HU, LI, SONG, HOSPEDALES: DEEP FACE HALLUCINATION FOR UNVIEWED SKETCHES 1

Now You See Me: Deep Face Hallucination
for Unviewed Sketches

Conghui Hu' ! SketchX Research Lab
c.hu@gmul.ac.uk Queen Mary University of London
Da Lit London, UK

da.li@gmul.ac.uk 2School of Informatics

Yi-Zhe Song' University of Edinburgh
yizhe.song@qmul.ac.uk Edinburgh, UK

Timothy M. Hospedales' 2
t.hospedales@ed.ac.uk

Abstract

Face hallucination has been well studied in the last decade because of its useful ap-
plications in law enforcement and entertainment. Promising results on the problem of
sketch-photo face hallucination have been achieved with classic, and increasingly deep
learning-based methods. However, synthesized photos still lack the crisp fidelity of real
photos. More importantly, good results have primarily been demonstrated on very con-
strained datasets where the style variability is very low, and crucially the sketches are
perfectly align-able traces of the ground-truth photos. However, realistic applications
in entertainment or law enforcement require working with more unconstrained sketches
drawn from memory or description, which are not rigidly align-able. In this paper, we
develop a new deep learning approach to address these settings. Our image-image regres-
sion network is trained with a combination of content and adversarial losses to generate
crisp photorealistic images, and it contains an integrated spatial transformer network to
deal with non-rigid alignment between the domains. We evaluate face synthesis on clas-
sic constrained, as well as unviewed, benchmarks namely CUHK, MGDB, and FSMD.
The results qualitatively and quantitatively outperform existing approaches.

1 Introduction

Face hallucination addresses inferring one face image from another image in a different
condition. A particularly interesting variant is that of synthesising photos based on facial
sketches, which has applications in entertainment and law enforcement [18]. In the past
decade, this problem has been well studied, and promising results have been achieved using
both patch-based [14, 15, 19] and, more recently, deep learning-based [5] approaches.

The main limitation of existing studies is that they primarily focus on simple “viewed-
sketch” benchmarks — those in which sketches are basically perfect traces of an underlying
ground-truth photo. This assumption that sketches and photos can easily be perfectly aligned
means that models can be simple because all (super)pixels are in correspondence; and easy to
train because without alignment ambiguity, the mapping is a simple colour texturing process.
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The standard viewed-sketch databases are also very constrained, in that there is little vari-
ability in conditions such as background, sketch style, and even subject ethnicity (CUHK).
However, neither of these assumptions hold in real law or entertainment applications of
sketch-photo synthesis. Here, the sketches and photos are more unconstrained, and crucially
artists are drawing from their imagination, or description. This means that the sketches are
affected by communication and memory imperfections [3, 13] as well as the conventional
sketch-photo modality gap. So photo hallucination is now a much more complicated map-
ping than simple colour texturing after rigid alignment. This can be seen in the results of
the few studies that test on unviewed forensic sketches after training on viewed benchmarks:
The quality of the synthesis results in the unviewed case is much worse [5, 14].

In this paper we develop a powerful deep learning-based method for sketch-photo face
hallucination that produces more crisp images than prior work while addressing the less
constrained unviewed setting, that is harder but more practically relevant. We build upon a
fully convolutional image-image regression network [5] that can provide a rich non-linear
mapping from sketches to photos. To make this mapping learnable, given the lack of a rigid
alignment between photos and sketches in the unviewed case, we integrate a modified spatial
transformer network (STN) [10] into the regressor. Our STN network inputs facial geometry
defined by detected facial interest points, and non-rigidly warps the sketch and photo into
alignment. To enable the synthesis of high fidelity crisp photos, we first extend the image-
image regression network to include two branches that process individual patches and whole
images respectively, thus encoding both fine grained details and holistic structure; and train
the combined model with a Markovian adversarial loss similar to that used in [11].

In summary, our main contributions are: (i) A novel sketch-photo synthesis network that
specially tackles misalignment using Spatial Transformer Networks, making it more practi-
cal for law enforcement and entertainment applications. (ii) A two-branch Siamese architec-
ture that preserves local high frequency details while maintaining overall holistic structure.
(iii) Qualitative and quantitative experiments on well-aligned datasets (CUHK), and those
that exhibit heavy misalignment (MGDB and FSMD), demonstrate that the proposed deep
network can synthesise more realistic and crisp photos compared with prior state-of-the-art.

2 Related Work

Sketch-photo Face Synthesis Sketch-photo face synthesis is now quite well studied [12,
18]. Existing studies can be categorised according to whether they use classic [14, 15, 19]
or deep [5, 6] methods; and whether they process images holistically [5, 6] or patch-wise
[14, 15, 19] (more common for deep and classic methods respectively).

Patch-based methods [14, 15, 19] process images by superpixel or regular grid patches.
They commonly employ Markov networks to exploit connections between neighbouring im-
age patches to improve coherence of synthesis. State-of-the-art holistic methods for image-
image regression such as [5] leverage batch normalisation, residual block building, and per-
ceptual losses to learn to predict photo from sketch images. Very recent unpublished work
has further improved such deep pipelines by applying variational autoencoders [6].

We observed that both holistic and patch-based architectures have distinct shortcom-
ings. The former typically lose some detailed information, i.e., the synthesised face may be
somewhat blurry, and the latter focuses on local features without building a good entire face
structure. To address these limitations, we build a two-branch generator, performing holistic
and the patch-wise synthesis simultaneously, to generate faces with high fidelity.
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Figure 1: Architecture of the proposed network: STN subnetwork (left), overall (right).
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Generative Adversarial Nets for Image Synthesis Since the Generative Adversarial Net-
work (GAN) [4] was proposed, many extended GAN models have emerged for image syn-
thesis. Relevant extensions include conditioning the generated image on another image, so
as to achieve image-image translation. A persuasive example of this is [9], which showed
it was possible to flexibly learn different mappings between the input images and the out-
put images with a single loss function. Adversarial training was also exploited by [16] to
synthesise more realistic images. The Markovian Generative Adversarial Network was pro-
posed in [11] for texture synthesis. In our work, we leverage the flexibility of the Markovian
discriminator, and adapt it to fit our two-branch generator. Our resulting model shows good
performance in generating crisp images with both good high and low-frequency content.

Spatial Transformer Network Spatial Transformer Network (STN) [10] modules can
help deep networks to achieve better spatial invariances to the input data by end-to-end learn-
ing to perform transformations including cropping, scaling, rotation, etc. A localization net-
work learns to predict the appropriate transformation to be applied to any given input, which
is then applied to transform the corresponding image into a more canonical form for easier
subsequent processing. This technique has since been used in many applications including
face pose alignment for improving detection [2] and recognition [20] with end-to-end align-
ment. Different from these previous applications that rigidly warp regularly structured grids,
we employ the thin plate spline variant (STN-TPS) [1] to generate displacements for specific
facial landmarks. By generating this displacement map, we learn end-to-end how to non-
rigidly deform facial sketches so as to better align with canonical photos. This is helpful to
improve photo synthesis based on unviewed sketches, which as we discussed do not have a
simple rigid mapping onto a corresponding photo.

3 Methodology

Our overall approach is based on image-image regression, enhanced with adversarial train-
ing. The framework (illustrated in Fig 1) consists of two Siamese fully convolutional regres-
sion networks for patches and holistic images respectively. These are paired with Siamese
discriminator networks for the adversarial training. And the holistic-image branch is en-
hanced with our STN-based alignment module. In the following two sections we describe
each of these components, and then the losses used to train the network.
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3.1 Network Components

The main network components are the generator, including spatial transformer and discrim-
inator, described as follows:

Generator: The generator is a fully convolutional image-image regression network. In-
spired by CSI [5], we follow their network architecture by using an encoder and an decoder
architecture as our generator, and also leverage batch normalization [8] and residual blocks
[7]. However, the photos synthesized by CSI are blurry and somewhat cartoon-like, due to
lack of high frequency information. We address this both through a different training ob-
jective (see Sec 3.2) as well by introducing a two-branch architecture. Our generator’s two
Siamese branches are trained to predict patches and whole images respectively. The patch-
wise branch leads the model to learn more high frequency structure (unlike CSI), while the
whole-image branch keeps the holistic structure of the face.

Spatial Transformer: Localisation To address the non-rigidly misaligned data in realistic
unviewed sketches, we extend the whole-image branch with the most powerful thin plate
spline transformation (TPS) [1] variant of the spatial transformer network [10]. Specifically,
we define the STN’s localisation net by pruning the VGG-19 network [17] as shown in Fig. 1,
and defining a regression network based on it. To make learning more stable, we insert a
L, normalization after the output of the final convolutional layer. This regression network
predicts the transformation parameters in the form of an interest-point displacement map,
that will be used to displace facial interest points detected in the input image to generate a
non-rigid warping of the input sketch.

Spatial Transformer: Warping The localization network (denoted LOC) inputs the raw
sketch I and outputs D; = LOC(I;) representing the displacements of i = 1...n facial land-
marks P, = (x;,y;). After displacing the facial landmarks, the thin-plate spline transformation
[1] is used to map the displaced locations to the original points on the raw input as below,

Kk |p 1!
(Cleo  cx C}')T = {P* 0] [D‘O] (D
fxy) = cotextey+ Y aU(IP—(x,y)) 2
i=1

where the cq, ¢, ¢y and ¢; are the coefficients deduced by the original landmarks P and the
displaced landmarks D. P* is the extension of P adding one column all with values one in
shape n x 3, and K is with shape n x n, in which k;; = U (r;;) with U(t) = t*log(t*) and
rij = |P;— Pj|. After this mapping, bilinear interpolation is applied to calculate the pixel
values of the transformed input. Based on this transformation learning, raw sketches I are
mapped to preprocessed sketches I7 which should be better aligned with the true photo face.
These refined sketches are then passed into the generator network for synthesis as shown in
Fig. 1. Training this STN end-to-end thus: (i) non-rigidly warps the train sketches and photos
into alignment allowing a better cross-modal projection to be learned from roughly aligned
unviewed training sketches, and (ii) learns a data-dependent alignment strategy which will
also better align and thus improve the synthesis performance for unviewed testing sketches.

Discriminator: For adversarial training, we need to define a discriminator network. We
employ the Markovian discriminator [11] that has been shown to work well on synthesising
structured patterns and image style [9, 11]. It does so by modelling the whole image as a
Markov random field, whereby pixels that are separated by more than a patch diameter are
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Figure 2: Optimization objectives for different modules. STN: the spatial transformer net-
work, G: the generator, D: the discriminator.

considered statically independent. The network is trained to classify N x N image patches
as real or fake. N can be any image size, and thus a single Siamese discriminator flexibly
applies to both the whole image and patch-wise pathways in our two-branch model.

3.2 Optimization Objectives

Given the network architecture outlined above, we next explain the content and adversarial
optimization objectives applied to the various sub-networks, as summarised in Fig. 2.

Content Losses There are three content-based losses. These include pixel loss /,, feature
loss I, and total variation loss /;,. The pixel loss addresses low-level image similarity with
standard L2 loss between predicted and photo pixels. The feature loss is defined between
higher level features extracted from the synthesised and target photos. Specifically, assuming
¢() is the ImageNet pre-trained VGG-19 [17] feature extractor (ReLU; ), we define:

Ip=—) (9(F) = 6(1)) 3)
i
Here n is the total number of the features and I, and I, are the generated and real images.
To make generated skin, hair etc. more realistic, we add the total variation loss to en-
courage the spatial smoothness in the generated image:

L, = Z((I;/-&-l,h 7I§v,h)2 + (I;/.h+1 71;/,h)2)1.25 4)
w,h

where the I’ h represents the pixel of the generated image or image patches.

Adversarial Loss The adversarial hinge loss /j, is defined as:

1 n m

— Ao/
In nxm;;maxm, +y'¥) )

where the 7 is the number of samples, the m is the total number of the final Markovian neural
patches [11], A is the margin (set to 1 in the experiments). ¥/ is the output of the Siamese
discriminator, representing the score for the jth Markovian neural patch patch/image. y/ €
{+1,—1} is the ground truth label of the jth true or fake (generated) neural patches respec-
tively.
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(a) (b) (c) (d)
Figure 3: Illustration of varying misalignment between sketch and photo in benchmarks: (a)
CUHK, (b) MGDB (viewed sketch); (¢c) MGDB (unviewed sketch); and (d) FSMD.

Summary Overall we train the generator, discriminator, and spatial transformer parame-
ters (8, 6, 65) to minimise the weighted sum of these losses:

%rgem;n ApLp(Ig, 1) + AgLy (I, Ir) + AayLiy(Ig, 1) + lh(Lf?(Ig) +L5(1g71r)) (6)
8:9d Vs

In this way we learn to align sketches, and synthesise photos which are indistinguishable
from the true photos both holistically (image branch), and per-patch (patch branch). During
training we optimise this loss for the predictions of both the patch and whole-image branches.
During testing we make predictions based on the whole-image branch.

4 Experiments

4.1 Datasets

Datasets: We evaluate our method on three datasets: CUHK [19], MGDB[13] and FSMD
[13]. CUHK includes 188 faces and viewed sketches of students in Chinese University of
Hong Kong (CUHK). MGDB contains 100 sketch-photo pairs for sketches drawn under
different conditions including viewed and unviewed. FSMD contains 196 pairs of mugshot
photos and corresponding unviewed forensic sketches. As shown in Fig. 3 by overlaying the
sketches and photos, CUHK is possible to align near perfectly. While sketch-photo pairs
in MGDB and FSMD have very obvious residual misalignment after aligning based on eye
position. This illustrates the more challenging non-rigid correspondence to be overcome in
these more realistic datasets.

Preprocessing: Images in each dataset are normalized to 384 x 288 and aligned based on
the position of center of two eyes. For patch-based processing, we follow the procedure in
[11] to first rotate and scale the whole image and then crop 128 x 128 patches with stride 64.
Pipeline: The patch branch takes cropped sketch patches as well as their XY channels as
input. The discriminator is then invoked to produce corresponding neural patch scores for
both generated patch and real patch. For the holistic image branch, normalised sketches and
manually labelled N facial landmarks are first fed into a STN. The localisation network then
generates a 2N-D vector, which represents facial landmark displacements in X and Y coordi-
nates for each sketch. Afterwards, the TPS transformation module utilises the displacement
vectors to wrap the original input sketches to mitigate misalignment. '

Settings: For our model, we set 4, = 1.0, Ay = 0.5, 4, = le —4, 4, = 1.0. And we im-
plement our framework in Tensorflow, using Adam optimizer, with batch size 4 for holistic-
image branch and 64 for patch branch. For CUHK we use 35 facial interest points obtained
from [19]. For experiments conducted on MGDB and FSMD, we manually labelled 36 fa-
cial landmarks, by removing those from CUHK that are not clearly exhibited in MGDB and

IFull implementation will be made available at the SketchX website: http:/sketchx.eecs.qmul.ac.uk/downloads/
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Table 1: Quantitative comparison against state of the art.

Benchmark Method PSNR SSIM R
MrFSPS_SP [14] - 0.633 -
CUHK CSI [5] 17.295 +£0.203 0.774 +0.006  0.921 + 0.002
Scribbler [16] 17.540 £ 0.175 0.785 +0.004 0.915 + 0.003
Proposed 17.683 £ 0.167 0.791 £+ 0.004  0.922 + 0.002
CSI [5] 16.397 + 0.421  0.699 + 0.003  0.695 + 0.029
MGDB-Viewed Scribbler [16] 15.894 +0.375 0.660 + 0.023  0.700 + 0.036
Proposed 16.067 £ 0.497 0.675 +0.028 0.707 £ 0.032
CSI [5] 15.283 +0.297  0.682 + 0.028 0.619 + 0.041
MGDB-Unviewed Scribbler [16] 15241 £0.376  0.648 +0.014 0.637 + 0.054
Proposed 15.340 £+ 0.489 0.663 £ 0.021  0.646 + 0.062
CSI [5] 13.465 + 0.384 0.476 +£0.013 0.461 4+ 0.025
FSMD Scribbler [16] 11.961 £ 0.247 0.371 £0.010 0.440 £+ 0.020
Proposed 13.328 +0.297  0.505 4+ 0.017  0.467 + 0.021
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Figure 4: Qualitative comparison against state of the art on CUHK. (a) Input sketch (b)

MrESPS_SP [14] (c) CSI [5] (d) Scribbler [16] (e) Proposed method and (f) Ground-truth.

FSMD (e.g., in the hair region), and re-introducing a few in the inner face region to allow
for more non-rigidity.

Pretraining: We follow the procedure of [5, 6] to define a pre-training strategy for our
model. Specifically, we exploit the CelebA dataset [21] by automatically generating sketches
via edge extraction, and using these as input to predict the corresponding photos. In this way
we pre-train on CelebA before fine-tuning on the target datasets CUHK/MGDB/FSMD.
Baselines: We compare the performance of our full model (Two branch generator, Markov
discriminator, Spatial transformer) with state-of-the-art competitors: MrFSPS_SP [14]:
combines the multiple features from face images processed using multiple filters and ex-
ploits Markov networks of to model the relationships between neighbouring image patches.
CSI [5]: A deep image-image regression network that leverages batch normalization, resid-
ual blocks, and three content losses for sketch inversion. Scribbler [16]: A deep adversarial
network for general sketch-photo synthesis but not specifically designed for facial sketches
(our best re-implementation based on the descriptions provided in the paper). CSI, Scribbler
and our method are pre-trained on CelebA, but MrFSPS_SP is not.

4.2 Results

CUHK Benchmark: For the CUHK database, we follow the same train/test split in [19],
taking 88 sketch-photo pairs for training the remaining 100 pairs for testing. This sparse
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Figure 5: Qualitative results for synthesis in MGDB viewed (left) and unviewed (right). (a)
Input sketch; (b) CSI [5] (c) Scribbler [16] (d) Proposed method and (e) Ground truth.

(a) (b) (c) (d) (e) (f)
Figure 6: Qualitative results for synthesis in FSMD using model trained on MGDB: (a)
Input sketch, (b) MrFSPS_SP [14] (c) CSI [5] (d) Scribbler [16] (e) Proposed method and
(f) Ground truth.

training data approach is disadvantageous to our deep method, but we stick with this for
direct comparison to previous work. The quality of our synthesized photos outperforms
competitors qualitatively (Fig 4) and quantitatively in terms of three commonly used mea-
sures [5, 14]: peak signal to noise ratio (PSNR), structural similarity (SSIM) and Pearson
product-moment correlation coefficient R (Table 1). With our two branch model, both the
overall structure and the local details of the synthesized image are well preserved. In con-
trast, all alternatives produce less crisp images appearing blurry and lacking high frequency
detail.

MGDB and FSMD Benchmarks: These images are more challenging than CUHK due
to being more varied photos and sketches under more realistic uncontrolled conditions. We
explore both viewed and unviewed images in MGDB, and true forensic sketches in FSMD.
For the experiments on MGDB, we use 90 sketch-photo pairs for training and the rest 10
pairs to test. From the quantitative results in Table | we can see that as expected the quality
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Table 2: Analysis on the contribution of each component of our method. TB: Two branch.
MD: Markov Discriminator. STN: Spatial Transformer. PT: Pretraining.
Benchmark Methods PSNR SSIM R

TB+MD 15.772 £ 0.549  0.674 +=0.027 0.694 £ 0.032
TB+MD+STN 15.833 £ 0.633  0.669 £ 0.028  0.703 + 0.025
TB+MD+PT 15.873 £ 0475 0.669 £ 0.032  0.704 4 0.028
TB+MD+STN+PT  16.067 = 0.497 0.675 £ 0.028 0.707 £ 0.032
TB+MD 15288 +£0.395 0.649 £0.021 0.641 &+ 0.058
TB+MD+STN 153154+ 0356  0.656 £0.026  0.642 £ 0.040
TB+MD+PT 15.300 £ 0.525 0.659 +0.020 0.641 £ 0.062
TB+MD+STN+PT  15.340 + 0.489 0.663 + 0.021  0.646 + 0.062

MGDB-Viewed

MGDB-Unviewed

@ k) @ @) e H ) @ (@ () (@)

Figure 7: Ablative analysis on MGDB viewed (left) and unviewed (right). (a) Input sketch
(b) TB+MD (¢) TB+MD+STN (d) TB+MD+PT (e¢) TB+MD+STN+PT and (f) Ground-truth.

of the synthesised images is better for viewed than unviewed sketches, and both of these
more challenging unconstrained sets are lower quality than easier CUHK sketch synthesis.
Qualitative results for MGDB are shown in Figure 5 for viewed (left) and unviewed (right)
sketches. For FSMD, we applied the model trained on MGDB to synthesise photos, mimick-
ing the practical setting in law enforcement where one needs to synthesise a realistic photo
from a forensic sketch to show to the public [3]. The corresponding qualitative results are
shown in Figure 6. We can see that the synthesis quality is much lower across the board in
this more challenging setting. However in each case our approach produces more crisp real-
istic results. We also quantitatively evaluated the synthesised faces using 147 sketch-photo
pairs from FSMD as training data and the rest for testing. Results are summarised in Table 1,
where our results compare favourably against state-of-the-art alternatives.

4.3 Further Analysis

Our full model contains multiple contributions (two-branch generator, Markov discrimina-
tor, spatial transformer network, CelebA pre-training), so we denote it TB+MD+STN+PT.
To understand the contribution of each component, we perform an ablation study compar-
ing four different settings: TB+MD with/without STN and with/without pre-training (PT).
From the results in Fig. 7 and Table 2, we can see that adding STN improves performance
qualitatively and is comparable to the pre-trained model without STN. Adding both STN
and pre-training results in the best quality synthesis. At last, to offer insights as towards
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Figure 8: Visualization for the displacement transformation of the landmarks. Red arrow
indicates direction of travel.

what STN had learned, Figure 8 offers illustrations for the predicted displacements of facial
landmarks on two unviewed sketches.

5 Conclusion

We address the unviewed sketch-photo hallucination problem by proposing a new deep
image-image regression approach. Our two-branch network models both local features and
whole image structure. The non-rigid misalignment that occurs in unviewed or forensic
sketches is dealt with by integrating a spatial transformer network into the generator, and
cleaner images are synthesised by performing adversarial as well as content-based training.
Overall the network produces higher quality photos than recent alternatives in both the con-
ventional viewed sketch benchmarks, and the more challenging unviewed sketch setting.
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