
TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION 1

Fine-Pruning: Joint Fine-Tuning and
Compression of a Convolutional Network
with Bayesian Optimization
Frederick Tung
ftung@sfu.ca

Srikanth Muralidharan
smuralid@sfu.ca

Greg Mori
mori@cs.sfu.ca

School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

Abstract
When approaching a novel visual recognition problem in a specialized image domain,

a common strategy is to start with a pre-trained deep neural network and fine-tune it to
the specialized domain. If the target domain covers a smaller visual space than the source
domain used for pre-training (e.g. ImageNet), the fine-tuned network is likely to be over-
parameterized. However, applying network pruning as a post-processing step to reduce
the memory requirements has drawbacks: fine-tuning and pruning are performed inde-
pendently; pruning parameters are set once and cannot adapt over time; and the highly
parameterized nature of state-of-the-art pruning methods make it prohibitive to manually
search the pruning parameter space for deep networks, leading to coarse approximations.
We propose a principled method for jointly fine-tuning and compressing a pre-trained
convolutional network that overcomes these limitations. Experiments on two special-
ized image domains (remote sensing images and describable textures) demonstrate the
validity of the proposed approach.

1 Introduction
Convolutional neural networks (CNNs) have been widely adopted for visual analysis tasks
such as image classification [14, 26], object detection [17, 22], action recognition [25, 29],
place recognition [1, 35], 3D shape classification [12, 19], image colorization [34], and
camera pose estimation [13]. CNNs learn rich image and video representations that have
been shown to generalize well across vision tasks.

When faced with a recognition task in a novel domain or application, a common strategy
is to start with a CNN pre-trained on a large dataset, such as ImageNet [24], and fine-tune the
network to the new task (Fig. 1a). Fine-tuning involves adapting the structure of the existing
network to enable the new task, while re-using the pre-trained weights for the unmodified
layers of the network. For example, a common and simple form of fine-tuning involves
replacing the final fully-connected layer of the pre-trained CNN, which has an output di-
mensionality based on the pre-training dataset (e.g. 1000 dimensions for ImageNet), with a
new fully-connected layer with a dimensionality that matches the target dataset.

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, Reed, Fu, and Berg} 2016

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Arandjelovic, Gronat, Torii, Pajdla, and Sivic} 2016

Citation
Citation
{Zhou, Lapedriza, Xiao, Torralba, and Oliva} 2014

Citation
Citation
{Johns, Leutenegger, and Davison} 2016

Citation
Citation
{Qi, Su, Nie{T1ss }ner, Dai, Yan, and Guibas} 2016

Citation
Citation
{Zhang, Isola, and Efros} 2016

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2014

2 TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION

…

Pre-trained CNN

Fine-tune
network

…

Pre-trained CNN

Fine-tune
network

Prune
network

…

Pre-trained CNN

Fine-tune
network

Prune
network

Adapt pruning
module

(a)

…

Pre-trained CNN

Fine-tune
network

…

Pre-trained CNN

Fine-tune
network

Prune
network

…

Pre-trained CNN

Fine-tune
network

Prune
network

Adapt pruning
module

(b)

…

Pre-trained CNN

Fine-tune
network

…

Pre-trained CNN

Fine-tune
network

Prune
network

…

Pre-trained CNN

Fine-tune
network

Prune
network

Adapt pruning
module

(c)

Figure 1: Consider the task of training a deep convolutional neural network on a specialized
image domain (e.g. remote sensing images). (a) The conventional approach starts with
a network pre-trained on a large, generic dataset (e.g. ImageNet) and fine-tunes it to the
specialized domain. (b) Since the specialized domain spans a narrower visual space, the
fine-tuned network is likely to be over-parameterized and can be compressed. A natural way
to achieve this is to perform network pruning after fine-tuning, however this approach has
limitations (see discussion in Section 1). (c) Fine-pruning addresses these limitations by
jointly fine-tuning and compressing the pre-trained network in an iterative process. Each
iteration consists of network fine-tuning, pruning module adaptation, and network pruning.

Fine-tuning allows powerful learned representations to be transferred to novel domains.
Typically, we fine-tune complex network architectures that have been pre-trained on large
databases containing millions of images. For example, we may fine-tune AlexNet [14] pre-
trained on ImageNet’s 1.2 million images (61 million parameters). In this way, we adapt
these complex architectures to smaller and more specialized domains, such as remote sensing
images. However, the specialized domain may not span the full space of natural images on
which the original network was pre-trained. This suggests that the network architecture may
be over-parameterized, and therefore inefficient in terms of memory and power consumption,
with respect to the more constrained novel domain, in which a much more lightweight net-
work would suffice for good performance. In applications with tight constraints on memory
and power, such as mobile devices or robots, a more lightweight network with comparable
classification accuracy may be valuable.

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION 3

Given a fine-tuned network, a straightforward way to obtain a more lightweight network
is to perform network pruning [6, 8, 28] (Fig. 1b). However, this strategy has drawbacks: (1)
the fine-tuning and pruning operations are performed independently; (2) the pruning param-
eters are set once and cannot adapt after training has started; and (3) since state-of-the-art
pruning methods are highly parameterized, manually searching for good pruning hyperpa-
rameters is often prohibitive for deep networks, leading to coarse pruning strategies (e.g.
pruning convolutional and fully connected layers separately [6]).

We propose a novel process called fine-pruning (Fig. 1c) that addresses these limitations:

1. Fine-pruning obtains a lightweight network specialized to a target domain by jointly
fine-tuning and compressing the pre-trained network. The compatibility between the
target domain and the pre-training domain is not normally known in advance (e.g.
how similar are remote sensing images to ImageNet?), making it difficult to determine
a priori how effective knowledge transfer will be, how aggressively compression can
be applied, and where compression efforts should be focused. The knowledge transfer
and network compression processes are linked and inform each other in fine-pruning.

2. Fine-pruning applies a principled adaptive network pruning strategy guided by Bayesian
optimization, which automatically adapts the layer-wise pruning parameters over time
as the network changes. For example, the Bayesian optimization controller might
learn and execute a gradual pruning strategy in which network pruning is performed
conservatively and fine-tuning restores the original accuracy in each iteration; or the
controller might learn to prune aggressively at the outset and reduce the compression
in later iterations (e.g. by splicing connections [6]) to recover accuracy.

3. Bayesian optimization enables efficient exploration of the pruning hyperparameter
space, allowing all layers in the network to be considered together when making prun-
ing decisions.

2 Related Work
Network pruning. Network pruning refers to the process of reducing the number of weights
(connections) in a pre-trained neural network. The motivation behind this process is to make
neural networks more compact and energy efficient for operation on resource constrained
devices such as mobile phones. Network pruning can also improve network generalization
by reducing overfitting. The earliest methods [9, 16] prune weights based on the second-
order derivatives of the network loss. Data-free parameter pruning [28] provides a data-
independent method for discovering and removing entire neurons from the network. Deep
compression [8] integrates the complementary techniques of weight pruning, scalar quan-
tization to encode the remaining weights with fewer bits, and Huffman coding. Dynamic
network surgergy [6] iteratively prunes and splices network weights. The novel splicing op-
eration allows previously pruned weights to be reintroduced. Weights are pruned or spliced
based on thresholding their absolute value. All weights, including pruned ones, are updated
during backpropagation.
Other network compression strategies. Network pruning is one way to approach neural
network compression. Other effective strategies include weight binarization [4, 21], archi-
tectural improvements [11], weight quantization [8], sparsity constraints [15, 36], guided
knowledge distillation [10, 23], and replacement of fully connected layers with structured

Citation
Citation
{Guo, Yao, and Chen} 2016

Citation
Citation
{Han, Mao, and Dally} 2016{}

Citation
Citation
{Srinivas and Babu} 2015

Citation
Citation
{Guo, Yao, and Chen} 2016

Citation
Citation
{Guo, Yao, and Chen} 2016

Citation
Citation
{Hassibi and Stork} 1992

Citation
Citation
{LeCun, Denker, and Solla} 1990

Citation
Citation
{Srinivas and Babu} 2015

Citation
Citation
{Han, Mao, and Dally} 2016{}

Citation
Citation
{Guo, Yao, and Chen} 2016

Citation
Citation
{Courbariaux, Bengio, and David} 2015

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Han, Mao, and Dally} 2016{}

Citation
Citation
{Lebedev and Lempitsky} 2016

Citation
Citation
{Zhou, Alvarez, and Porikli} 2016

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Romero, Ballas, Kahou, Chassang, Gatta, and Bengio} 2015

4 TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION

projections [2, 18, 33]. Many of these network compression methods can train compact neu-
ral networks from scratch, or compress pre-trained networks for testing in the same domain.
However, since they assume particular types of weights, mimic networks trained in the same
domain, or modify the network structure, most of these methods are not easily extended to
the task of fine-tuning a pre-trained network to a specialized domain.

In this paper, we consider joint fine-tuning and network pruning in the context of trans-
ferring the knowledge of a pre-trained network to a smaller and more specialized visual
recognition task. Previous approaches for compressing pre-trained neural networks aim to
produce a compact network that performs as well as the original network on the dataset on
which the network was originally trained. In contrast, our focus is on the fine-tuning or
transfer learning problem of producing a compact network for a small, specialized target
dataset, given a network pre-trained on a large, generic dataset such as ImageNet. Our ap-
proach does not require the source dataset (e.g. ImageNet) on which the original network
was trained.

3 Method
Each fine-pruning iteration comprises three steps: fine-tuning, adaptation of the pruning
module, and network pruning (Fig. 1c). Fine-pruning can accommodate any parameterized
network pruning module. In our experiments, we use the state-of-the-art dynamic network
surgery method [6] for the network pruning module, but fine-pruning does not assume a par-
ticular pruning method. Pruning module adaptation is guided by a Bayesian optimization
[5, 27] controller, which enables an efficient search of the joint pruning parameter space,
learning from the outcomes of previous exploration. This controller allows the pruning be-
haviour to change over time as connections are removed or formed.

Bayesian optimization is a general framework for solving global minimization problems
involving blackbox objective functions:

min
x

`(x) , (1)

where ` is a blackbox objective function that is typically expensive to evaluate, non-convex,
may not be expressed in closed form, and may not be easily differentiable [30]. Eq. 1 is
minimized by constructing a probabilistic model for ` to determine the most promising can-
didate x∗ to evaluate next. Each iteration of Bayesian optimization involves selecting the
most promising candidate x∗, evaluating `(x∗), and using the data pair (x∗, `(x∗)) to update
the probabilistic model for `.

In our case, x is a set of pruning parameters. For example, if the network pruning module
is deep compression [8], x consists of the magnitude thresholds used to remove weights;
if the network pruning module is dynamic network surgery [6], x consists of magnitude
thresholds as well as cooling function hyperparameters that control how often the pruning
mask is updated. We define ` by

`(x) = ε(x)−λ · s(x) , (2)

where ε(x) is the top-1 error on the held-out validation set obtained by pruning the network
according to the parameters x and then fine-tuning; s(x) is the sparsity (proportion of pruned
connections) of the pruned network obtained using the parameters x; and λ is an importance
weight that balances accuracy and sparsity, which is set by held-out validation (we set λ

Citation
Citation
{Cheng, Yu, Feris, Kumar, Choudhary, and Chang} 2015

Citation
Citation
{Moczulski, Denil, Appleyard, and deprotect unhbox voidb@x penalty @M {}Freitas} 2016

Citation
Citation
{Yang, Moczulski, Denil, deprotect unhbox voidb@x penalty @M {}Freitas, Smola, Song, and Wang} 2015

Citation
Citation
{Guo, Yao, and Chen} 2016

Citation
Citation
{Gardner, Kusner, Xu, Weinberger, and Cunningham} 2014

Citation
Citation
{Snoek, Larochelle, and Adams} 2012

Citation
Citation
{Wang, Zoghi, Hutter, Matheson, and deprotect unhbox voidb@x penalty @M {}Freitas} 2013

Citation
Citation
{Han, Mao, and Dally} 2016{}

Citation
Citation
{Guo, Yao, and Chen} 2016

TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION 5

Algorithm 1 Fine-Pruning
Require: Pre-trained convolutional network, importance weight λ

1: Fine-tune network {. Fig. 1a}
2: repeat
3: repeat {. Bayesian optimization controller}
4: Select next candidate parameters to evaluate as x∗ = argmaxx̂ EI(x̂)
5: Evaluate `(x∗)
6: Update Gaussian process model using (x∗, `(x∗))
7: until converged or maximum iterations of Bayesian optimization reached
8: Prune network using best x∗ found
9: Fine-tune network

10: until converged or maximum iterations of fine-pruning reached

to maximize the achieved compression rate while maintaining the held-out validation error
within a tolerance percentage, e.g. 2%).

We model the objective function as a Gaussian process [20]. A Gaussian process is an
uncountable set of random variables, any finite subset of which is jointly Gaussian. Let
` ∼ GP(µ(·),k(·, ·)), where µ(·) is a mean function and k(·, ·) is a covariance kernel such
that

µ(x) = E [`(x)] , (3)

k(x,x′) = E
[
(`(x)−µ(x))(`(x′)−µ(x′))

]
.

Given inputs X = {x1,x2, ...,xn} and function evaluations `(X) = {`(x1), `(x2), ..., `(xn)},
the posterior belief of ` at a novel candidate x̂ can be computed in closed form. In particular,

˜̀(x̂)∼N
(
µ̃`(x̂), Σ̃2

`(x̂)
)
, (4)

where

µ̃`(x̂) = µ(x̂)+ k(x̂,X)k(X,X)−1(`(X)−µ(X)) , (5)

Σ̃
2
`(x̂) = k(x̂, x̂)− k(x̂,X)k(X,X)−1k(X, x̂) .

The implication of the closed form solution is that, given a collection of parameters and the
objective function evaluated at those parameters, we can efficiently predict the posterior at
unevaluated parameters.

To select the most promising candidate to evaluate next, we use the expected improve-
ment criterion. Let x+ denote the best candidate evaluated so far. The expected improvement
of a candidate x̂ is defined as

EI(x̂) = E
[
max

{
0, `(x+)− ˜̀(x̂)

}]
, (6)

For a Gaussian process, the expected improvement of a candidate can also be efficiently
computed in closed form. Specifically,

EI(x̂) = Σ̃`(x̂)(ZΦ(Z)+φ(Z)) , (7)

Z =
µ̃`(x̂)− `(x+)

Σ̃`(x̂)
,

Citation
Citation
{Rasmussen and Williams} 2006

6 TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION

(a)

(b)

Figure 2: Sample images from the two specialized domain datasets used in our experiments:
(a) Remote sensing images from the UCMerced Land Use Dataset [32]; (b) Texture images
from the Describable Textures Dataset [3].

where Φ is the standard normal cumulative distribution function and φ is the standard normal
probability density function. For a more detailed discussion on Gaussian processes and
Bayesian optimization, we refer the interested reader to [5], [20], and [27]. We use the
publicly available code of [5] and [20] in our implementation.

The complete fine-pruning process is summarized in Algorithm 1.

4 Experiments

Datasets. We performed experiments on two specialized image domains:

• Remote sensing images: The UCMerced Land Use Dataset [32] is composed of public
domain aerial orthoimagery from the United States Geological Survey. The dataset
covers 21 land-use classes, such as agricultural, dense residential, golf course, and
harbor. Each land-use class is represented by 100 images. We randomly split the
images into 50% for training, 25% for held-out validation, and 25% for testing.

• Describable textures: The Describable Textures Dataset [3] was introduced as part of a
study in estimating human-describable texture attributes from images, which can then
be used to improve tasks such as material recognition and description. The dataset
consists of 5,640 images covering 47 human-describable texture attributes, such as
blotchy, cracked, crystalline, fibrous, and pleated. We use the ten provided training,
held-out validation, and testing splits.

Fig. 2 shows examples of images from the two datasets.
Baselines. We compare fine-pruning with a fine-tuning only baseline (Fig. 1a) as well as in-
dependent fine-tuning followed by pruning (Fig. 1b), which for brevity we will refer to as the
independent baseline. All experiments start from an ImageNet-pretrained AlexNet [14]. For
a controlled comparison, we run the same state-of-the-art pruning method, dynamic network
surgery [6], in both the independent baseline and fine-pruning. In the original dynamic net-
work surgery paper [6], the authors prune convolutional and fully connected layers separately
due to the prohibitive complexity of manually searching for layer-wise pruning parameters.

Citation
Citation
{Yang and Newsam} 2010

Citation
Citation
{Cimpoi, Maji, Kokkinos, Mohamed, and Vedaldi} 2014

Citation
Citation
{Gardner, Kusner, Xu, Weinberger, and Cunningham} 2014

Citation
Citation
{Rasmussen and Williams} 2006

Citation
Citation
{Snoek, Larochelle, and Adams} 2012

Citation
Citation
{Gardner, Kusner, Xu, Weinberger, and Cunningham} 2014

Citation
Citation
{Rasmussen and Williams} 2006

Citation
Citation
{Yang and Newsam} 2010

Citation
Citation
{Cimpoi, Maji, Kokkinos, Mohamed, and Vedaldi} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Guo, Yao, and Chen} 2016

Citation
Citation
{Guo, Yao, and Chen} 2016

TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION 7

Accuracy Accuracy Parameters Compression
(Val.) (Test) Rate

UCMerced Land Use Dataset [32]

Fine-tuning only (Fig. 1a) 94.7% 94.3% 57.0 M –
Independent fine-tuning and
pruning (Fig. 1b)

92.7±0.7% 93.8±0.7% 1.78±0.41 M 31.9 ×

Fine-pruning (Fig. 1c) 92.5±0.9% 94.1±0.6% 1.17±0.39 M 48.8 ×

Describable Textures Dataset [3]

Fine-tuning only (Fig. 1a) 53.5±0.8% 53.7±0.9% 57.1 M –
Independent fine-tuning and
pruning (Fig. 1b)

52.8±1.2% 53.4±1.5% 3.62±0.54 M 15.8 ×

Fine-pruning (Fig. 1c) 53.0±0.9% 52.8±0.8% 2.41±0.68 M 23.7 ×

Table 1: Experimental results on two specialized image domains: remote sensing images
and describable textures. All experiments start with ImageNet-pretrained AlexNet [14] and
use the state-of-the-art dynamic network surgery method [6] for network pruning. For a fair
comparison, the pruning parameters in the independent fine-tuning and pruning baseline are
also tuned by Bayesian optimization. We average results over ten runs on the remote sensing
dataset and the ten provided splits on the describable textures dataset.

To more fairly illustrate the benefit of fine-pruning, we set layer-wise pruning parameters for
dynamic network surgery in the independent baseline using Bayesian optimization as well.
Implementation details. We set all parameters by held-out validation on the two datasets.
The importance weight λ is set to 1 on both datasets. We warm-start both the indepen-
dent baseline and fine-pruning with identical parameters obtained by random search. Fine-
pruning is run to convergence or to a maximum of 10 iterations. In each fine-pruning iter-
ation, Bayesian optimization considers up to 50 candidates and network fine-tuning is per-
formed with a fixed learning rate of 0.001 (the same learning policy used to obtain the initial
fine-tuned network) to 10 epochs.
Results. Table 1 summarizes our experimental comparison of fine-tuning, independent fine-
tuning and pruning, and fine-pruning, on the UCMerced Land Use and Describable Textures
datasets. On UCMerced Land Use, the independent baseline produces sparse networks with
1.78 million parameters on average over ten runs, representing a reduction in the number
of weights by 31.9-fold, while maintaining the test accuracy within 1% of the dense fine-
tuned network. Fine-pruning achieves further improvements in memory efficiency, produc-
ing sparse networks of 1.17 million parameters on average, or a 48.8-fold reduction in the
number of weights, while maintaining the test accuracy within 1% of the dense fine-tuned
network. On Describable Textures, we average the results over the ten provided splits. Sim-
ilar improvements are obtained on this harder dataset. The independent baseline reduces the
number of weights by 15.8-fold while maintaining the test accuracy within 1% of the dense
fine-tuned network. Fine-pruning lifts the compression rate to 23.7-fold while maintaining
the test accuracy within 1% of the dense fine-tuned network.

Fig. 3 shows how the compression rate varies with the fine-pruning iteration. We observe

Citation
Citation
{Yang and Newsam} 2010

Citation
Citation
{Cimpoi, Maji, Kokkinos, Mohamed, and Vedaldi} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Guo, Yao, and Chen} 2016

8 TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION

1 2 3 4 5 6 7 8 9 10

Fine-pruning iteration

20

25

30

35

40

45

50
C

om
pr

es
si

on
 r

at
e

1 2 3 4 5 6 7 8 9 10

Fine-pruning iteration

12

14

16

18

20

22

24

C
om

pr
es

si
on

 r
at

e

(a) (b)

Figure 3: Compression as a function of fine-pruning iteration. On both the (a) UCMerced
Land Use Dataset and (b) Describable Textures Dataset, the pruning module adaptation,
guided by Bayesian optimization, learns a policy of starting with a strong initial prune and
tapering off in later iterations.

that, on both datasets, the pruning module adaptation learns to start with a strong initial
prune and then gradually increase pruning aggressiveness in later iterations until the network
converges. This behavior can also be observed by examining the pruning parameters x∗
selected by Bayesian optimization.

Table 2 illustrates the average number of weights layer by layer after fine-pruning for
both datasets. We observe that the original fine-tuned networks in both cases are highly
over-parameterized, and a significant reduction in memory can be obtained by fine-pruning.
A large proportion of the original network parameters reside in the fully connected layers fc6
and fc7. Provided that the underlying network pruning module allows for pruning parameters
to be set on an individual layer basis, our Bayesian optimization controller automatically
learns to prioritize the compression of these layers because they have the largest influence
on s(x) in the objective function (Eq. 2).

5 Conclusion

In this paper we have presented a joint process for network fine-tuning and compression that
produces a memory-efficient network tailored to a specialized image domain. Our process is
guided by a Bayesian optimization controller that allows pruning parameters to adapt over
time to the characteristics of the changing network. Fine-pruning is general and can accom-
modate any parameterized network pruning algorithm. In future we plan to study whether
our technique can be applied to provide better time efficiency as well. For example, struc-
tured sparsity may result in more significant time savings on a GPU than unstructured spar-
sity [31]. Specialized hardware engines [7] can also accelerate networks with unstructured
sparsity while reducing energy consumption.
Acknowledgements. This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

Citation
Citation
{Wen, Wu, Wang, Chen, and Li} 2016

Citation
Citation
{Han, Liu, Mao, Pu, Pedram, Horowitz, and Dally} 2016{}

TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION 9

Parameters: Parameters: Percentage
Before After Pruned

UCMerced Land Use Dataset [32]

conv1 35 K 26 K 26.1%
conv2 307 K 92 K 70.2%
conv3 885 K 261 K 70.5%
conv4 664 K 218 K 67.2%
conv5 443 K 181 K 59.1%
fc6 37.8 M 313 K 99.2%
fc7 16.8 M 60 K 99.6%
fc8 86 K 17 K 80.3%
total 57.0 M 1.17 M 98.0%

Describable Textures Dataset [3]

conv1 35 K 32 K 8.3%
conv2 307 K 245 K 20.4%
conv3 885 K 343 K 61.3%
conv4 664 K 442 K 33.4%
conv5 443 K 216 K 51.2%
fc6 37.8 M 401 K 98.9%
fc7 16.8 M 661 K 96.1%
fc8 193 K 72 K 62.4%
total 57.1 M 2.41 M 95.8%

Table 2: Layer-wise compression results. Our Bayesian optimization controller automat-
ically learns to prioritize the compression of the fc6 and fc7 layers, which have the most
parameters.

Citation
Citation
{Yang and Newsam} 2010

Citation
Citation
{Cimpoi, Maji, Kokkinos, Mohamed, and Vedaldi} 2014

10 TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION

References
[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architec-

ture for weakly supervised place recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[2] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang. An explo-
ration of parameter redundancy in deep networks with circulant projections. In IEEE
International Conference on Computer Vision, 2015.

[3] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in
the wild. In IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[4] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, 2015.

[5] J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and J. P. Cunningham. Bayesian
optimization with inequality constraints. In International Conference on Machine
Learning, 2014.

[6] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient DNNs. In Ad-
vances in Neural Information Processing Systems, 2016.

[7] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. EIE:
Efficient inference engine on compressed deep neural network. In ACM/IEEE Interna-
tional Symposium on Computer Architecture, 2016.

[8] S. Han, H. Mao, and W. J. Dally. Deep Compression: Compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In International Con-
ference on Learning Representations, 2016.

[9] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: optimal
brain surgeon. In Advances in Neural Information Processing Systems, 1992.

[10] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model
size. arXiv:1602.07360, 2016.

[12] E. Johns, S. Leutenegger, and A. J. Davison. Pairwise decomposition of image se-
quences for active multi-view recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[13] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A convolutional network for real-
time 6-DOF camera relocalization. In IEEE International Conference on Computer
Vision, 2015.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems,
2012.

TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION 11

[15] V. Lebedev and V. Lempitsky. Fast ConvNets using group-wise brain damage. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[16] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, 1990.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD:
Single shot multibox detector. In European Conference on Computer Vision, 2016.

[18] M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas. ACDC: A structured efficient
linear layer. In International Conference on Learning Representations, 2016.

[19] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-
view CNNs for object classification on 3D data. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[20] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[21] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet clas-
sification using binary convolutional neural networks. In European Conference on
Computer Vision, 2016.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: unified, real-
time object detection. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016.

[23] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. FitNets:
hints for thin deep nets. In International Conference on Learning Representations,
2015.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. arXiv:1409.0575, 2014.

[25] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recog-
nition in videos. In Advances in Neural Information Processing Systems, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[27] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, 2012.

[28] S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. In
British Machine Vision Conference, 2015.

[29] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal
features with 3D convolutional networks. In IEEE International Conference on Com-
puter Vision, 2015.

[30] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization
in high dimensions via random embeddings. In International Joint Conference on
Artificial Intelligence, 2013.

12 TUNG ET AL.: FINE-PRUNING: JOINT FINE-TUNING AND COMPRESSION

[31] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems, 2016.

[32] Y. Yang and S. Newsam. Bag-of-visual-words and spatial extensions for land-use clas-
sification. In ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, 2010.

[33] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola, L. Song, and Z. Wang.
Deep fried convnets. In IEEE International Conference on Computer Vision, 2015.

[34] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In European Confer-
ence on Computer Vision, 2016.

[35] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for
scene recognition using places database. In Advances in Neural Information Processing
Systems, 2014.

[36] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: towards compact CNNs. In
European Conference on Computer Vision, 2016.

