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Abstract

An ideal description for a given video should fix its gaze on salient and representative
content, which is capable of distinguishing this video from others. However, the distri-
bution of different words is unbalanced in video captioning datasets, where distinctive
words for describing video-specific salient objects are far less than common words such
as ’a’ ’the’ and ’person’. The dataset bias often results in recognition error or detail defi-
ciency of salient but unusual objects. To address this issue, we propose a novel learning
strategy called Information Loss, which focuses on the relationship between the video-
specific visual content and corresponding representative words. Moreover, a framework
with hierarchical visual representations and an optimized hierarchical attention mecha-
nism is established to capture the most salient spatial-temporal visual information, which
fully exploits the potential strength of the proposed learning strategy. Extensive experi-
ments demonstrate that the ingenious guidance strategy together with the optimized ar-
chitecture outperforms state-of-the-art video captioning methods on MSVD with CIDEr
score 87.5, and achieves superior CIDEr score 47.7 on MSR-VTT. We also show that our
Information Loss is generic which improves various models by significant margins.

1 Introduction
Video captioning aims at generating both semantically and syntactically correct descriptions
for a video. An ideal description for a given video should fix its gaze on salient and repre-
sentative content, which is capable of distinguishing this video from others. Inspired by the
recent progress of machine translation, LSTM network combined with attention mechanism
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Figure 1: Illustration of description ambiguity in video captioning caused by the bias of
dataset corpus. (a) The pie chart is about Distribution of vocabulary size and the number of
words of the training corpus. The bar chart below is about the number of videos containing
different words. (b) Examples of video description generation.

has dominated this task [17, 27]. In this case, the concept recognition is accomplished dur-
ing the sentence generation process. Existing video captioning models are mainly optimized
to maximize the probability of every ground truth word under cross entropy loss learning
strategy. However, due to unbalanced distribution of word frequencies, the common words
comprise the majority of the training loss and dominate the gradient. Consequently, mod-
els rarely achieve satisfactory performance to predict representative and distinctive words,
which provide most information of given videos.

Figure 1(a) shows a data analysis about MSVD dataset, which is also the case in most
video captioning datasets. The top 5% highest frequency words occupy almost 90% con-
tent of training corpus. That is, the captioning model spends the vast majority of effort on
learning just very small subset of the vocabulary. Moreover, the most of high-frequency
words are function words and common semantic words, which present limited information
about the video-specific content. For example, the most frequent word "the" appears in all
videos of MSVD, whereas the most of distinctive words just appear in a few specific videos.
Directly training with this unbalanced data, the existing methods often suffer from descrip-
tion ambiguity, including detail deficency and recognition error [28]. As shown in Figure
1(b), the traditional method(LSTM + ATT for short in this paper) wrongly predicts ’riding a
skateboard’ as ’running’.

To address the above issues, we propose a novel learning strategy called Information
Loss to focus on learning the representative and distinctive words. Specially, we calculate
importance value of every word for the content of given videos, which takes into account
both information relevance and information content. Information relevance measures the de-
gree of relevance between a word and the gist of the video. Information content corresponds
to the discriminate degree of a word. Therefore, the distinctive words about the salient visual
content would obtain high importance value, whereas common words and irrelevant words
have low value. Then, the loss of every word is dynamically resized based on this impor-
tance value. In this case, the model pays more attention to learn video-specific informative
words in every video sample, while the commonly used words can be well learned in overall
captioning corpus.
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In order to further exploit the potential strength of Information Loss, we established
a new framework with hierarchical visual features and an optimized hierarchical attention
mechanism. The optimized hierarchical attention model is established to adaptively extract
the most important visual features from inter-and-intra video frames, which is the foundation
of generating informative video descriptions.

In summary, the main contributions of this paper are: 1) A novel learning strategy called
Information Loss is proposed to alleviate the description ambiguity problem caused by the
bias of captioning corpus. 2) Moreover, an optimized framework consists of hierarchical
visual representations and corresponding hierarchical attention is established to fully exploit
the potential strength of the proposed learning strategy. 3) Extensive experiments demon-
strate that the optimized structure combined with ingenious guidance can outperform state-
of-the-art video captioning methods.

2 Related Work

Model structure for video captioning Most existing methods can be divided into the bottom-
up methods [6, 18] and the top-down methods [7, 24]. The mechanism of the bottom-up
method is intuitive. Some predefined concepts are recognized only on visual signals, and
then linked into a sentence with fixed language templates. Captions generated in this way
often lack flexibility. The top-down methods are inspired by the recent progress of machine
translation, where LSTM network combined with attention mechanism has dominated video
captioning. The attention mechanism is exploited based on the observation that not all parts
of a video are equally important, which has been successfully applied in video captioning
to select important frame-level features [17, 27]. There are few works focusing on both
object-level and frame-level features in video captioning. Tu et al. [20] explore spatial and
temporal attention. However, they ignore the interaction between objects over time. There-
fore, we establishes the connection of objects between frames to focus on the informative
and discriminative visual information of the entire video.
Learning strategy for video captioning Most of traditional video captioning systems are
trained with the cross-entropy loss [25, 27]. Although effective for sequence generation
tasks, the cross-entropy loss cannot guarantee the semantic correctness [11] and informa-
tiveness of generated captions. Pan et al. [11] proposes relevance loss together with cross
entropy loss to enforce the relationship between sentence semantics and visual content. The
Reinforcement Learning has been introduced in image captioning [10, 15] to improve mod-
els by sentence-level rewards, which needs well pretrained model to initialization. However,
the both methods suffer from the imbalance learning problem caused by the dataset bias and
have not taken distinctiveness into consideration. Our Information Loss focuses on learning
representative and distinctive words to overcome dataset bias, which are complementary for
these methods.

3 Approach

3.1 Overall Framework

As shown in Figure 2, the overall framework consists of three important components: hier-
archical visual features extraction, hierarchical attention mechanism and Information Loss
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Figure 2: The framework of our Hierarchical Attention Model with Information
Loss(HA_IL). The hierarchical attention mechnism established on hierarchical visual fea-
tures captures the most salient visual information. Compared to traditional learning strat-
egy(blue bar), the Information Loss focus on learning the relationship between ’kids’ and
video content with high importance value(red bar) of ’kids’.

guided learning strategy. Hierarchical attention mechnism is established on hierarchical vi-
sual features to capture the salient spatial-temporal visual content. Information Loss is the
objective of our model which aims to address the description ambiguity problem. Details are
given in section 3.2, section 3.3, section 3.4 respectively.

3.2 Hierarchical Visual Features Extraction
The exploitation of object-level features is a key component of our method to generate in-
formative captions. We use Faster R-CNN [14] to generate a set of semantic region features
from every frame. The Faster R-CNN model is pretrained on Visual Genome data [23] by [1]
and can recognizes 1600 objects, which produces rich and diverse information. For every
video frame, we select the top k most confident objects detected by Faster R-CNN model and
extract features of these objects from the pool5 layer. Therefore, we get a set of semantic
object-level features of a video, denoted as V R = {vr1, . . . ,vrn}, vri = {vri1, . . . ,vrik},vri j ∈
RD1, where vri j means the jth region feature of ith frame. Then we apply ResNet [5] to ex-
tract global frame-level features, denoted as V F = {v f1, . . . ,v fn},v fi ∈ RD2, where n is the
number of frames sampled from each video. In addition, for every video, we apply C3D [19]
to extract several clip-level features, denoted as VC = {vc1, . . . ,vcn},vci ∈ RD3. Finally, a
given video is encoded as a feature set V = {V R,V F,VC}.

3.3 Hierarchical Attention Mechanism
Hierarchical attention mechanism is an effective achitecture to exploit hierarchical visual
features. However, it is not easy to choose the real salient objects among hundreds of objects
for the given video. As shown in Figure 3, different from the previous work [20] which
directly attends to objects mostly based on syntactic context, we introduce an extra LSTM to
establish the connection of objects between frames and focus on the salient objects based on
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Figure 3: An illustration of hierarchical attention model of STAT(a) and our visual model(b).

the video content. Our model is composed of two LSTM layers associated with two attention
layers. The first one is denoted as LST MR which models temporal relationship of objects in
a given video. The second one is denoted as LST MF which acts as a language model to
establish a syntactic context and generate natural language sentences. The two attention
layers are focusing on object-level and frame-level information respectively.

Object-level attention with LST MR The object-level attention with LST MR is used to
select salient semantic regions. Given the previous hidden state and object-level features at
time step i, LST MR encodes video information until ith frame into the hidden state hR

i :

hR
i = LST MR(φi(vri),hR

i−1) (1)

where the visual feature presentation of the ith frame φi(vri) is the weighted sum of all the k
semantic regions: φi(vri) = ∑

k
j=1 αi jvri j. The salient objects are emphasized by the attention

weight αi j which is obtained from the object-level attention layer:

αi j =
exp(ei j)

∑
k
j=1 exp(ei j)

with ei j = wT
e tanh(WehR

i−1 +Uevri j + ze) (2)

where we,We,Ue,ze are parameters to be learnt. It is observed from equation (2) that the
attention weight of each object is not only determined by their own features but also by the
video information of previous frames. Our motivation lying behind this is that the salient
objects of a given video are the ones which have important relations to video context.

Frame-level attention with LST MF The frame-level attention is proposed to allow
LST MF selecting relevant subset of frames while generating words step by step. For LST MF ,
the input are the results of frame-level attention ϕt(HR), ϕt(V F), ϕt(VC), the previous hid-
den state hF

t−1, and the previous word yt−1:

hF
t = LST MF(WEyt−1,ϕt(HR),ϕt(V F),ϕt(VC),hF

t−1) (3)

hF
t absorbs information from visual content and syntactic context and is used to predict word.

WE is the word embedding matrix. HR is expanded as {hR
1 , ...,h

R
n}, where hR

i is the output
of LST MR. Note that the time step i of LST MR and the time step t of LST MF are irrelevant
which reduces the time for training and testing. ϕt(HR), ϕt(V F) and ϕt(VC) have the same
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function expression with different parameters. For simplicity, we use notation X to represent
the input of ϕt(·). ϕt(X) is dynamically computed by the weighted sum of the element xi :

ϕt(X) =
n

∑
i=1

βtixi with βti =
exp(mti)

∑
n
i=1 exp(mti)

, mti = wT
m tanh(WmhF

t−1 +Umxi + zm) (4)

where wm,Wm,Um,zm are parameters to be learnt. The attention weight βti reflects the im-
portance of the ith frame features given hF

t−1. The predicted word yt is obtained through a
single hidden layer: yt = so f tmax(UyhF

t )

3.4 Information Loss

The Information Loss is designed to alleviate description ambiguity problem. For clarifica-
tion, we first briefly describe the traditional objective of video captioning. Given the previous
groud truth word yt−1 and visual features V , the cross entropy loss(CE) is used to maximize
the log-likelihood of the next groud truth word:

LC(s,V ) =−
T

∑
t=1

log p(yt |(V,yt−1)) (5)

Where s = {y1, ...,yT} is the given caption. The CE loss is equal for all words. However,
the common words can be learned well with total training data while the representative and
distinctive words just can be learned from specific video samples. Different words have
different importance for expressing video content. The learning strategy should focus more
on the video-specific informative words about salient visual content.

Our Information Loss reshapes the standard cross entropy loss to up-weight the represen-
tative and distinctive words for every video sample, which encourages the video captioning
model to capture the gist of a video and generate informative descriptions. Specifically, we
introduce an importance value to measure both the information relevance and information
content of every word for a given video. Then, we add the importance value as modulating
factor to the cross entropy loss.

In existing video captioning datasets, each video clip is annotated with scores of de-
scriptions by different workers. Although each video clip has various content, most persons
reach consensus about the salient objects and activities. That is, the representative words
corresponding to the main content of a video are more likely to appear in multiple ground
truth captions, whereas the irrelevant words occur less frequently. Therefore, we regard word
frequency among all ground truth captions of a video as the information relevance:

R(yt |V ) =
Nyt ,V

NV
(6)

where NV is the number of captions owned by the given video V , Nyt ,V is number of captions
which contain word yt . The information relevance term encourages the captioning model to
capture the main content of a video. However, many commonly used words in the whole
captions are also been encouraged. Therefore, we introduce an information content term to
suppress the weight of high-frequency words and elevate the weight of informative words.

Information content is deeply discussed in information theory, which is a synonym for
the surprise when a signal is received. We follow the way in information retrieval to calculate
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Models MSVD MSR-VTT
BLEU-4 METEOR CIDEr BLEU-4 METEOR CIDEr

NA(R+C+F) 49.7 33.6 76.1 40.8 27.0 45.2
TA-B1(R+C) 48.5 33.5 74.5 39.9 26.9 44.9

TA-B2(R+C+F) 50.2 34.6 77.0 41.4 27.3 45.3
HA(R+C+F) 52.3 35.4 82.9 42.1 27.4 46.0

Table 1: Performance comparison between baseline models and HA on the MSVD and MSR-
VTT datasets. Here, R, C, F are shorted for ResNet, C3D, Faster R-CNN features.

information content of every word, which is defined as:

I(yt) = log(
1

p(yt)
) with p(yt) =

|{Vyt}|
|{V}|

(7)

where |{Vyt}| is the number of videos in which word yt appears, |{V}| is the overall number
of videos, and p(yt) is the frequency that word yt appears in different videos. The smaller
the frequency of word yt , the larger quantity of information carried by yt . Combining the
information content term and information relevance term induces the importance value of
a word: f (yt ,V ) = R(yt |V )γ I(yt). γ ≥ 0 is a tunable parameter which smoothly adjusts the
interreation of this two terms. When γ = 0, the importance value is equal to information
content. While when γ is larger, the information relevance has more influence on the im-
portance value, and the importance value of low frequency words of a given video will be
rapidly diminished. We add the importance value as modulating factor to the cross entropy
loss and define the Information Loss as:

LI(s,V ) =−
T

∑
t=1

(1+λ f (yt ,V )) log p(wt |V,yt−1) (8)

λ is the trade-off parameter. This loss focus more on important words than common words
based on the importance value. Intuitively, the captioning model needs to matter the visual
properties and generate more percision words to reduce the information loss.

4 Experiments

4.1 Dataset and Evaluation Metrics

We conduct extensive experiments on two widely used video captioning benchmarks: MSVD [4]
and MSR-VTT [26]. MSVD contains 1970 Youtube video clips with around 40 human an-
notated descriptions per clip. Following the standard setting provided by [27], we takes
1200 videos for training, 100 videos for validation and the remainder for testing. MSR-
VTT contains 10000 video clips with 20 human annotated descriptions per clip. We use
the public splits: 6513 for training, 497 for validation and 2990 for testing. To evaluate the
performance, we employ three commonly used evaluation metrics, including BLEU [13],
METEOR [2], and CIDEr [21]. CIDEr gives higher score for video-specific n-grams than
generic n-grams [22], which is used to measure the effectiveness of our method.
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Models BLEU-4 METEOR CIDEr
S2VT 48.8 32.5 69.7

S2VT_IL 49.1 33.3 73.2
HA 52.3 35.4 82.9

HA_IL 54.1 36.6 87.5
Table 2: Performance comparison between differ-
ent models trained with CE and IL

λ

γ
1 2 3

0.3 83.6 84.4 83.3
0.5 85.3 87.5 84.3
0.7 83.7 85.6 83.2
1.0 83.1 84.6 82.4

Table 3: The effect of parameter

Models B@4 M C
TA 41.9 29.6 51.7

MAM-RNN 41.3 32.2 53.9
STAT 51.1 32.7 67.5

LSTM-TSA 52.8 33.5 74.0
hLSTMat 53.0 33.6 73.8

HA_IL 54.1 36.6 87.5
Table 4: Performance on MSVD

Models B@4 M C
TA 35.2 25.2 -

STAT 37.4 26.6 41.5
SA-LSTM 38.7 26.9 45.9

v2t_navigator 40.8 28.2 44.8
dense caption 41.4 28.3 48.9

HA_IL 41.9 27.9 47.7
Table 5: Performance on MSR-VTT

4.2 Implementation Details

We tokenize video captions and preserve the words which appear at least 5 times in training
dataset while other words are replaced by word UNK. As result, we obtain a vocabulary
size of 3656 for MSVD dataset and 8760 for MSR-VTT dataset. The object-level features is
extracted by Faster R-CNN with dimension 2048. We set the number of objects from each
frame to be 16. For frame-level features, we adopt the 2048-dimension pool5 feature from
ResNet101 and the 4096-dimension fc6 feature from C3D. We uniformly sample 40 frames
for each video with interval 8. We use a wider interval for long videos and pad zero frames
for short videos. We empirically set the dimension of all the hidden units to 512. Dropout
is used in both the input and output of two LSTM layers. We apply ADAM algorithm [8]
with learning rate 10−4 to optimize our model under both cross entropy loss and Information
Loss. We anneal the learning rate by a factor of 0.8 every 30 epochs. λ and γ are set to be
0.5 and 2 respectively. The sensitivity of λ and γ will be discussed in Section 4.3.

4.3 Experiment Analysis

Evaluation of hierarchical attention model Table 1 compares the performance of Hierar-
chical Attention Model (HA) and baseline models. NA applies none attention with mean-
pooled features fed to every step of LSTM. TA-B1 applies temporal attention mechnism
and uses none object-level features. TA-B2 applies temporal attention with hierarchical fea-
tures. All of these models are trained under cross entropy loss. Compared to TA-B1, TA-
B2 achieves better performance because of object-level features. Compared to NA, TA-B2
achieves very limited improvements which shows that temporal attention cannot exploit the
hierarchical visual features effectively. On the contrary, our HA method outperforms NA
model by a large margin on all metrics, such as over 8.9% relative improvement on CIDEr.

Evaluation of information loss To study the generalization ability of proposed Informa-
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Figure 4: Visualization of HA_IL. For each frame, we visualize the attention weights of
image regions with the degree of transparency. The less important region is covered with
white color more heavily whereas the most salient region remains unchanged. It’s clear that
our proposed method is capable of focusing on the video-level salient objects.

tion Loss (IL) method, we have trained S2VT [25] model and our HA model under Informa-
tion Loss(IL) learning strategy, namely, S2VT_IL and HA_IL. S2VT is our implemetion of
[25] under cross entropy loss. Results are shown in Table 2. Compared to models learned
by cross entropy loss, both performance of S2VT_IL and HA_IL are improved in all met-
rics when learned by our Information Loss. Especially, HA_IL improved by larger margin
than S2VT_IL, which indicates that our HA model provides stronger visual representation
to further reach the potentials of Information Loss. Overall, these results confirms the gen-
eralization and effectiveness of our Information Loss.

Study on parameters γ and λ Our Information Loss introduces two new hyperparam-
eter, the tunable parameter γ and tradeoff parameter λ . Results using different γ and λ are
shown in Table 3. When λ = 0, our loss is equivalent to cross entropy loss which is the result
of HA model. As λ increases, the loss pays more attention in words with high importance
value. With λ = 0.5, the IL yields the highest CIDEr score. γ is used to adjust the inter-
ation of information relevance and information content. When γ = 2, the two terms have
harmonious collaboration. When γ = 2,λ = 0.5, the model achieves the best score.

State-of-the-art models On MSVD dataset, we compare HA_IL with five methods:
TA [27], MAM-RNN [9], STAT [20], LSTM-TSA [12], hLSTMat [17]. TA is the first
work to employ temporal attention in video captioning. MAM-RNN exploits region level
attention. STAT explores object level features with spatial-temporal attention. LSTM-TSA
incorporates semantic attributes with RNN frameworks. hLSTMat proposes an adjusted
temporal attention. On MSR-VTT dataset, we conduct comparision with five methods :
TA, STAT, SA-LSTM [3], v2t_navigator [7], dense caption [16]. SA-LSTM is the baseline
method of MSR-VTT. v2t_navigator is the champion of the MM16 VTT challenge. dense
caption focuses on dense video captioning and achieves the best result of MSR-VTT.

Overall results As shown in Table 4, our HA_IL model outperforms previous methods
in all metrics by a large margin on MSVD, such as 18% improvement in CIDEr. The perfor-
mance of our base model HA is better than STAT, suggesting that our hierarchial attention
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model associated with two LSTM layers is easier to capture the gist of a video. These results
confirm the effectiveness of our HA_IL. As shown in Table 5, our HA_IL model achieves
competitive results on MSR-VTT dataset, such as 41.9 on BLEU-4. Notably, v2t_navigator
and dense caption use more kinds of features and execute a lot of engineering efforts such as
sentence re-ranking. Hence, we consider that our method achieves comparable performance
with less features. It’s worth mentioning that our Information Loss can be used for differ-
ent base models without any modification. Figure 4 visualizes four video examples with
detected semantic regions to show how our HA_IL works. Sentences generated by baseline
model and HA_IL are also provided. It’s distinct to see that our model successfully focuses
on the video-level salient objects and is able to capture salient details(’doing stunts’, ’slum
dunk’, ’cracking’). Especially, although the two men in the example (c) are very small, our
visual model attends to them across the entire video. These examples further confirm that
our optimized framework and proposed training strategy can jointly capture the gist of the
video and generate informative descriptions about given videos.

5 Conclusion

This paper observes that the unbalanced distribution of words is a significant cause of recog-
nition error and detail deficiency in video captioning. To address this issue, we propose
a novel strategy called HA_IL. HA_IL uses Information Loss to alleviate the imbalance
learning problem and hierarchical attention mechnism to generate video representation. Our
HA_IL outperforms state-of-the-art video captioning methods with relative improvements
18.2% in CIDEr on MSVD dataset. What’ s more , comparative studies show that our Infor-
mation Loss is generic for various models.
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