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Abstract

We study weakly-supervised video object grounding: given a video segment and a
corresponding descriptive sentence, the goal is to localize objects that are mentioned
from the sentence in the video. During training, no object bounding boxes are available,
but the set of possible objects to be grounded is known beforehand. Existing approaches
in the image domain use Multiple Instance Learning (MIL) to ground objects by enforc-
ing matches between visual and semantic features. A naive extension of this approach
to the video domain is to treat the entire segment as a bag of spatial object proposals.
However, an object existing sparsely across multiple frames might not be detected com-
pletely since successfully spotting it from one single frame would trigger a satisfactory
match. To this end, we propagate the weak supervisory signal from the segment level
to frames that likely contain the target object. For frames that are unlikely to contain
the target objects, we use an alternative penalty loss. We also leverage the interactions
among objects as a textual guide for the grounding. We evaluate our model on the newly-
collected benchmark YouCook2-BoundingBox and show improvements over competitive
baselines.

1 Introduction
Grounding language in visual regions provides a fine-grained perspective towards visual
recognition and has become a prominent research problem in the computer vision and natural
language processing communities [6, 19, 20, 24]. In this paper, we study the problem of
video object grounding, where a video (segment) and an associated sentence are given and
the goal is to localize the objects that are mentioned in the sentence in the video. This task
is often formulated as a visual-semantic alignment problem [7] and has broad applications
including retrieval [7, 8], description generation [20, 25], and human-robot interaction [1,
22].

Like most fine-grained recognition problems [15, 18], grounding can be extremely data
intensive, especially in the context of unconstrained video. On the other hand, video-sentence
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pairs are easier to obtain than object region annotations (e.g., YouTube Automatic Speech
Recognition scripts). We focus on the weakly-supervised version of the grounding problem
where the only supervision is sentence descriptions; no spatially-aligned object bounding
boxes are available for training. Sentence grounding can involve multiple interacting ob-
jects, which sets our work apart from the relatively well-studied weakly-supervised object
localization problem, where one or more objects are localized independently [10, 17].

Existing work on visual grounding falls into two categories: multiple instance learn-
ing [6, 7] and visual attention [19]. In either case, the visual-semantic similarity is first
measured between the target object/phrase and all the image-level, i.e. spatial, object region
proposals. Then, either a ranking loss or a reconstruction loss—both of which we refer to
here as matching losses—measures the quality of the matching. A naive extension of the
existing approaches to the video domain is to treat the entire video segment as a bag of spa-
tial object proposals. However, this presents two issues. First, existing methods rely on the
assumption that the target object appears in at least one of the proposal regions. This as-
sumption is weak when it comes to video, since a query object might appear sparsely across
multiple frames1 and might not be detected completely. The segment-level supervision, i.e.
object labels, could be potentially strengthened if applied to individual frames. Second, a
video segment can last up to several minutes. Even with temporal down-sampling, this can
bring in tens or hundreds of frames and hence thousands of proposals, which compromise
the visual-semantic alignment accuracy.

To address these two issues, we propose a frame-wise loss weighting framework for
video grounding. We ground the target objects on a frame-by-frame basis. We face the
challenge that the segment-level supervision is not applicable to individual frames where the
query object is off-screen, occluded, or just not present in the proposals for that frame. Our
solution is to first estimate the likelihood that the query object is present in (a proposal in)
each video frame. If the likelihood is high, we judge the matching quality mainly on the
matching loss. Otherwise, we down-weight the matching loss while bringing in a penalty
loss. The lower the confidence, the higher the penalty. With the conditioned frame-wise
grounding framework, the proposed model can avoid being flooded with massive proposals
even when the sampling rate is high and only make predictions for applicable frames.

We propose two approaches to estimate frame-wise object likelihood (confidence) scores.
The first one is conditioned on both visual and textual inputs, namely, the maximum visual-
semantic similarity scores in each frame. The second approach is inspired by the fact that
the combination of objects can imply their order of appearance in the video. For example,
when a sequence of objects “tomatoes”, “pan” and “plate” appears in the description, the
video scene is likely to include a shot of tomatoes being grilled in the pan at the beginning,
and a shot of tomatoes being moved to the plate at the end. In the temporal domain, “pan”
appears mostly ahead of “plate” while “tomatoes” intersects with both. We implicitly model
the object interaction with self-attention [23] and use textual guidance to estimate the frame-
wise object likelihood.

For evaluation, due to lack of existing video grounding benchmarks, we have collected
annotations over the large-scale instructional video dataset YouCook2, which provides over
15,000 video segment-description pairs. We sample the validation and testing videos at 1fps
and draw bounding box for the 67 most frequent objects when they are present in both the
video segment and the description. We compare our methods against competitive baselines
on video grounding and our proposed methods achieve state-of-the-art performances.

1In YouCook2-BoundingBox, the target object appears in 60.7% of the total frames, on average.
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Our contributions are twofold: 1) we propose a novel frame-wise loss weighting frame-
work for the video object grounding problem that outperforms competitive baselines; 2) we
provide a benchmark dataset for video grounding.

2 Related Work
Grounding in Image/Video. Supervised grounding or referring has been intensively stud-
ied [15, 16, 27] in the image domain. These methods require dense bounding box annotations
for training, which are expensive to obtain. Recently, an increasing amount of attention has
shifted towards the weakly-supervised grounding problem [6, 7, 8, 19, 24], where only de-
scriptive phrases, no explicit target grounding locations, are made accessible during training.
Karpathy and Fei-Fei [7] propose to pair image regions to words in a sentence by computing
a visual-semantic similarity score, finding the word that best describes the region. Rohrbach
et al. [19] ground textual phrases in images by reconstructing the original phrase through
visual attention. Yu and Siskind [26] ground objects from text in constrained videos. De-
An et al. [6] extend [7] to the video domain and further improve the work by modeling the
reference relationships among segments. In this work, we tackle the problem from a novel
aspect as fully exploiting the visual-semantic relations within each segment, i.e. frame-wise
supervisions and object interactions.
Weakly-supervised Object Localization. Weakly-supervised object localization has been
explored in both the image [2, 4, 5, 14, 21] and the video domain [10, 17]. Unlike object
grounding from text, object localization typically involves localizing an object class or a
video tag in the visual content. Existing works in the image domain naturally pursue a
multiple instance learning (MIL) approach to this problem. Positive instances are images
where the label is present, and negative instances are given as images with the label absent. In
the video domain, the existing methods [10, 17] approach this problem by taking advantage
of motion information and similarity between frames to generate spatio-temporal tubes. Note
that these tubes are much more expensive to obtain compared with spatial proposals, hence
we only consider the latter option.
Object Interaction. Object interaction was initially proposed to detect fine-grained visual
details for action detection, such as the temporal relationships between objects in a scene, to
overcome changes in illumination, pose, occlusion, etc. Some works have modeled object in-
teraction using pairwise or higher-order relationships [11, 12, 13]. Ni et al. [13] consolidate
object detections at each step by modeling pair-wise object relationships and hence enforce
the temporal object consistency in each additional step. Ma et al. [12] implicitly model the
higher-order interactions among object region proposals, using groups and subgroups rather
than just pairwise interactions. Inspired by recent work [3, 24], where the linguistic struc-
ture of the input phrase is leveraged to infer the spatial object locations, we propose to model
object interaction from a linguistic perspective as a textual guidance for grounding.

3 Methods
We start this section by introducing some background knowledge. In Sec. 3.2, we describe
the video object grounding baseline. We then propose our framework in Sec. 3.3 by extend-
ing the segment-level object label supervision to the frame-level. Two novel approaches are
proposed in judging under what circumstances the frame-level supervision is applicable.
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3.1 Background

In this section we provide some background on visual-semantic alignment framework (ground-
ing by ranking) and self attention, which are building blocks of our model.

Grounding by Ranking. We start by describing ranking-based grounding approach from [7].
Given a sentence description including O query objects/phrases and a set of N object region
proposals from an image, the goal is to target each referred object in the query as one of
the object proposals. Queries and visual region proposals are first encoded in a common
d-dimensional space. Denote the object query feature vectors as {qk}, k = 1,2, . . . ,O and
the region proposal feature vectors as {ri}, i = 1,2, . . . ,N. We pack the feature vectors into
matrices Q = (q1, . . . ,qO) and R = (r1, . . . ,rN). The visual-semantic matching score of the
description and the image is formulated as:

S(Q,R) =
1
O

O

∑
k=1

max
i

ai
k, (1)

where ai
k = q>k ri measures the similarity between query qk and proposal ri. Defining negative

samples Q′ and R′ as the query and proposal from texts and images that are not paired with
R nor Q, the grounding by ranking framework minimizes the following margin loss:

Lrank = ∑
R′ 6=R

∑
Q′ 6=Q

[max(0,S(Q,R′)−S(Q,R)+∆)+max(0,S(Q′,R)−S(Q,R)+∆)], (2)

where the first ranking term encourages the correct region proposal matching and the second
ranking term encourages the correct sentence matching. ∆ is the ranking margin. During in-
ference, the proposal with the maximal similarity score ai

k with each object query is selected.
Self Attention. We now describe the scaled dot-product attention model. Define a set of
queries q j ∈ Rd , a set of keys kt ∈ Rd and values vt ∈ Rd , where j = 1,2, . . . ,O is the
query index, t = 1,2, . . . ,T is the key/value index. Given an arbitrary query qk, scaled dot-
product attention computes the output as a weighted sum of values vt , where the weights are
determined by the scaled dot-products of query q j and keys kt , as formulated below:

A(q j,K,V ) = Softmax(q>j K/
√

d)V>, (3)
where the authors pack kt and vt into matrices K = (k1, . . . ,kT ) and V = (v1, . . . ,vT ), re-
spectively. Self-attention [23] is a special case of the scaled dot-product attention where the
queries, keys and values are all identical. In our case, they are all object encoding vectors and
self-attention encodes the semantic relationships among the objects. We adopt a multi-head
version of the self-attention layer [23, 29] for modeling object relationships, which deploys
multiple paralleled self-attention layers.

3.2 Video Object Grounding

We adapt the Grounding by Ranking framework [7] to the video domain, and this adaptation
will serve as our baseline. Denote the set of T frames in a video segment as { ft} and the
object proposals in frame t as rt

i , i= 1,2, . . . ,N. As before, define the object queries as qk, we
compute the similarity between the query object and all the proposals {rt

i} in a segment. Note
that the similarity dot product might grow large in magnitude as d increases [23]. Hence, we
scale the dot-product by 1√

d
and restrict at,i

k to be between 0 and 1 with a Sigmoid function.
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Figure 1: An overview of our framework. Inputs to the system are a video segment and
a phrase that describes the segment. The objects from the phrase are grounded for each
sampled frame t. Object and proposal features are encoded to size d and visual-semantic
similarity scores are computed. The ranking loss is weighted by a confidence score which
combined with the penalty form the final loss. The object relations are further encoded to
guide the loss weights (see Sec. 3.4 for details). During inference, the region proposal with
the maximum similarity score with the object query is selected for grounding.

The similarity function and segment-description matching score are then:

at,i
k = Sigmoid(q>k rt

i/
√

d), S(Q,R) =
1
O

O

∑
k=1

max
t,i

at,i
k , (4)

where matrix R = (r1
1, . . . ,r

1
N ,r

2
1, . . . ,r

T
N) indicates the pack of all proposal features.

This “brute-force” extension of Grounding by Ranking framework to the video domain
presents two issues. First, depending on the video sampling rate, the total number of propos-
als per segment (T ×N) could be extremely large. Hence this solution does not scale well to
long frame sequences. Second, an object existing sparsely across multiple frames might not
be detected completely since successfully spotting it from one single frame would trigger a
satisfactory match. We explain next how we propagate this weak supervisory signal from
the segment level to frames that likely contain the target object.

3.3 Frame-wise Loss Weighting

In our framework, each frame is considered separately to ground the same target objects.
Fig. 1 shows an overview of our model. We first estimate the likelihood that the query object
is present in each video frame. If the likelihood is high, we judge the matching quality
mainly on the matching loss (e.g., ranking loss). Otherwise, we down-weight the matching
loss while bringing in a penalty loss. The lower the confidence, the higher the penalty. For
clarity, we explain our idea when the matching loss is the ranking loss Lrank but note that this
can be generalized to other loss functions.

Let the ranking loss for frame t be Lt
rank and the similarity score between query k and

proposal i be at,i
k . Let Q = (q1, . . . ,qO) and Rt = (rt

1, . . . ,r
t
N). We define the confidence score

of the prediction at frame t as the visual-semantic matching score:

Ct =
1
O

O

∑
k=1

max
i
(at,i

k )≡ S(Q,Rt), (5)
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where S(·, ·) is defined in Eq. 1. The corresponding penalty is:

Dt =− log(2Ct) =− log[
2
O

O

∑
k=1

max
i
(at,i

k )], (6)

inspired by [9]. The final loss for the segment is a weighted sum of frame-wise ranking
losses and penalties:

L =
1
T

T

∑
t=1

[λCtLt
rank +(1−λ )Dt ], (7)

Lt
rank = ∑

R′t 6=Rt

∑
Q′ 6=Q

[max(0,S(Q,R′t)−S(Q,Rt)+∆)+max(0,S(Q′,Rt)−S(Q,Rt)+∆)], (8)

where λ is a static coefficient to balance the ranking loss and the penalty and can be validated
on the validation set. A low λ might cause the system to be over-confident on the prediction.

3.4 Object Interaction
We assume that the object types and their order in the language description can roughly
determine when they appear in the video content, as motivated in Sec. 1. We show that this
language prior can work as the frame-wise confidence score. To consider the interaction
among objects, we further encode each object query feature qk as:

J(qk) = MA(qk,Q,Q), (9)
where MA(·, ·, ·) is the multi-head self-attention layer [23], taking in the (query, key, value)
triplet. It represents each query as the combination of all other queries based on their inter-
relations. The built-in positional encoding layer [23] in multi-head attention captures the
order of objects appearing in the description. Note that the formulation is non-autoregressive,
i.e., all the objects in the same description can interact with each other.

We evenly divide each video segment into T ′ snippets and predict the confidence score
for object k to appear in each snippet based upon the concatenation of J(qk) and qk. Note
that T ′ is a pre-specified constant that satisfies T ′ ≤ T . The language-based confidence score
Clang = (C1

lang, . . . ,C
T ′
lang) is formulated as:

Clang =
1
O

O

∑
k=1

Sigmoid(Wlang[J(qk);qk]+blang), (10)

where [· ; ·] indicates the feature concatenation, Wlang ∈ RT ′×2d and blang ∈ RT ′ are embed-
ding weights and biases. We average the language-based and the similarity-based confidence
score and rewrite Eq. 7 as:

L =
1
T

T

∑
t=1

[λ
1
2
(Ct +Cts

lang)L
t
rank− (1−λ ) log(Ct +Cts

lang)] (11)

where ts = min(dt/d T
T ′ ee,T ) is the snippet index and d·e stands for the ceiling operator.

4 Experiments

4.1 Dataset
YouCook2-BoundingBox. YouCook2 [28] consists of 2000 YouTube cooking videos from
89 recipes. Each video has recipe steps temporally annotated (i.e. start timestamp and end
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Figure 2: Frequency count of each class label (including referring expressions).

timestamp) and each segment is described by a natural language sentence. The average
segment duration is 19.6s. Our training set is the same as the YouCook2 training split, only
paired sentences are provided. For each segment-description pair in the validation and testing
set however, we provide bounding box annotations for the most frequently appearing objects
from the dataset, i.e. the top 63 recurring objects along with four referring expressions: it,
them, that, they (see Fig. 2). These are used only during evaluation.

From YouCook2, we split each recipe step into a separate segment and sample it at 1
fps. We use Amazon Turk workers to draw bounding box around the objects in the video
segment using the highlighted words in the sentence (from the 67 objects in our vocabulary).
All annotations are further verified by the top 30 annotators. Please see the Appendix for
more details on annotations and quality control.

4.2 Baselines and Metrics

Baselines. We include two competitive baselines from published work: DVSA [7] and
GroundeR [19]. DVSA is the Grounding by Ranking method which we build all our methods
upon. For fair comparison, all the approaches take in the same object proposals generated
by Faster-RCNN [18] (pre-trained on MSCOCO). Following the convention from [6, 7], we
select the top N = 20 proposals per frame and sample T = 5 frames per segment unless oth-
erwise specified. We also evaluate the Baseline Random, which chooses a random proposal
as the output.
Metrics. We evaluate the grounding quality by bounding box localization accuracy (de-
noted as Box Accuracy). The output is positive if the proposed box has over 50% IoU with
the ground-truth annotation, otherwise negative. We compute accuracy for each object and
average across all the object types.

4.3 Implementation Details

The number of snippets T ′ in Sec. 3.4 is set to 5. The encoding size d is 128 for all the
methods. Object labels are represented as one-hot vectors, which are encoded by a linear
layer without the bias term. The loss factor λ is cross-validated on the validation set and is
set to 0.9. The ranking margin ∆ is set to 0.1. For training, we use stochastic gradient descent
(SGD) with Nesterov momentum. The learning rate is set at 0.05 and the momentum is 0.9.
We implement the model in PyTorch and train it using either a single Titan Xp GPU with
SGD or 4 GPUs with synchronous SGD, depending on the validation accuracy. The model
typically takes 30 epochs, i.e. 4 hours to converge. More details are in the Appendix.
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Table 1: Evaluation on localizing objects from the grounding-truth captions.

Method Box Accuracy (%)
Val. Test

Compared methods
Baseline Random 13.30 14.18
GroundeR [19] 19.63 19.94
DVSA [7] 30.51 30.80
Our methods
Loss Weighting 30.07 31.23
Object Interaction 29.61 30.06
Full Model 30.31 31.73
Upper bound 57.77 58.56

Figure 3: Top 10 accuracy increases & decreases by object category. (Left) Improvements
of our Loss Weighting model over DVSA. (Right) Improvements of our Full Model over
DVSA.

4.4 Results on Object Grounding

The quantitative results on object grounding are shown in Tab. 1. The model with the highest
score on the validation set is evaluated on the test split. We compute the upper bound as
the accuracy when proposing all 20 proposals, to see how far the methods are from the
performance limit. Note that the upper bound reported here is lower than that in [19]. This is
largely due to the domain shift from general scenes to cooking scenes and the large variance
in our object states, e.g. zoom-in and zoom-out views, onions v.s. fried onion rings.

We show results on our proposed models, where the “Loss Weighting” model computes
the confidence score with visual-semantic matching and the “Object Interaction” model com-
putes the confidence score with textual guidance (Sec. 3.4). Our full model averages these
two scores as the final confidence score (Eq. 11). The proposed methods demonstrate a
steady improvement from the DVSA baseline, with a relative 1.40% boost from loss weight-
ing and another 1.62% from combining object interaction, a total improvement of 3.02%. On
the other hand, the baseline has a higher validation score, which indicates model overfitting.
Note that text guidance alone (“Object Interaction”) works slightly worse than the baseline,
showing that both visual and textual information are critical for inferring the frame-wise loss
weights. Our methods also outperform other compared methods, GroundeR and Baseline
Random by a large margin.
Analysis. We show in Fig. 3 the top 10 accuracy increases and decreases of our methods
over the DVSA baseline, by object category. Our methods make better predictions on static
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Figure 4: Visualization of localization output from baseline DVSA and our proposed meth-
ods. Red boxes indicate ground-truths and green boxes indicate proposed regions. The first
two rows show examples where our methods perform better than DVSA. The last row dis-
plays a negative example where all methods perform poorly. Better viewed in color.

objects such as “squid”, “beef”, and “noodle” and worse predictions on cookwares, such
as “wok”, “pan”, and “oven”, which involves more state changes, such as containing/not
containing food or different camera perspectives. Our hypothesis is, our loss weighting
framework favors consistent objects across frames, due to the shared frame-wise supervision.
Impact of Sampling Rate. We investigate the impact of high video sampling rate on ground-
ing accuracy by increasing the total number of frames per segment (T ) from 5 to 20. The ac-
curacy from DVSA drops from 30.80% to 29.90% and the accuracy from our Loss Weighted
model drops from 31.23% to 30.93%. We expected these inferior performances, due to the
excessive object proposals. However, our loss weighted method only compromises 0.96%
of the accuracy while the accuracy from DVSA drops by 2.92%, showing that our method is
less sensitive to high sampling rate and predicts better on long frame sequences.
Qualitative Results. Fig. 4 visualizes the grounded objects with DVSA and our proposed
methods. The first two rows show some positive examples. In Fig. 4 (a), we see with DVSA
baseline the "plate" object is grounded to the incorrect regions in the frames. However our
methods correctly select regions with a large IOU with the ground truth box. In Fig. 4 (b)
the labels "bacon" and "it" refer to the same target object. Per our annotation requirements,
there is only one ground truth box instead of two. The full model correctly combines both
"bacon" and "it" grounds them to the same region proposal. The last row that shows where all
methods fail to ground the target objects adequately. This may be a result of errors in the top
object proposals proposed since the scene is rather complicated. An additional explanation
may be bias in the dataset, where during training the "bowl" object typically occupies the
majority of the frame.
Limitations. There are two limitations in our method we hope to address in our future work.
First, even though the frame-wise loss can to some degree enforce the temporal consistency
between frames, we do not explicitly model the relation between frames, for instance motion
information. The transition between object states across frames, e.g., raw meat to cooked
meat, should be further studied. Second, our grounding performance is upper-bounded by
the object proposal accuracy and we have no control over the errors from the proposals. An
end-to-end version of the proposed method that solves both the proposing and the grounding
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problem can potentially improve the grounding accuracy.

5 Conclusion
We propose a frame-wise loss weighted grounding model for video object grounding. Our
model applies segment-level labels to the frames in each segment, while being robust to
inconsistencies between the segment-level label and each individual frame. We also lever-
age object interaction as textual guidance for grounding. We evaluate the effectiveness of
our models on the newly-collected video grounding dataset YouCook2-BoundingBox. Our
proposed methods outperform competitive baseline methods by a large margin. Future di-
rections include incorporating the video motion information and exploring an end-to-end
solution for video object grounding.
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