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Abstract

We tackle the task of semi-supervised video object segmentation, i.e. segmenting

the pixels belonging to an object in a video using the ground truth pixel mask for the

first frame. We build on the recently introduced one-shot video object segmentation

(OSVOS) approach which uses a pretrained network and fine-tunes it on the first frame.

While achieving impressive performance, at test time OSVOS uses the fine-tuned net-

work in unchanged form and is not able to adapt to large changes in object appearance.

To overcome this limitation, we propose Online Adaptive Video Object Segmentation

(OnAVOS) which updates the network online using training examples selected based on

the confidence of the network and the spatial configuration. Additionally, we add a pre-

training step based on objectness, which is learned on PASCAL. Our experiments show

that both extensions are highly effective and improve the state of the art on DAVIS to an

intersection-over-union score of 85.7%.

1 Introduction

Visual object tracking is a fundamental problem in computer vision with many applications

including video editing, autonomous cars, and robotics. Recently, there has been a trend to

move from bounding box level to pixel level tracking, mainly driven by the availability of

new datasets, in particular DAVIS [34]. In our work, we focus on semi-supervised video

object segmentation (VOS), i.e. the task of segmenting the pixels belonging to a generic

object in the video using the ground truth pixel mask of the first frame.

Recently, deep learning based approaches, which often utilize large classification datasets

for pretraining, have shown extremely good performance for VOS [7, 20, 24, 35] and the

related tasks of single-object tracking [5, 18, 31] and background modeling [2, 6, 42]. In

particular, the one-shot video object segmentation (OSVOS) approach introduced by Caelles

et al. [7], has shown very promising results for VOS. This approach fine-tunes a pretrained

convolutional neural network on the first frame of the target video. However, since at test

time OSVOS only learns from the first frame of the sequence, it is not able to adapt to large

changes in appearance, which might for example be caused by drastic changes in viewpoint.

While online adaptation has been used with success for bounding box level tracking (e.g.

[14, 23, 27, 31, 41]), its use for VOS [3, 4, 10, 32] has received less attention, especially in

the context of deep learning. We thus propose Online Adaptive Video Object Segmentation
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Figure 1: Qualitative results on two sequences of the DAVIS validation set. The second row

shows the pixels selected as positive (red) and negative (blue) training examples. It can be

seen that after online adaptation, the network can deal better with changes in viewpoint (left)

and new objects appearing in the scene (the car in the right sequence).

(OnAVOS), which updates a convolutional neural network based on online-selected training

examples. In order to avoid drift, we carefully select training examples by choosing pixels

for which the network is very certain that they belong to the object of interest as positive

examples, and pixels which are far away from the last assumed pixel mask as negative ex-

amples (see Fig. 1, second row). We further show that naively performing online updates on

every frame quickly leads to drift, which manifests in strongly degraded performance. As a

countermeasure, we propose to mix in the first frame (for which the ground truth pixel mask

is known) as additional training example during online updates.

Our contributions are the following: We introduce OnAVOS, which uses online updates

to adapt to changes in appearance. Furthermore, we adopt a more recent network architecture

and an additional objectness pretraining step [20, 21] and demonstrate their effectiveness for

the semi-supervised setup. We further show that OnAVOS significantly improves the state of

the art on two datasets.

2 Related Work

Video Object Segmentation. A common approach of many classical video object segmen-

tation (VOS) methods is to reduce the granularity of the input space, e.g. by using superpixels

[8, 15], patches [12, 38], or object proposals [33]. While these methods significantly reduce

the complexity of subsequent optimization steps, they can introduce unrecoverable errors

early in the pipeline. The obtained intermediate representations (or directly the pixels [30])

are then used for either a global optimization over the whole video [30, 33], over parts of it

[15], or using only the current and the preceding frame [8, 12, 38].

Recently, neural network based approaches [7, 20, 24, 35] including OSVOS [7] have

become the state of the art for VOS. Since OnAVOS is built on top of OSVOS, we include

a detailed description in Section 3. While OSVOS handles every video frame in isolation,

we expect that incorporating temporal context should be helpful. As a step in this direction,

Perazzi et al. [35] propose the MaskTrack method, in which the estimated segmentation mask
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from the last frame is used as an additional input channel to the neural network, enabling it

to use temporal context. Jampani et al. [22] propose a video propagation network (VPN)

which applies learned bilateral filtering operations to propagate information across video

frames. Furthermore, optical flow has been used as an additional temporal cue in conjunction

with deep learning in the semi-supervised [24, 35] and unsupervised setting [40], in which

the ground truth for the first frame is not available. In our work, we focus on including

context information implicitly by adapting the network online, i.e. we store temporal context

information in the adapted weights of the network.

Recently, Jain et al. [21] proposed to train a convolutional neural network for pixel ob-

jectness, i.e. for deciding for each pixel whether it belongs to an object-like region. In another

paper, Jain et al. [20] showed that using pixel objectness is helpful in the unsupervised VOS

setting. We adopt pixel objectness as a pretraining step for the semi-supervised setting based

on the one-shot approach.

The current best result on DAVIS is obtained by LucidTracker from Khoreva et al. [24],

which extends MaskTrack by an elaborate data augmentation method, which creates a large

number of training examples from the first annotated frames and reduces the dependence

on large datasets for pretraining. Our experiments show that our approach achieves better

performance using only conventional data augmentation methods.

Online Adaptation. For bounding box level tracking, Kalal et al. [23] introduced the

Tracking-Learning-Detection (TLD) framework, which tries to detect errors of the used ob-

ject detector and to update the detector online to avoid these errors in the future. Grabner

and Bischof [14] used an online version of AdaBoost [13] for multiple computer vision

tasks including tracking. Nam and Han [31] proposed a Multi-Domain Network (MDNet)

for bounding box level tracking. MDNet trains a separate domain-specific output layer for

each training sequence and at test time initializes a new output layer, which is updated on-

line together with two fully-connected layers. To this end, training examples are randomly

sampled close to the current assumed object position, and are used as either positive or nega-

tive targets, based on their classification scores. This scheme of sampling training examples

online has some similarities to our approach. However, our method works on the pixel level

instead of the bounding box level and, in order to avoid drift, we take special care to only

select training examples online for which we are very certain that they are positive or neg-

ative examples. For VOS, online adaptation is less well explored; mainly classical methods

like online-updated color and/or shape models [3, 4, 32] and online random forests [10] have

been proposed.

Fully Convolutional Networks for Semantic Segmentation. Fully Convolutional Net-

works (FCNs) for semantic segmentation have been introduced by Long et al. [29]. The

main idea is to repurpose a network initially designed for classification for semantic segmen-

tation by replacing the fully-connected layers with 1× 1 convolutions, and by introducing

skip connections which help capture higher resolution details. Variants of this approach have

since been widely adopted for semantic segmentation with great success (e.g. ResNets by He

et al. [17]).

Recently, Wu et al. [43] introduced a ResNet variant with fewer but wider layers than

the original ResNet architectures [17] and a simple approach for segmentation, which avoids

some of the subsampling steps by replacing them by dilated convolutions [45] and which

does not use any skip connections. Despite the simplicity of their architecture for segmenta-

tion, they obtained outstanding results across multiple classification and semantic segmenta-

tion datasets, which motivates us to adopt their architecture.
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Figure 2: The pipeline of OnAVOS. Starting from pretrained weights, the network is first

pretrained for objectness on PASCAL (a). Afterwards we pretrain on DAVIS to incorporate

domain specific information (b). During test time, we fine-tune on the first frame, to obtain

the test network (c). On the following frames, the network is then fine-tuned online to adapt

to the changes in appearance (d).

3 One-Shot Video Object Segmentation

OnAVOS (see Fig. 2 for an overview) builds upon the recently introduced one-shot video

object segmentation (OSVOS) approach [7], but introduces pretraining for pixel objectness

[21] as a new component, adopts a more recent network architecture, and incorporates a

novel online adaptation scheme, which is described in detail in Section 4.

Base Network. The first step of OnAVOS is to pretrain a base network on large datasets (e.g.

ImageNet [9] for image classification) in order to learn a powerful representation of objects,

which can later be used as a starting point for the video object segmentation (VOS) task.

Objectness Network. In a second step, the network is further pretrained for pixel objectness

[21] using a binary cross-entropy loss. In order to obtain targets for foreground and back-

ground, we use the PASCAL [11] dataset and map all 20 annotated classes to foreground

and all other image regions are treated as background. As demonstrated by Jain et al. [20],

the resulting objectness network alone already performs well on DAVIS, but here we use

objectness only as a pretraining step.

Domain Specific Objectness Network. The objectness network was trained on the PASCAL

dataset. However, the target dataset on which the VOS should be performed may exhibit dif-

ferent characteristics, e.g. a higher resolution and less noise in the case of DAVIS. Hence, we

fine-tune the objectness network using the DAVIS training data and obtain a domain specific

objectness network. The DAVIS annotations do not directly correspond to objectness, as

usually only one object out of possibly multiple is annotated. However, we argue that the

learned task here is still similar to general objectness, since in most sequences of DAVIS the

number of visible objects is relatively low and the object of interest is usually relatively large

and salient. Note that OSVOS trained the base network directly on DAVIS without objectness

pretraining on PASCAL. Our experiments show that both steps are complementary.

Test Network. After the preceding pretraining steps, the network has learned a domain

specific notion of objectness, but during test time, it does not know yet which of the possibly

multiple objects of the target sequence it should segment. Hence, we fine-tune the pretrained

network on the ground truth mask of the first frame, which provides it with the identity and

specific appearance of the object of interest and allows it to learn to ignore the background.

This one-shot step has been shown to be very effective for VOS [7], which we also confirm

in our experiments. However, the first frame does not provide enough information for the
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Algorithm 1 Online Adaptive Video Object Segmentation (OnAVOS)

Input: Objectness network N , positive threshold α ,

distance threshold d, total online steps nonline, cur-

rent frame steps ncurr

1: Fine-tune N for 50 steps on f rame(1)
2: lastmask← ground_truth(1)
3: for t = 2 . . .T do

4: lastmask← erosion(lastmask)
5: dtrans f orm← distance_trans f orm(lastmask)
6: negatives← dtrans f orm > d

7: posteriors← f orward(N , f rame(t))
8: positives← (posteriors > α)\negatives

9: if lastmask 6= /0 then

10: interleaved:

11: Fine-tune N for ncurr steps on f rame(t)
using positives and negatives

12: Fine-tune N for nonline−ncurr steps on

f rame(1) using ground_truth(1)
13: end if

14: posteriors← f orward(N , f rame(t))
15: lastmask← (posteriors > 0.5)\negatives

16: Output lastmask for frame t

17: end for

network to adapt to drastic changes in appearance or viewpoint. In these cases, our online

adaptation approach (see Section 4) is needed.

Network Architecture. While OSVOS used a variant of the well-known VGG network

[39], we choose to adopt a more recent network architecture which incorporates residual

connections. In particular, we adopt model A from Wu et al. [43], which is a very wide

ResNet [17] variant with 38 hidden layers and roughly 124 million parameters. The ap-

proach for segmentation is very simple, as no upsampling mechanism or skip connections

are used. Instead, downsampling by a factor of two using strided convolutions is performed

only three times. This leads to a loss of resolution by a factor of eight in each dimension,

following which the receptive field is increased using dilated convolutions [45] at no addi-

tional loss of resolution. Despite its simplicity, this architecture has shown excellent results

both for classification (ImageNet) and segmentation (PASCAL) tasks [43]. When applying

it for segmentation, we bilinearly upsample the pixelwise posterior probabilities to the initial

resolution before thresholding with 0.5.

We use the weights provided by Wu et al. [43], which were obtained by pretraining

on ImageNet [9], Microsoft COCO [28], and PASCAL [11], as a very strong initialization

for the base network. We then replace the output layer with a two-class softmax. As loss

function, we use the bootstrapped cross-entropy loss function [44], which takes the average

over the cross-entropy loss values only over a fraction of the hardest pixels, i.e. pixels which

are predicted worst by the network, instead of all pixels. This loss function has been shown to

work well for unbalanced class distributions, which also commonly occur for VOS due to the

dominant background class. In all our experiments, we use a fraction of 25% of the hardest

pixels and optimize this loss using the Adam optimizer [25]. In our evaluations, we separate

the effect of the network architecture from the effect of the algorithmic improvements.

4 Online Adaptation

Since the appearance of the object of interest changes over time and new background objects

can appear, we introduce an online adaptation scheme to adapt to these changes (see Algo-

rithm 1). New objects entering the scene are especially problematic when pretraining for

objectness, since they were never used as negative training examples and are thus assigned a

high probability (see Fig. 1 (right) for an example).

The basic idea of our online adaptation scheme is to use pixels with very confident pre-

dictions as training examples. We select the pixels for which the predicted foreground prob-
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ability exceeds a certain threshold α as positive examples. One could argue that using these

pixels as positive examples is useless, since the network already gives very confident predic-

tions for them. However, it is important that the adaptation retains a memory of the positive

class in order to create a counterweight to the many negative examples being added. In our

experiments, leaving out this step resulted in holes in the foreground mask.

We initially selected negative training examples in the same way, i.e. using pixels with

a very low foreground probability. However, this led to degraded performance, probably,

because during large appearance changes, false negative pixels will be selected as negative

training examples, effectively destroying all chances to adapt to these changes. We thus

select negative training examples in a different way, based on the assumption that the move-

ment between two frames is small. The idea is to select all pixels which are very far away

from the last predicted object mask. In order to deal with noise, the last mask can first be

shrunk by an erosion operation. For our experiments, we use a square structural element

with size 15, but we found that the exact value of this parameter is not critical. Afterwards,

we compute a distance transform, which for each pixel provides the Euclidean distance to

the closest foreground pixel of the mask. Finally, we apply a threshold d and treat all pixels

with a distance larger than d as negative examples.

Pixels which are neither marked as positive nor as negative examples are assigned a

“don’t care” label and are ignored during the online updates. We can now fine-tune the net-

work on the current frame, since every pixel has a label for training. However, in practice,

we found that naively fine-tuning using the obtained training examples quickly leads to drift.

To circumvent this problem, we propose to mix in the first frame as additional training ex-

amples during the online updates, since for the first frame the ground truth is available. We

found that in order to obtain good results, the first frame should be sampled more often than

the current frame, i.e. during online adaptation we perform a total of nonline update steps per

frame, of which only ncurr are performed on the current frame, and the rest is performed

on the first frame. Additionally, we reduce the weight of the loss for the current frame by

a factor β (e.g. β ≈ 0.05). A value of 0.05 might seem surprisingly small, but one has to

keep in mind that the first frame is used very often for updates, quickly leading to smaller

gradients, while the current frame is only selected a few times.

During online adaptation, the negative training examples are selected based on the mask

of the preceding frame. Hence, it can happen that a pixel is selected as a negative example

and that it is predicted as foreground at the same time. We call such pixels hard negatives.

A common case in which hard negatives occur is when a previously unseen object enters

the scene far away from the object of interest (see Fig. 1 (right)), which will then usually be

detected as foreground by the network. We found it helpful to remove hard negatives from

the foreground mask which is used in the next frame to determine negative training examples.

This step allows selecting the hard negatives in the next frame again as negative examples.

Additionally, we tried to adapt the network more strongly to hard negatives by increasing the

number of update steps and/or the loss scale for the current frame in the presence of hard

negatives. However, this did not improve the results further.

In addition to the previously described steps, we propose a simple heuristic which makes

our method more robust against difficulties like occlusion: If (after the optional erosion)

nothing is left of the last assumed foreground mask, we assume that the object of interest

is lost and do not apply any online updates until the network again finds a non-empty fore-

ground mask.
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PASCAL DAVIS First frame mIoU [%]

X X X 80.380.380.3±0.4

X X 78.0±0.1

X X 77.6±0.4

X X 72.7

X 65.3

X 71.0

X 65.2±1.0

Table 1: Effect of (pre-)training steps on the DAVIS validation set. As can be seen, each of

the three training steps are useful. The objectness pretraining step on PASCAL significantly

improves the results.

5 Experiments

Datasets. For objectness pretraining (cf . Section 3), we used the 1,464 training images of

the PASCAL VOC 2012 dataset [11] plus the additional annotations provided by Hariharan

et al. [16], leading to a total of 10,582 training images with 20 classes, which we all mapped

to a single foreground class. For video object segmentation (VOS), we conducted most ex-

periments on the recently introduced DAVIS dataset [34], which consists of 50 short full-HD

video sequences, from which 30 are taken for training and 20 for validation. Consistent

with most prior work, we conduct all experiments on the subsampled version with a resolu-

tion of 854× 480 pixels. In order to show that our method generalizes, we also conducted

experiments on the YouTube-Objects [19, 37] dataset for VOS, consisting of 126 sequences.

Experimental Setup. We pretrain on PASCAL and DAVIS, for 10 epochs each. For the

baseline one-shot approach, we found 50 update steps on the first frame with a learning

rate of 3 · 10−6 to work well. For simplicity, we used a mini-batch size of only one image.

Since DAVIS only has a training and a validation set, we tuned all hyperparameters on the

training set of 30 sequences using three-fold cross validation, i.e. 20 training sequences are

used for training and 10 for validation for each fold. As is standard practice, we augmented

the training data by random flipping, scaling with a factor uniformly sampled from [0.7,1.3],
and gamma augmentations [36].

For evaluation, we used the Jaccard index, i.e. the mean intersection-over-union (mIoU)

between the predicted foreground masks and the ground truth masks. Results for additional

evaluation measures suggested by Perazzi et al. [34] are shown in the supplementary ma-

terial. We noticed that, especially for fine-tuning on the first frame, the random augmen-

tations introduce non-negligible variations in the results. Hence, for these experiments,

we conducted three runs and report mean and standard deviation values. All experiments

were performed with our TensorFlow [1] based implementation, which we will make avail-

able together with pretrained models at https://www.vision.rwth-aachen.de/

software/OnAVOS.

5.1 Baseline Systems

Effect of Pretraining Steps. Starting from the base network (cf . Section 3) our full baseline

system (i.e. without adaptation) includes a first pretraining step on PASCAL for objectness,

then on the training sequences of DAVIS, and finally a one-shot fine-tuning on the first frame.

https://www.vision.rwth-aachen.de/software/OnAVOS
https://www.vision.rwth-aachen.de/software/OnAVOS
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Each of these three steps can be enabled or disabled individually. Table 1 shows the results

on DAVIS for all resulting combinations. As can be seen, each of these steps is useful since

removing any step always deteriorates the results.

The base network was trained for a different task than binary segmentation and thus a

new output layer needs to be learned at the same time as fine-tuning the rest of the network.

Without pretraining on either PASCAL or DAVIS, the randomly initialized output layer is

learned only from the first frame of the target sequence, which leads to a largely degraded

performance of only 65.2% mIoU. However, when either PASCAL or DAVIS is used for

pretraining, the result is greatly improved to 77.6% mIoU and 78.0% mIoU, respectively.

While both results are very similar, it can be seen that PASCAL and DAVIS do provide

complementary information, since using both datasets together further improves the result

to 80.3%. We argue that the relatively large PASCAL dataset is useful for learning general

objectness, while the limited amount of DAVIS data is useful to adapt to the characteristics

(e.g. relatively high image quality) of the data of DAVIS, which provides an advantage for

evaluating on DAVIS sequences.

Interestingly, even without looking at the segmentation mask of the first frame, i.e. in

the unsupervised setup, we already obtain a result of 72.7% mIoU; slightly better than the

current best unsupervised method FusionSeg [20], which obtains 70.7% mIoU on the DAVIS

validation set1 using objectness and optical flow as an additional cue.

Comparison to OSVOS. Without including their boundary snapping post-processing step,

OSVOS achieves a result of 77.4% mIoU on DAVIS. Our system without objectness pretrain-

ing on PASCAL is directly comparable to this result and achieves 78.0% mIoU. We attribute

this moderate improvement to the more recent network architecture which we adopted. In-

cluding PASCAL for objectness pretraining improves this result by further 2.3% to 80.3%.

5.2 Online Adaptation

Hyperparameter Study. As described in Section 4, OnAVOS involves relatively many

hyperparameters. After some coarse manual tuning on the DAVIS training set, we found

α = 0.97, β = 0.05, d = 220, nonline = 15, ncurr = 3 to work well. While the initial 50

update steps on the first frame are performed with a learning rate of 3 · 10−6, it proved

useful to use a different learning rate λ = 10−5 for the online updates on the current and

the first frame. Starting from these values as the operating point, we conducted a more

detailed study by changing one hyperparameter at a time, while keeping the others constant.

We found that OnAVOS is not very sensitive to the choice of most hyperparameters and

each configuration we tried performed better than the non-adapted baseline and we achieved

only small improvements compared to the operating point (detailed plots are shown in the

supplementary material). To avoid overfitting to the small DAVIS training set, we kept the

values from the operating point for all further experiments.

Ablation Study. Table 2 shows the results of the proposed online adaptation scheme and

multiple variants, where parts of the algorithm are disabled, on the DAVIS validation set.

Using the full method, we obtain an mIoU score of 82.8%. When disabling all adaptation

steps, the performance significantly degrades to 80.3%, which demonstrates the effectiveness

of the online adaptation method. The table further shows that negative training examples are

1In FusionSeg [20], the result for all sequences including the training set is reported, but here we calculated the

average only over the validation sequences for better comparability
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Method mIoU [%]

No adaptation 80.3±0.4

Full adaptation 82.882.882.8±0.5

Only negatives 82.4±0.3

Only positives 81.6±0.3

No first frame during online adaptation 69.1±0.2

Table 2: Online adaptation ablation experiments on the DAVIS validation set. As can be

seen, mixing in the first frame during online updates is essential, and negative examples are

more important than positive ones.

Method
DAVIS YouTube-Objects

mIoU [%] mIoU [%]

OnAVOS (ours), no adaptation 80.3±0.4 76.1±1.3

+CRF 81.7±0.5 76.4±0.2

+CRF +Test time augmentations 81.7±0.2 76.6±0.1

OnAVOS (ours), online adaptation 82.8±0.5 76.8±0.1

+CRF 84.3±0.5 77.2±0.2

+CRF +Test time augmentations 85.785.785.7±0.6 77.477.477.4±0.2

OSVOS [7] 79.8 72.5

MaskTrack [35] 79.7 72.6

LucidTracker [24] † 80.5 76.2

VPN [22] 75.0 -

Table 3: Comparison to the state of the art on the DAVIS validation set and the YouTube-

Objects dataset. †: Concurrent work only published on arXiv. More results are shown in the

supplementary material.

more important than positive ones. If we do not mix in the first frame during online updates,

the result is significantly degraded to 69.1% due to drift.

Timing Information. For the initial fine-tuning stage on the first frame, we used 50 up-

date steps. Including the time for the forward pass for all further frames, this leads to a

total runtime of around 90 seconds per sequence (corresponding to roughly 1.3 seconds per

frame) of the DAVIS validation set using an NVIDIA Titan X (Pascal) GPU. When using

online adaptation with nonline = 15, the runtime increases to around 15 minutes per sequence

(corresponding to roughly 13 seconds per frame). However, our hyperparameter analysis re-

vealed that this runtime can be significantly decreased by reducing nonline without much loss

of accuracy. Note that for best results, OSVOS used a higher number of update steps on the

first frame and needs about 10 minutes per sequence (corresponding to roughly 9 seconds

per frame).

5.3 Comparison to State of the Art

Current state of the art methods use post-processing steps such as boundary snapping [7],

or conditional random field (CRF) smoothing [24, 35] to improve the contours. In order

to compare with them, we included per-frame post-processing using DenseCRF [26]. This

might be especially useful since our network only provides one output for each 8× 8 pixel

block. Additionally, we added data augmentations during test time. To this end, we created
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10 variants of each test image by random flipping, zooming, and gamma augmentations, and

averaged the posterior probabilities over all 10 images.

In order to demonstrate the generalization ability of OnAVOS and since there is no sep-

arate training set for YouTube-Objects, we conducted our experiments on this dataset using

the same hyperparameter values as for DAVIS, including the CRF parameters. Additionally,

we omitted the pretraining step on DAVIS. Note that for YouTube-Objects, the evaluation

protocols in prior publications sometimes differed by not including frames in which the ob-

ject of interest is not present [24]. Here, we report results following the DAVIS evaluation

protocol, i.e. including these frames, consistent with Khoreva et al. [24].

Table 3 shows the effect of our post-processing steps and compares our results on DAVIS

and YouTube-Objects to other methods. Note that the effect of the test time augmentations

is stronger when combined with online adaptation. We argue that this is because in this case,

the augmentations do not only directly improve the end result as a post-processing step,

but they also deliver better adaptation targets. On DAVIS, we achieve an mIoU of 85.7%

which is, to the best of our knowledge significantly higher than any previously published

result. Compared to OSVOS, this is an improvement of almost 6%. On YouTube-Objects,

we achieve an mIoU of 77.4%, which is also a significant improvement over the second best

result obtained by LucidTracker with 76.2%.

6 Conclusion

In this work, we have proposed OnAVOS, which builds on the OSVOS approach. We have

demonstrated that the inclusion of an objectness pretraining step and our online adaptation

scheme for semi-supervised video object segmentation are highly effective. We have fur-

ther shown that our online adaptation scheme is robust against choices of hyperparameters

and generalizes to another dataset. We expect that, in the future, more methods will adopt

adaptation schemes which make them more robust against large changes in appearance. For

future work, we plan to explicitly incorporate temporal context information into our method.
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