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1 More Comprehensive Comparison to Other Methods
Table 1 shows a more comprehensive comparison of our results to the results obtained by
other methods.

Method DAVIS YouTube-Objects
mIoU [%] mIoU [%]

OnAVOS (ours), no adaptation 81.7±0.2 76.6±0.1
OnAVOS (ours), online adaptation 85.785.785.7±0.6 77.477.477.4±0.2

OSVOS [1] 79.8 72.5
MaskTrack [7] 79.7 72.6

LucidTracker [3] † 80.5 76.2
VPN [2] 75.0 -
FCP [5] 63.1 -
BVS [4] 66.5 59.7
OFL [8] 71.1 70.1
STV [9] 73.6 -

Table 1: Comparison to other methods on the DAVIS validation set and the YouTube-Objects
dataset. Note that MaskTrack [7] and LucidTracker [3] report results on DAVIS for all se-
quences including the training set, but here we show their results for the validation set only.
†: Concurrent work only published on arXiv.

2 Additional Evaluation Measures for DAVIS
Table 2 shows a more detailed evaluation on the DAVIS validation set using the evaluation
measures suggested by Perazzi et al. [6]. The measures used here are the Jaccard index J ,
defined as the mean intersection-over-union (mIoU) between the predicted foreground masks
and the ground truth masks; the contour accuracy measure F , which measures how well the
segmentation boundaries agree; and the temporal stability measure T , which measures the
consistency of the predicted masks over time. For more details of these measures, we refer
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the interested reader to Perazzi et al. [6]. Note that the results for additional measures for
LucidTracker [3] are missing since they are only reported averaged over all 50 sequences of
DAVIS and not on the validation set.

The table shows that each evaluation measure is significantly improved by the proposed
online adaptation scheme. OnAVOS obtains the best mean results for all three measures. It is
surprising that our result for the temporal stability T is better than the result by MaskTrack
[7], although in contrast to our method, they explicitly incorporate temporal context by prop-
agating masks.

Measure OnAVOS (ours) OSVOS [1] MaskTrack [7] LucidTracker [3]Un-adapted Adapted

J
mean ↑ 81.7±0.2 85.785.785.7±0.6 79.8 79.7 80.5
recall ↑ 92.2±0.6 95.495.495.4±0.8 93.6 93.1 -
decay ↓ 11.9±0.3 7.17.17.1±1.7 14.9 8.9 -

F
mean ↑ 81.1±0.2 84.284.284.2±0.8 80.6 75.4 -
recall ↑ 88.2±0.3 88.7±1.3 92.692.692.6 87.1 -
decay ↓ 11.2±0.5 7.87.87.8±1.8 15.0 9.0 -

T mean ↓ 27.3±2.2 18.518.518.5±0.1 37.6 21.8 -

Table 2: Additional evaluation measures on the DAVIS validation set. Best and second best
results are highlighted with bold and italic fonts, respectively.

3 Per-Sequence Results for DAVIS
Table 3 shows mIoU results for each of the 20 sequences of the DAVIS validation set. On 18
out of 20 sequences, OnAVOS obtains either the best or the second best result.

4 Hyperparameter Study on DAVIS
As described in the main paper, we found α = 0.97, β = 0.05, d = 220, nonline = 15, ncurr =
3, λ = 10−5 and 15 for the erosion size to work well on DAVIS. Starting from these values
as the operating point, we conducted a more detailed hyperparameter study by changing one
hyperparameter at a time, while keeping all others constant (see Fig. 1). The plots show that
the performance of OnAVOS is in general very stable with respect to the choice of most of
its hyperparameters and for every configuration we tried, the result was better than the un-
adapted baseline (the dashed line in the plots). The single most important hyperparameter
is the online learning rate λ , which is common for deep learning approaches. The online
loss scale β and the positive threshold α have a moderate influence on performance, while
changing the distance threshold d and the number of steps nonline and ncurr in a reasonable
range only leads to minor changes in accuracy. For the erosion size, the optimum is achieved
at 1, i.e. when no erosion is applied. This result suggests that the erosion operation is not
helpful for DAVIS. The plots show that there is still some potential for improving the results
by further tuning the hyperparameters. However, this study was meant as a characterization
of our method rather than a systematic tuning.

The generalizability and the robustness of OnAVOS with respect to the choice of hyper-
parameters is further confirmed by the experiments on YouTube-Objects, which used the
same hyperparameter settings as on DAVIS.
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Sequence
Method, mIoU [%]

OnAVOS (ours) OSVOS [1] MaskTrack [7] LucidTracker [3]Un-adapted Adapted
blackswan 96.1±0.1 96.296.296.2±0.1 94.2 90.3 95.0
bmx-trees 48.2±0.8 57.0±1.0 55.5 57.557.557.5 55.0

breakdance 62.6±4.2 73.6±3.8 70.8 76.1 87.287.287.2
camel 84.6±0.1 85.5±0.1 85.1 80.1 94.394.394.3

car-roundabout 86.5±0.2 97.597.597.5±0.0 95.3 96.0 96.0
car-shadow 94.1±0.1 96.896.896.8±0.1 93.7 93.5 90.3

cows 95.495.495.4±0.0 95.495.495.4±0.0 94.6 88.2 93.1
dance-twirl 78.4±0.7 85.6±1.0 67.0 84.4 88.688.688.6

dog 95.695.695.6±0.1 95.695.695.6±0.1 90.7 90.8 95.0
drift-chicane 87.4±0.5 89.289.289.2±0.2 83.5 86.2 1.4
drift-straight 81.3±5.6 93.793.793.7±0.9 67.6 56.0 79.9

goat 90.8±0.1 91.491.491.4±0.1 88.0 84.5 88.9
horsejump-high 89.3±0.3 90.190.190.1±0.0 78.0 81.8 87.1

kite-surf 70.170.170.1±1.0 69.1±0.1 68.6 60.0 64.6
libby 87.1±1.0 88.688.688.6±0.1 80.8 77.5 85.5

motocross-jump 89.789.789.7±0.2 70.4±11.9 81.6 68.3 75.1
paragliding-launch 64.664.664.6±0.1 64.3±0.1 62.5 62.1 63.7

parkour 92.4±0.2 93.693.693.6±0.0 85.6 88.2 93.2
scooter-black 64.8±7.1 91.391.391.3±0.1 71.1 82.4 86.5

soapbox 74.0±4.6 89.8±1.2 81.2 89.9 90.590.590.5
mean 81.7±0.2 85.785.785.7±0.6 79.8 79.7 80.5

Table 3: Per-sequence results on the DAVIS validation set. Best and second best results are
highlighted with bold and italic fonts, respectively.
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(a) online learning rate λ
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(f) positive threshold α
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(g) erosion size

Figure 1: Influence of online adaptation hyperparameters on the DAVIS training set. The
blue circle marks the operating point, based on which one parameter is changed at a time.
The dashed line marks the un-adapted baseline. The plots show that overall our method is
very robust against the exact choice of hyperparameters, except for the online learning rate
λ . The standard deviations estimated by three runs are shown as error bars. In some cases,
including the operating point, the estimated standard deviation is so small that it is hardly
visible.


