA Titan X GPU, where evaluation of the SPP-Net requires about 2.5− 5ms
of run-time. Note that the computation of descriptors requires another 2.5ms1, and further
2ms are needed for spatial descriptor binning. Thus, the total frame time is approximately
7− 10ms. The network takes 2− 4 hours to train on a typical dataset, and the full set of
weights consumes about 37 MB. In the following we describe the datasets utilized for eval-
uation of the proposed method.
Cambridge Landmarks Datasets [11] provides a labeled set of image sequences of differ-
ent outdoor scenes where the ground-truth poses were obtained by utilizing VisualSFM [28].
The datasets also provide the SfM “reconstruction”(.nvm) files containing the 3D point-cloud
and the 2D-3D assignments required by our pose augmentation. Creation of synthetic images
takes approximately two hours for a typical dataset (per sequence). The SPP-Net is trained
on the augmented (training and synthesized) dataset. The training and test image sequences
were taken from distinct paths to make the pose estimation more challenging.
The Microsoft 7-Scenes Dataset [21] consists of texture-less RGB-D images of seven dif-
ferent indoor scenes. The 3D map and the feature descriptors are not provided with the
datasets required by the proposed augmented pose generation technique. Thus, we re-
constructed the 3D point cloud from scratch using toolboxes such as VisualSFM [28] and
COLMAP [20]. We register the SfM camera poses to the KincetFusion reference poses by
a similarity transformation, and the same transformation is used to register the 3D points
w.r.t. the reference poses. A constrained bundle adjustment method is applied, that holds the
camera poses fixed and thus only optimizes the 3D structure.

5.1 Validation of the proposed pose augmentation
To validate the efficiency of the augmented poses, we conduct an experiment with a diffi-
cult sequence (heads) of Microsoft’s 7-Scenes Dataset [21]. From the 3D map of training
images, we generate synthetic feature sets corresponding to the test poses. We evaluate the
synthetic feature descriptors by comparing with the original descriptors. The matching is a
hit if cosine of the angles between the descriptors is grater than 0.85 and spatial difference
is less than 5 pixels. A precision-recall of all the test images of our probabilistic method
including the ad-hoc technique [8] are plotted in Fig. 2(a). The proposed SPP-Net is then
trained on the training images + the synthetically generated descriptors and evaluated on the
descriptors extracted from the original test images. The generated synthetic test images do
not exploit any test image content but the 6 d.o.f. poses.2 If the network is provided only
with the training images, it does not generalize well to the test images. However, after adding
synthetic test poses to the training data, the evaluation loss decreases in conjunction with the
training loss. In Figure 2(b-c) we depict the training and validation loss with and without
additional synthetic training data. These results illustrate the benefits of our synthetic pose
augmentation method.

1https://github.com/Celebrandil/CudaSift/blob/Maxwell/README.md
2Note that except the current experiment, no information of the 6 d.o.f. test poses were incorporated.
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(a) Angular Error = 12.71◦, Positional Error = 0.36m (b) Angular Error = 6.52◦, Positional Error = 0.21m

Figure 3: Top row: the keypoints for images from the “Kings College” and “Chess” se-
quences are displayed. Highly relevant feature points (with average contributions > 10) are
colored (using the “hot” colormap) according to their contributions to the ensemble layer
(see text). Bottom-row: a pair of typical test images of the “chess” sequences are displayed
along with the histograms where 56.2% and 51.8% cells of the 16×16 grids are empty. In
general, feature descriptors at larger scales seem to be more relevant. Further, in the King’s
college sequence, keypoints near the building outlines are relatively consistently important
for pose prediction. The indoor “Chess” sequence exhibits a mix of features on the unique
chess pieces and on the background.

5.2 Visualizing leveraged image features

It is instructive to visualize which keypoints extracted in the image are eventually most rele-
vant to predict the pose parameters. We define the contribution of a feature to pose prediction
as the number of max-pooling units where the given feature is the winning branch in the max-
pooling step. The higher the contribution, the more prominent is this feature represented in
the following pose regression layers. In Fig. 3 we display the most contributing feature
points for two complementary scenes. For outdoor environments many features relevant for
pose prediction cluster near the skyline induced by building, and for indoor scenarios one
generally observes a mix between distinctive small-scale features and background features
at a larger keypoint scale. Further, we display a pair of images where more than 50% of bins
(cells) are empty yet SPP-Net successfully estimates the pose. This indicates that SPP-Net
shows robustness to unevenly distributed image features.

5.3 Benchmarking localization accuracy

Baseline Methods We compare the proposed SPP-Net against the following baselines:
• Active Search [18]: This is a direct feature-based approach where the feature descriptors

are matched across the 3D point-cloud and the pose is estimated using the P3P algorithm.
• Original PoseNet [11]: The first convnet-based method where the last soft-max classifica-

tion layer of GoogleNet is replaced by the fully connected regression layers.
• PoseNet LSTM [27] : Similar as above, but multiple LSTM units were utilized to the

convnet features followed by a regression layers.
• PoseNet Geometric Cost [10] (PoseNet2): The network is trained with the same loss func-

tion as ours and fine-tuned with the re-projection cost.
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Area or Active Search Original PoseNet PoseNet SPP-Net (with
Scene Volume (SIFT) [18] PoseNet [11] LSTM [27] Geo. Cost [10] SPP-Net Synthetic data)

Great Court 8000m2 – – – 6.83m, 3.47
◦

13.2m, 8.02
◦

5.42m, 2.84
◦

King’s College 5600m2 0.42m, 0.55
◦

1.66m, 4.86
◦

0.99m, 3.65
◦

0.88m, 1.04
◦

1.91m, 2.36
◦

0.74m, 0.96
◦

Old Hospital 2000m2 0.44m, 1.01
◦

2.62m, 4.90
◦

1.51m, 4.29
◦

3.20m, 3.29
◦

2.51m, 3.74
◦

2.18m, 3.92
◦

Shop Facade 875m2 0.12m, 0.40
◦

1.41m, 7.18
◦

1.18m, 7.44
◦

0.88m, 3.78
◦

1.31m, 7.82
◦

0.59m, 2.53
◦

StMarrys Church 4800m2 0.19m, 0.54
◦

2.45m, 7.96
◦

1.52m, 6.68
◦

1.57m, 3.32
◦

3.21m, 6.97
◦

1.44m, 3.31
◦

Street 50000m2 0.85m, 0.83
◦

– – 20.3m, 25.5
◦

– 24.5m, 23.8
◦

Chess 6m3 0.04m, 1.96
◦

0.32m, 6.60
◦

0.24m, 5.77
◦

0.13m, 4.48
◦

0.22m, 7.61
◦

0.12m, 4.42
◦

Fire 2.5m3 0.03m, 1.53
◦

0.47m, 14.0
◦

0.34m, 11.9
◦

0.27m, 11.3
◦

0.37m, 14.1
◦

0.22m, 8.84
◦

Heads 1m3 0.02m, 1.45
◦

0.30m, 12.2
◦

0.21m, 13.7
◦

0.17m, 13.0
◦

0.22m, 14.6
◦

0.11m, 8.33
◦

Office 7.5m3 0.09m, 3.61
◦

0.48m, 7.24
◦

0.30m, 8.08
◦

0.19m, 5.55
◦

0.32m, 10.0
◦

0.16m, 4.99
◦

Pumpkin 5m3 0.08m, 3.10
◦

0.49m, 8.12
◦

0.33m, 7.00
◦

0.26m, 4.75
◦

0.47m, 10.2
◦

0.21m, 4.89
◦

Red Kitchen 18m3 0.07m, 3.37
◦

0.58m, 7.54
◦

0.24m, 5.52
◦

0.23m, 5.35
◦

0.34m, 11.3
◦

0.21m, 4.76
◦

Stairs 7.5m3 0.03m, 2.22
◦

0.48m, 13.1
◦

0.40m, 13.7
◦

0.35m, 12.4
◦

0.40m, 13.2
◦

0.22m, 7.17
◦

Table 1: Median localization results for the Cambridge [11] and 7-scenes datasets [21].

• Proposed SPP-Net trained without augmented posses is also included as baseline. Note
that 5% randomly chosen “images” from the training data are employed as validation set.
• The computationally expensive DSAC approach [3] is not added to the baseline methods.
Results on Cambridge Landmarks Datasets The results are displayed in Table 1. SPP-Net
without pose augmentation yields results similar to the original PoseNet, and is compara-
ble to PoseNet2 [10] once trained with the augmented dataset. However, SPP-Net is more
lightweight, much faster and does not require to be pre-trained on a larger datasets (e.g. Imag-
Net). Note that the proposed network is of limited size, increasing the size of the network
(and the number of augmented poses) shall further improve the performance.
Results on Seven Scene Datasets are shown in Table 1. Note that as the reference poses
are rather noisy, hence the similarity transformation does not relate SfM poses and reference
poses well in all scenes. In particular, we observed good results on “Stairs”, “Heads” and
“Fire” sequences as the similarity transformation is a good fit for these scenes. Overall we
obtained very competitive results in this dataset.

5.4 Evaluation of RGB image synthesis
We compare the proposed SPP-Net against the following baselines:
• Appearance Flow (AF) [31]: in order to generate a training dataset for the method pro-

posed in [31], the “pose distances” (defined as the positional distance+0.1×angular dis-
tance) between all images in a dataset computed. The training set comprises 50,000 image
pairs with a minimal pose distance of 1 (to ensure a significant baseline). At test time the
nearest neighbor to the target pose (in terms of pose distance) from the training dataset
is chosen to generate an RGB image. The method from [31] utilizes multiple images,
however we did not observe any improvement with multiple inputs.
• We also include [4] as baseline to invert synthetic feature descriptors to RGB images.

Here the network is trained to regress RGB pixels from sparse features. The network is
trained on descriptor-image training pairs and to minimize `2 loss. Note that during the
evaluation it takes our synthetic feature descriptors as input and produces RGB images.

In this experiment, “chess” sequence of the 7-Scenes Dataset [21] is employed. Synthetic
descriptors generated at the training poses and original RGB images are used as the training
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Figure 4: RGB images synthesized by different methods at the test poses of one of the image
sequences of 7-Scenes [21] and Cambridge Dataset [11]. The indices of the images of the
test sequence are mentioned in the top of the figure. More results can be found in suppl. mat.

pairs. A random crop strategy is employed for each descriptors-image pair during training.
Synthetic descriptors generated at test poses are then used to synthesize RGB test images. In
Fig. 4, we compare the synthesized RGB images generated by different methods. It can be
observed that AF [31] can still predict well for nearby poses, however, the method in general
degrades when encountering larger baselines. The direct descriptor inversion [4] produces
accurate yet blurry outputs. Our proposed GAN based method using pose augmentation
yields convincingly realistic RGB images—although abstract geometric constraints are not
always satisfied. Further, we trained Posenet [11] for the pose estimation task with our
synthesized RGB images as additional training data. Nevertheless, SPP-Net with augmented
sparse descriptors still has better pose regression performance. Additional results can be
found in the supplementary material.

6 Conclusion

In this work we presented a synthetic view augmentation technique, which is used to train
a deep learning architecture for pose prediction, and which is further utilized for realistic
RGB image generation. The proposed augmentation method aims to be sufficiently realistic
by using an underlying 3D point cloud and probabilistic models for 3D point visibility and
outlier processes. Thus, pose regression can be trained for any region in the pose space using
a virtually unlimited amount of (synthetic) training data. We performed several numerical
experiments to validate our architecture and the proposed augmentation procedure.

Despite the dominance of dense convolutional deep learning methods in computer vision
we believe that there are many opportunities for combining deep learning with traditional
sparse features. In particular, new view synthesis is one of these applications where such
combination is promising. Enhancing the quality of view synthesis e.g. by leveraging multi-
ple training images is subject of future work.
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