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1 Details on the Minimisation

As stated in the main paper, we apply the well-known coarse-to-fine warping strategy, which
is based on a hierarchical incremental formulation with two nested fixed point iterations [1].
The outer fixed point iteration approximates the original energy functional as a series of
differential energies. Starting from a coarse scale initialisation, it thereby successively refines
the solution wk, ck, ak, bk from a coarser scale k via

wk+1 = wk +dwk , (1)
ck+1 = ck +dck , (2)
ak+1 = ak +dak , (3)
bk+1 = bk +dbk , (4)

using the increments dwk, dck, dak, dbk computed on the next finer scale k+1. Thereby, the
ratio between two consecutive resolution levels is given by η ∈ (0,1]. Please note that, in
contrast to all other functions, the spatially varying order weight ok is not estimated incre-
mentally. As shown in [6] it can be computed in closed form at each resolution level.

While the general strategy resembles the standard coarse-to-fine scheme used by many
variational methods, it is important to note that our reduced coarse-to-fine scheme does not
start at a very coarse level and a zero initial guess. Instead it begins the refinement at an
intermediate level, where it can benefit from the results of the preceding pipeline (matching,
outlier filtering, inpainting) in terms of good initialisation. This strategy also differs signifi-
cantly from those of other refinement methods that only refine the initialisation at the finest
level, i.e. at the original resolution. Such methods, however, are not able to correct large
errors, since they easily get trapped in local minima close to the fine-grid initialisation.
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Differential Energy. Let us now detail on the differential energy that has to be minimised
at each resolution level to obtain the desired increments. It is given by

Ek
oir(dwk,dck,ok) =

∫
Ω

Dk
illum(dwk,dck)+α ·Rk

oar(dwk,ok)+β ·Rk
illum(dck)+γ ·Sk

oar(o
k) dx ,

(5)
where the different terms from the original energy have been replaced by the corresponding
differential formulations. In case of the data term the differential formulation reads

Dk
illum(dwk,dck) =Ψc

(
θ ·
(

f k
x duk + f k

y dvk + f k−Φ(g,ck +dck)
)2
)

+λ ·Ψc

(
θx ·
(

f k
xxduk + f k

xydvk + f k
x −∂xΦ(g,ck)

)2

+θy ·
(

f k
yxduk + f k

yydvk + f k
y −∂yΦ(g,ck)

)2
)
, (6)

where f k = f (x+wk) denotes the second frame f compensated by the current motion esti-
mate wk. To keep the minimisation feasible we rely on a lagged computation of the coeffi-
cients within the gradient constancy and hence only use the coefficient increment dck in the
brightness constancy; see [3].

In contrast to the data term, the differential formulations of the remaining terms are
straightforward. The regularisation term for the illumination coefficients is given by

Rk
illum(dck) =

2

∑
m=1

Ψm

(
N

∑
n=1

(
r>m∇(ck

n +dck
n)
)2
)

, (7)

the flow regulariser reads

Rk
oar(dwk,ok) = inf

dak,dbk

{
ōk ·Sk

1(dwk)

+(1− ōk) ·
(
Sk

2(dwk,dak,dbk)+T
)
+δ ·Sk

3(dak,dbk)
}
, (8)

with

ōk(x) =
1

|N (x)|

∫
N (x)

ok(y)dy , (9)

Sk
1(dwk) =

2

∑
m=1

Ψm

((
r>m∇(uk +duk)

)2
+
(

r>m∇(vk +dvk)
)2
)
, (10)

Sk
2(dwk,dak,dbk) =

2

∑
m=1

Ψm

((
r>m
(

∇(uk +duk)− (ak +dak)
))2

+
(

r>m
(

∇(vk +dvk)− (bk +dbk)
))2

)
, (11)

Sk
3(dak,dbk) =

2

∑
m=1

Ψm

(
2

∑
l=1

(
r>l J (ak +dak)rm

)2
+
(

r>l J (bk +dbk)rm

)2
)

, (12)

and the selection term yields

Soar(ok) = ln(1−ok)−ok · ln
(

1
ok −1

)
. (13)
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Euler-Lagrange Equations. In order to minimise the differential energy (5) we solve the
corresponding system of Euler-Lagrange equations, which form the necessary conditions for
each minimiser [5]. By introducing the following abbreviations for the outer derivatives of
the penaliser functions

Ψ
′k
c,bca :=Ψ

′
c

(
θ ·
(

f k
x duk + f k

y dvk + f k−Φ(g,ck +dck)
)2
)
, (14)

Ψ
′k
c,gca :=Ψ

′
c

(
θx ·
(

f k
xxduk + f k

xydvk + f k
x −∂xΦ(g,ck)

)2

+θy ·
(

f k
yxduk + f k

yydvk + f k
y −∂yΦ(g,ck)

)2
)
, (15)

Ψ
′k
m,illum :=Ψ

′
m

(
N

∑
n=1

(
r>m∇(ck

n +dck
n)
)2
)

, (16)

Ψ
′k
m,S1

:=Ψ
′
m

((
r>m∇(uk +duk)

)2
+
(

r>m∇(vk +dvk)
)2
)
, (17)

Ψ
′k
m,S2

:=Ψ
′
m

((
r>m
(

∇(uk +duk)− (ak +dak)
))2

+
(

r>m
(

∇(vk +dvk)− (bk +dbk)
))2

)
, (18)

Ψ
′k
m,S3

:=Ψ
′
m

(
2

∑
l=1

(
r>l J (ak +dak)rm

)2
+
(

r>l J (bk +dbk)rm

)2
)

, (19)

where the derivatives of the penaliser functions themselves are given by

Ψ
′
1(s

2) =
1

1+ s2/ε2 , (20)

Ψ
′
c(s

2) = Ψ
′
2(s

2) =
1√

1+ s2/ε2
, (21)

as well as by introducing the following four diffusion tensors

Tk
illum =

2

∑
m=1

Ψ
′k
m,illum · rmr>m , (22)

Tk
S1

=
2

∑
m=1

Ψ
′k
m,S1
· rmr>m , (23)

Tk
S2

=
2

∑
m=1

Ψ
′k
m,S2
· rmr>m , (24)

Tk
S3

=
2

∑
m=1

Ψ
′k
m,S3
· rmr>m , (25)
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we can write the resulting system of Euler-Lagrange equations as

0 =
δEk

oir
δduk = Ψ

′k
c,bca ·θ ·

(
f k
x duk + f k

y dvk + f k−Φ(g,ck +dck)
)
· f k

x

+λ ·Ψ′kc,gca ·
(

θx ·
(

f k
xxduk + f k

xydvk + f k
x −∂xΦ(g,ck)

)
· f k

xx

+θy ·
(

f k
yxduk + f k

yydvk + f k
y −∂yΦ(g,ck)

)
· f k

yx

)
−α · ōk ·div

(
Tk

S1
∇(uk +duk)

)
−α · (1− ōk) ·div

(
Tk

S2

(
∇(uk +duk)− (ak +dak)

))
(26)

0 =
δEk

oir
δdvk = Ψ

′k
c,bca ·θ ·

(
f k
x duk + f k

y dvk + f k−Φ(g,ck +dck)
)
· f k

y

+λ ·Ψ′kc,gca ·
(

θx ·
(

f k
xxduk + f k

xydvk + f k
x −∂xΦ(g,ck)

)
· f k

xy

+θy ·
(

f k
yxduk + f k

yydvk + f k
y −∂yΦ(g,ck)

)
· f k

yy

)
−α · ōk ·div

(
Tk

S1
∇(vk +dvk)

)
−α · (1− ōk) ·div

(
Tk

S2

(
∇(vk +dvk)− (bk +dbk)

))
(27)

0 =
δEk

oir

δdck = Ψ
′k
c,bca ·θ ·

(
f k
x duk + f k

y dvk + f k−Φ(g,ck +dck)
)
· (φ1(g),φ2(g))

>

−β ·div
(
J (ck +dck)Tk

illum

)
(28)

0 =
δEk

oir

δdak = (1− ōk) ·Tk
S2

(
(ak +dak)−∇(uk +duk)

)
−δ ·div

(
J (ak +dak)Tk

S3

)
(29)

0 =
δEk

oir

δdbk = (1− ōk) ·Tk
S2

(
(bk +dbk)−∇(vk +dvk)

)
−δ ·div

(
J (bk +dbk)Tk

S3

)
(30)

0 =
δEk

oir
δok ⇒ ok =

1
1+ e−ξ/γ

with ξ =
∫
N (x)

1
|N (y)|

(
T +Sk

2−Sk
1

)
dy . (31)

Here δEk
oir

δ∗ with ∗ ∈ {duk,dvk,dck,dak,dbk,ok} denote functional derivatives of Ek
oir, and

div is the extension of the divergence operator to matrix-valued functions, which applies the
standard divergence operator to each row of the function.

Numerical Solution. In order to solve the system of Euler-Lagrange equations (26)-(31) we
discretise them using standard finite differences in case of the data term related expressions
and non-standard approximations in case of the divergence expressions [8]. This leads to
a non-linear system of equations due to the outer derivatives Ψ′kc,bca, Ψ′kc,gca, Ψ′km,illum, Ψ′km,S1

,
Ψ′km,S2

, Ψ′km,S3
of the sub-quadratic penaliser functions. To cope with this non-linear system of

equations a second (inner) fixed point iteration is applied and the particular non-linear con-
tributions are kept fixed to obtain a linear system of equations. Finally, we apply a cascadic
multicolour variant of the SOR method to solve this linear system of equations.
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2 Additional Results
In the Figures 1-6 we provide additional qualitative results for sequences of the utilised
benchmarks, namely KITTI 2012 [4], KITTI 2015 [7] and MPI Sintel [2]. To emphasise
some aspects of our novel refinement strategy we highlighted certain regions in the images.
Figure 1 and 2, for example, nicely show the benefit of the proposed reduced coarse-to-
fine scheme, which allows to correct errors. Figure 3 and 6 bring out the adaptation to the
underlying image structure, ass seen at traffic lights and the ear of the villain. Finally, the
benefit of the order adaptive regularisation not only becomes present in the boundary areas
of the KITTI sequences (Figures 1-4) but also at the shoulder of Sintel in Figure 5.
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Figure 1: Results for the sequence #15 of the KITTI 2012 benchmark [4]. Top to bottom:
Reference frame and ground truth. DeepMatching matches, DiscreteFlow matches, CPM
matches (repetitive). Second to fourth row: Outlier-filtered matches and inpainted matches.
Fifth to seventh row: Flow field visualisation of the EpicFlow refinement and proposed
refinement. Eighth to tenth row: Bad pixel visualisation (3px threshold) of the EpicFlow
refinement and proposed refinement.
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Figure 2: Results for the sequence #9 of the KITTI 2012 benchmark [4]. Top to bottom:
Reference frame and ground truth. DeepMatching matches, DiscreteFlow matches, CPM
matches (repetitive). Second to fourth row: Outlier-filtered matches and inpainted matches.
Fifth to seventh row: Flow field visualisation of the EpicFlow refinement and proposed
refinement. Eighth to tenth row: Bad pixel visualisation (3px threshold) of the EpicFlow
refinement and proposed refinement.
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Figure 3: Results for the sequence #07 of the KITTI 2015 benchmark [7]. Top to bottom:
Reference frame and ground truth. DeepMatching matches, DiscreteFlow matches, CPM
matches (repetitive). Second to fourth row: Outlier-filtered matches and inpainted matches.
Fifth to seventh row: Flow field visualisation of the EpicFlow refinement and proposed
refinement. Eighth to tenth row: Bad pixel visualisation (3px threshold) of the EpicFlow
refinement and proposed refinement.
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Figure 4: Results for the sequence #31 of the KITTI 2015 benchmark [7]. Top to bottom:
Reference frame and ground truth. DeepMatching matches, DiscreteFlow matches, CPM
matches (repetitive). Second to fourth row: Outlier-filtered matches and inpainted matches.
Fifth to seventh row: Flow field visualisation of the EpicFlow refinement and proposed
refinement. Eighth to tenth row: Bad pixel visualisation (3px threshold) of the EpicFlow
refinement and proposed refinement.
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Figure 5: Results for sequence #20 (alley_1) of the MPI Sintel benchmark [2]. Top to
bottom: Reference frame and ground truth. DeepMatching matches, DiscreteFlow matches,
CPM matches (repetitive). Second to fourth row: Outlier-filtered matches and inpainted
matches. Fifth to seventh row: Flow field visualisation of the EpicFlow refinement and
proposed refinement. Eighth to tenth row: Bad pixel visualisation (3px threshold) of the
EpicFlow refinement and proposed refinement.
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Figure 6: Results for sequence #02 (ambush_5) of the MPI Sintel benchmark [2]. Top to
bottom: Reference frame and ground truth. DeepMatching matches, DiscreteFlow matches,
CPM matches (repetitive). Second to fourth row: Outlier-filtered matches and inpainted
matches. Fifth to seventh row: Flow field visualisation of the EpicFlow refinement and
proposed refinement. Eighth to tenth row: Bad pixel visualisation (3px threshold) of the
EpicFlow refinement and proposed refinement.
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