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Abstract

One challenging problem with light field video editing is the dreadful volume of data
to process. Image and video processing frequently rely on over-segmentation methods to
reduce the computational burden of subsequent editing tasks. In this paper, we present the
first approach for video light field over-segmentation called dynamic super-rays, which
can be seen as temporally and angularly consistent superpixels. Our algorithm is memory
efficient and fast. The results show timing close to editing time by leveraging GPU
computational power.

1 Introduction
A light field is a description of the flow of light from and towards every direction in space. In
most cases, it is captured by imaging a region of interest from varying viewpoints, yielding
in a highly-redundant multiview scene representation. Because of this, a light field enables
advanced processing such as depth estimation, refocusing, parallax shift, or super-resolution.
The acquisition of such content is typically done with 3 classes of devices. Plenoptic cameras
[18, 24] use a microlens array in front of a camera sensor to re-arrange by direction the
light rays coming from the camera main lens. Camera arrays [40] are composed of a rig of
cameras, often organized on a regular grid. Finally, camera gantries (e.g. Stanford gantry
[33]) have a mechanical system to move a single camera along a plane, taking photos at
regular intervals. Despite being aimed at different applications and having quite diverse
spatial and angular resolutions, the content captured by these devices is often described using
a representation called lumigraph [12], which describes all light rays as a set of views taken
with a regular baseline on a single plane.

Currently, most of light field content available is static. This is perhaps due to the diffi-
culties of capturing a dynamic light field for either of the aforementioned devices. Specifi-
cally, camera gantries are by design unable to record dynamic light fields, and the available
plenoptic cameras are either limited to static acquisition (e.g. [19]) or cannot easily produce
a lumigraph (e.g. type 2 plenoptic cameras [26]). Camera arrays require a synchronized
camera acquisition system, which is a real technical challenge. However, latest advances in
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light field video acquisition systems [8, 31] show that it is possible to capture quite volumi-
nous light fields in real time. The problem of efficiently processing the captured 5D light
field content is then twofold. First, the amount of data to handle, already a problem for static
light fields, reaches a critical point for video light fields. As a consequence, computational
efficiency is a core aspect in many light fields processing tasks, such as editing. Secondly, to
enable editing via user interaction on few key frames, algorithms must consistently propagate
the edits angularly and temporally to the rest of the dynamic light field.

In this paper we present an over-segmentation scheme that exploits the light field redun-
dancy in both the temporal and angular dimensions and leverages GPU computational power
to enable easy and fast light field editing from a single reference view and frame. The pro-
posed over-segmentation approach generalizes the concept of super-rays, introduced in [14]
for static light fields, to dynamic super-rays for video light fields. Super-rays, seen as the
light field analog of superpixels [2], are a grouping of rays captured in different views of the
light field that are similar in appearance and coming from the same scene area.

Several constraints are taken into consideration in the design of the proposed method.
First, the approach is parallelizable to take advantage of a GPU implementation. Second, it
processes different frames sequentially and on-the-fly, so the memory footprint is reasonable,
in contrast to methods operating on sliding windows. This is mandatory as the amount of data
per frame is much greater than a conventional 2D video. Finally, super-rays are consistent
across views and across frames in the temporal dimension.

Specifically, our contributions are: 1. An end to end approach to create an angularly
and temporally consistent light field over-segmentation that we call dynamic super-rays 2. A
new update term for creating and deleting superpixels and super-rays specially tailored for
dynamic content 3. A new strategy for creating a temporal over-segmentation that is consis-
tent with the scene movement.

2 Related Work
We focus on the two areas of the literature that are related to the proposed method, namely
image and video over-segmentation and light field editing.

Image and Video Over-Segmentation: Since the introduction of the term superpixel
[28], many approaches have been proposed for still image over-segmentation. Because su-
perpixels are often used as a pre-processing step to speed up other algorithms, it is unsur-
prising to see that superpixel methods yielding low run-time are more popular than historical
approaches [16, 20, 36]. Among them, we can mention SEEDS [34]. Starting from a regular
lattice, it iteratively reassigns pixel blocks to superpixels based on a color consistency term,
in a coarse to fine multi-scale fashion. Simple Linear Iterative Clustering (SLIC) [2] adapts
the Loyd’s algorithm for k-means clustering of image pixels in terms of spatial and color
distance in the Lab space. In order to speed up the algorithm, the clusters are contained in
a small local window. Arguably, the strongest advantage of SLIC is its ability to leverage
massively parallel computation. Because each assignment and update step can be carried
out efficiently on the GPU, to the best of our knowledge, SLIC is the only approach pro-
viding real-time performances [27]. Many variations of this algorithm have been proposed
[1, 17, 37], but all loosing somehow this computational advantage.

The problem of over-segmentation for multiview is a rather unexplored topic. Current
approaches focus on generating superpixels on each view and group them afterwards to com-
pute a consistent segmentation, rather than an over-segmentation [6, 21]. On the contrary,
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video over-segmentation is a more researched topic. In [2], volumetric superpixels are cre-
ated by treating the temporal and spatial dimensions in the same way. Whereas in [10],
superpixels are computed separately on each frame and later merged to extract object seg-
ments. In [7] a pre-computed dense optical flow is used along with a Gaussian process to
update the labeling from a frame to another. The superpixels deletion or creation is done
by inference using the same Gaussian process. In [35], the framework proposed in [34] is
extended by performing the re-assignments as a new frame arrives. In [29], the most related
work to ours, dynamic SLIC superpixels are computed in a sliding window of 20 frames. A
dense flow is used to propagate the assignment from a frame to another and several SLIC
iterations are run. The centroid color is shared between corresponding superpixels on several
frames of the sliding window. The superpixel update criteria is solely based on the superpixel
size evolution. Unfortunately, none of the aforementioned approaches are readily applicable
for video light field over-segmentation for different reasons. Loading a large amount of the
video frames as in [2, 29] is prohibitive in the case of a light field. Performing a late merge of
frames superpixels as in [10] does not provide any temporal consistency. Methods taking the
assumption that the temporal dimension is densely sampled, as in [7], will fail when large
objects motion are involved, as in our case. Finally, all the approaches relying on a stack of
granular operations as in [35], are ill-suited for a GPU implementation.

Light field editing: Because segmentation is the first step of many editing algorithms,
it is natural to see most light field editing papers being centered around this topic. A level
set method is proposed in [5] to extract objects layers in the scene. In [38] and [22], the
authors use user scribbles on a reference view to learn a joint color and depth object model
that is used to infer a label for each ray of the light field. These label assignments are further
regularized inside and between views. In these two approaches, because the regularization
does not scale well with the size of the input light field, the running times are rather high. To
solve this issue, in [13] rays coming from the same scene point are represented in a single
node on a ray-based graph structure. This reduces significantly the size of the graph and
scales well with the number of input images. However, the quality and the run-time depends
on the quality of the dense depth estimation on all views, which can be quite expensive to
compute. Furthermore, as for conventional 2D images, the approach does not scale with the
spatial resolution of the light field.

Recent works focused on providing a light field over-segmentation to overcome this
problem. In [41], a depth estimation is used to propagate and refine an initial SLIC over-
segmentation on a reference view to all the views of the light field. In [14], a method to
compute angularly consistent superpixels, named super-rays is proposed. The approach
does not require a dense depth estimation and focuses on speed and parallelism but still
provides satisfactory segmentations. This last algorithm has shown to be a good trade-off
between speed and accuracy for still light fields, so we consider it as a starting point for our
over-segmentation method for light field videos. We summarize it in Sec. 3.

3 Static super-rays summary
In this section we briefly describe and give the main notations of the super-rays algorithm
for static light fields. Further details can be found in [14].

Notations: Let r be a ray of the light field LF , and (s,x) its coordinates using the
two plane parametrization [12], where s = (s, t) and x = (x,y) are the angular and spatial
coordinates respectively. Besides, each ray has an associated CIELab color value Labr. Let
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x′ :=Pd
s′(x) be the spatial pixel position in view s′ imaging the same scene point, at a distance

d, as x in view s. This is, r = (s,x) and r′ = (s′,x′) are corresponding rays imaging the same
scene point in different views. Given a light field, super-rays are all the perceptually similar
rays corresponding to the same scene area. That is, the mapping A : LF ⊂ Z4→ Z, such that
each ray r is assigned a super-ray label c is computed. Let SRc be the set of rays r such that
A(r) = c. The super-ray computation is inspired by SLIC [2] and has the same main steps.
One major difference is that each super-ray SRc is characterized by a centroid ray rc with
angular coordinates corresponding to the reference view sc and a depth dc associated to it.

Initialization: The spatial positions xc of the centroid rays are initialized on a regular
grid of step S in the reference view. The corresponding CIELab color values on such posi-
tions are the initial color values of the centroid rays Labrc , and the depth dc of each centroid
ray rc is estimated via block-matching.

Assignment step: At each iteration, each ray r = (s,x) of the light field is assigned
a super-ray label A(r). First, the depth estimated in the previous step is used to compute
r′c = (s′,Pdc

s′ (xc)), the corresponding rays of rc. Then, each ray in a neighborhood NS(r′c)
of size S around r′c is assigned to the super-ray SRc if it minimizes the color and spatial
distances:

A(r) = argmin
c

(
∆Lab(r,rc)+λ ∆xy(r,r′c)

)
, (1)

where ∆Lab(r,rc) = ||Labr − Labrc ||2, ∆xy(r,r′c) = ||x−Pdc
s′ (xc)||2 and λ is the parameter

weighting the color and spatial distances.
Update step: Following the assignment step, the spatial coordinates of the ray centroid

and its corresponding Lab values are updated. The new color value of rc is the average of the
color values of all rays in SRc and the new spatial coordinates are the average coordinates of
all light rays r = (s,x) in SRc projected on the reference view using the depth dc:

xc =
1
|SRc| ∑

r∈SRc

Pdc
sc (x). (2)

Note that the angular coordinates sc of the centroid rays do not change along the iterations,
while the spatial coordinates are updated.

Iterations: As in SLIC, the two previous steps are repeated until the centroids are stable.
This happens within 10 to 15 iterations. A cleanup step is optionally run to reassign labels
to disconnected rays.

4 Dynamic super-rays
The proposed approach is inspired from techniques proposed to generate temporally con-
sistent superpixels [7, 29], that can be decomposed into three main steps: 1. initialize the
current frame segmentation by temporally propagating the segmentation of previous frames
2. adapt the segmentation to changes in geometry 3. create and delete segments to take into
account occlusions and objects entering or leaving the scene. Our algorithm is summarized
in Alg. 1 in the supplementary material and illustrated in Fig. 1.

4.1 Sparse temporal propagation
Computing a dense and accurate optical flow for light fields can be a quite tedious task,
especially when memory and time requirements are taken into account. Moreover, because
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Figure 1: Proposed dynamic super-ray scheme. Each super-ray is represented by a solid
color and its centroid by a black dot. (a): Illustration of our algorithm in a simple case. The
red foreground super-ray is tracked over the consecutive frames of a 2×1 light field. Other
super-rays do not move since the background is static. The depth d is used to enforce an-
gular consistency from a view to another, while the scene flow (δ x,δ d) guarantees temporal
consistency. On the third frame, the moving red super-ray becomes too close of the pink
super-ray and too far from the green one, triggering the creation of the orange super-ray and
the deletion of the pink one on the next frame. (b): Super-ray neighborhood. The search area
for the left neighbor cle f t of the red super-ray c is represented by the blue dotting, and the
final neighborhood connections of c by the black lines.

super-rays embed a depth information per segment, the problem we aim to resolve is a scene
flow estimation problem. That is, we aim to find the displacements of 3D points in the scene
rather than pixels shifts in the image plane. Fortunately, in the case of super-rays, the scene
flow estimation needs to be estimated only for centroids and not for all rays of the light field.
One way of computing the scene flow (δ x

c ,δ
d
c ) is to compute exhaustively a cost function for

each possible motion vector (as in Eq. 1 in the supplementary material). However, this 3-
dimensional cost function being quite expensive to minimize, we have split the problem into
optical flow and depth estimation, like other methods for light field scene flow estimation in
the literature [4, 32].

Now, in state of the art optical flow estimation methods Deep Flow [39] stands out for
its performance in terms of quality and run-time [3]. Deep flow first searches for sparse
matches using Deep Match [30] between downsampled versions of the input frames, and
then the matches are densified by regularizing a selected set of sparse matches. Deep Match
has many properties which are interesting for our problem. It is robust and efficient since it
can be implemented on GPU [15] and the matches are searched in a limited local window.
Thus, we solve the sparse flow estimation using deep matches. In contrast to Deep Flow, we
do not seek to obtain a dense and precise optical flow, but rather a robust and fast sparse flow
for each centroid.

We compute the set of deep matches [30] from two downsampled frames f and f + 1.
Then, the estimated flow δ x

m = x f+1
m − x f

m, using the deep matches in the full resolution
coordinate system, is used to compute the flow of each centroid δ x

c using a simple and fast
bilinear interpolation. Precisely, δ x

c is the distance-weighted average flow δ x
m of its 4 nearest
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matches. Using the notation above, the depth is updated using the same strategy as in [14]:

δ
d
c = argmin

δ∈D

{
min
o∈Ω

∑
s′

o(s′) ∆
B
RGB(r

f+1
c ,r′ f+1

c )
}
, (3)

where D is the small range of potential depth movements and Ω is a family of spatio-angular
patches.

4.2 Centroid creation and deletion

Because of object movements in the scene, the super-ray topology can change in time. For
instance, parts of the super-rays can be occluded or disoccluded, or completely appear or
disappear due to objects entering or leaving the scene. For this reason, creating and deleting
super-rays might be necessary. While the superpixel size or color consistency has been used
to determine the creation or deletion in other research works, we propose to leverage the
depth information associated to the super-ray to detect occlusions and disocclusions.

In particular, a new super-ray is candidate to be created at the midpoint of two super-
rays when their centroid distance exceeds a given threshold S ∗ τ . Conversely, a super-ray
will be a candidate to be deleted if two super-rays are too close from each other, i.e. their
centroid distance is lower than a threshold S/τ . In particular, the occluded super-ray (with the
smallest disparity or biggest depth) is the candidate for deletion. For the sake of efficiency,
and to avoid duplicates, we search the candidate centroids to be deleted or created in a 4-
nearest neighborhood, computed as illustrated in Fig. 1(b). Specifically, the approximate
neighborhood of a centroid c is defined as N (c) = {cle f t , cright , cup, cdown} where

cle f t = argmin
ĉ

{
|yĉ− yc| s.t. xĉ < xc, |yĉ− yc|< S

}
, (4)

and similarly for the other neighbor centroids.
Now, in order to maintain the number of super-rays constant, we create the same number

of super-rays we delete. If the number of candidates for deletion is smaller (resp. bigger) than
the number of candidates for creation, only the centroids with the biggest (resp. smallest)
centroid distance are created (resp. deleted). Finally, because objects can move inside or
outside of the reference view, the super-rays near the image borders are treated as follows.
New super-rays are created in the reference view between the image borders and the closest
centroids. For instance, if a centroid c does not have a neighbor cright , a new centroid will
be ( xc+M

2 ,yc), M being the reference view width. Super-rays that leave the reference view
image plane are automatically deleted.

Note that the centroid neighborhood can be used for further processing, as it is a conve-
nient way of representing the super-rays structure.

4.3 New frame over-segmentation

In the new frame, after defining the set of centroids in the reference view, all the rays of the
light field are assigned to a centroid. Similarly to super-rays, the assignment is done using
Eq. 1 in an iterative process with color and position centroid updates. While the centroid
color is updated with the same color average strategy as super-rays, the centroid position
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update changes for dynamic super-rays. So Eq. 2 becomes

x f+1
c =

(
p

|SR f+1
c | ∑

r∈SR f+1
c

Pdc
sc (x

f
r )

)
+(1− p)(x f

c +δ
x
c ), (5)

where p is a parameter controlling how much the super-rays are allowed to move from
their theoretical position. When p = 1, this step corresponds to the same SLIC iteration as
in Eq. 2, and when p = 0, the super-ray centroids are not updated at all, providing the best
temporal consistency. Newly created centroids (as described in Sec. 4.2) are updated using
p = 1, allowing them to adapt to scene changes.

In [29], 5 SLIC iterations are run, where the centroids are allowed to move freely. As
a consequence, superpixels of static objects tend to move since they are affected by the
creation, deletion and movements of nearby superpixels. On the contrary, our dynamic super-
rays movement is congruous with the objects movement in the scene, providing a more
consistent temporal over-segmentation.

5 Experiments

As an effort to quantitatively assess the efficiency of the proposed approach, we use the
Monka dataset proposed in [25], composed of ground truth images, disparity, optical flow
and object labels for pairs of cameras. This can arguably be considered as a small light
field, but to the best of our knowledge such dataset does not exists for more than 2 views.
We use the standard superpixel quality metrics [23] (ASA ,BR, UE) along with a Temporal
Consistency (TC) measure, which is the analog of the angular consistency in [14] in the
temporal dimension.

We compare our approach with statics super-rays [14] computed on each frame and put
into correspondence using the ground truth optical flow such that the TC is maximized. In
average, we find the dynamic super-ray to be slightly better for classical over-segmentation
metrics but not significantly so. This can be explained by the fact that at each new frame,
the previous over-segmentation is re-used, meaning that each frame iteration is refining the
previous segmentation. However, we see that super-rays computed separately give worst
temporal constancy, despite being advantaged by the fact that super-pixel matching is perfect.
Detailed results for all the sequences can be found in the supplementary material.

Currently, two datasets for video light fields captured with camera arrays are available:
1. The Fraunhofer dataset [8], with full-HD sequences of 9 to 16 views and between 150 and
400 frames; 2. the Technicolor dataset [31] with 2K sequences of 16 pseudo-rectified views
and between 300 and 390 frames. The cameras baseline is quite important, especially for the
second dataset.

We use a fixed set of hyper parameters, that we did not fine tune for each sequence. The
values are described in the supplementary material.

Fig. 2 shows the output of our algorithm for a small area of the dataset Birthday [31]. For
the sake of visualization, results are only shown for two views, the reference view sc = (1,1)
and another view s = (1,0), and three non-consecutive frames f = 95,100,105. For each
view, we show the input image with the optical flow only on the reference view (top left),
the color-coded assignment (top right), the super-ray average color (bottom left) and finally
the super-ray contours (bottom right).
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Frames
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Figure 2: Video super-rays for 3 frames and 2 views of the dataset Birthday [31].

Frames

Figure 3: Over-segmentation comparison with [29] on the reference view over 5 frames.
Our dynamic super-rays (second row) are consistent with the scene movement while the
superpixels in [29] (third row) move in static regions.

Please note that it is hard to evaluate our over-segmentation results on paper due to the re-
duced number of frames or views we can illustrate compared with the full light-field videos.
We strongly encourage the reader to visualize all our results on our web-page1.

The videos show concatenated views with usual visualization methods, namely, the
super-ray average color, the color-coded super-ray labels, and the super-ray contours (as
in Fig. 2). We also visualize the value of the flow for each centroid, as well as the coarse
depth of each super-ray (each ray has assigned its super-ray depth) and finally, the centroids

1 Project website : https://www.irisa.fr/temics/demos/DynamicSuperrays/
index.html. Alternatively the videos can be viewed on YouTube : https://www.youtube.
com/channel/UCHFkXPUSiV3UFxlABRmQkNA/videos
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neighborhood structure (as in Fig. 3).
We compare our method with the algorithm in [29] which is the state of the art for

temporal consistent superpixels on videos. Note that in this experiment we focus on the
temporal aspect since it has already been shown [14] that computing superpixels on each of
the views separately does not guarantee angular consistency. Fig. 3 shows this comparison
on five frames, f = 260,262,263,264,265, of the central view. In particular, on the top row,
we show the neighborhood structure described in Sec. 4.2. Each centroid appears as a blue
dot, and horizontal and vertical neighborhoods are illustrated with cyan and magenta edges
respectively. Centroids of deleted super-rays are represented in red, while new super-rays are
represented in yellow. The second and third rows correspond to our results and the results of
[29] respectively. The input view and the color segments are blended on theses images. We
observe that the update step in [29] allows the superpixels on the static background to move
freely. On the contrary, our super-rays are not moving so the scene movement is consistent
with the super-rays movement. We believe this is a major benefit if dynamic super-rays are to
be used in further editing tasks. We invite the reader to view the videos in the supplementary
material or on our website, where temporal consistency is more visible.

Besides the qualitative comparison with [29] we have also observed considerable differ-
ences in terms of computational complexity. Depending on the datasets, the algorithm in
[29] takes several hours and up to one day (using the original implementation) to run for all
the frames of a single view video. In our case, the biggest advantage is the GPU friendliness.
Indeed, the SLIC-based iterations, the deep flow computation and the super-ray creation and
deletion, are highly parallelizable. On the same machine (equipped with a Nvidia GTX 1080
GPU hosted by an Intel Xeon E5-2630 CPU) our current Python/PyOpencl implementation
gives an average running time for each iteration of 0.157s and 0.059 to 0.083s (depending
on the input size), respectively on [31] and [8]. Further improvements are to be expected by
a more optimized implementation.

Dynamic super-rays with the neighborhood structure presented in Sec. 4.3 offer a use-
ful representation of the scene captured by the light field videos. Temporal super-rays can
be seen as a powerful tool for efficient light-field video editing in which the edits in one
reference view of the light-field can be easily propagated to other frames and views. For ex-
ample, in [14] it is presented how to use super-rays to generate intermediate views to correct
the angular aliasing caused by the poor angular sampling of sparse light fields. Similarly,
dynamic super-rays can be used for temporal image interpolation without flickering caused
by an inconsistent interpolation. Other examples of temporal super-rays applications include
light-field video compression (e.g. adapting the approach in [9]), or light field color transfer
(e.g. using the algorithm in [11]).

Limitations: We have observed that our approach has some limitations, in particular,
when the depth or the flow estimation becomes erroneous, the super-ray consistency is not
guaranteed from one view to another. Such failure case is visible in the dataset Newspeaker
[8], where a very uniform green background challenges both the depth and flow estimations.
When the depth is inconsistent, the centroids are wrongly projected, leading to large areas
with no nearby centroid for the rays to be assigned to. The other failure case involves small
moving objects, because of our sparse flow computation strategy, the optical flow for small
object can be wrongly evaluated to the flow value of its surrounding. This is visible on the
dataset Train [31], where centroids struggle to follow the train wagons.

In conclusion, even if depth and flow estimation are mature research topics we have ob-
served that challenging datasets may still produce inaccurate estimates. In particular, the
images in the two datasets suffer heavily from motion blur, noise and over and under expo-
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sition. Furthermore, the dataset in [8] has some large texture-less areas. However, loosing
consistency in flat areas is not critical. Indeed, if the zone to edit is totally uniform, the edit-
ing become trivial (e.g. using a simple color threshold), dismissing the needs for super-rays
in the first place.

6 Conclusion
We presented an approach to generate angularly and temporally consistent light field video
over-segmentation. Our algorithm design enabless a GPU implementation, allowing compu-
tational performances that are required to cope with the high volume of data. To the best of
our knowledge, this is the first approach to deal with the problem of video light field editing.
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