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Abstract

Human action recognition is a challenging problem, especially in the presence of
multiple actors and/or multiple scene views. In this paper, multi-modal integration and
a hybrid deep learning architecture are deployed in a unified action recognition model.
The model incorporates two main types of modalities: 3D skeletons and images, which
together capture the two main aspects of an action, which are the body motion and part
shape. Instead of a mere fusion of the two types of modalities, the proposed model
integrates them by focusing on specific parts of the body, whose locations are known
from the 3D skeleton data. The proposed model combines both Convolutional Neural
Networks (CNN) and Long Short Term Memory (LSTM) deep learning architectures
into a hybrid one. The model is called MCL, for (M)ulti-Modal (C)NN + (L)STM.
MCL consists of two sub-models: CL1D and CL2D that simultaneously extract the
spatial and temporal patterns for the two sought input modality types. Their decisions
are combined to achieve better accuracy. In order to show the efficiency of the MCL
model, its performance is evaluated on the large NTU-RGB+D dataset in two different
evaluation scenarios: cross-subject and cross-view. The obtained recognition rates, 74.2
% in cross-subject and 81.4% in cross-view, are superior to the current state of the art
results.

1 Introduction

Human action recognition is a vital branch of computer vision research because of its many
application domains, such as computer gaming, surveillance, and robotic vision. The dif-
ficulty of the problem can be reduced if the body pose is available [27]. The human body
pose can be captured using Motion Capture (MoCap) systems, which could be either camera-
based or inertial sensor-based. Such systems are accurate but expensive. Nowadays, there is
a great focus on body pose data collected using inexpensive depth sensors, such as the Kinect
sensor, which provide both RGB and depth images in addition to the 3D body skeleton [9].
There are lots of techniques used for human action recognition from 3D skeleton data
that are based on hand-engineered features. In [11], the covariance of 3D joint positions
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over the action sequence is used as a descriptor, and the Support Vector Machine (SVM)
is used as a classifier. In [25], a view invariant action classification based on histogram of
3D skeleton joint locations (HOJ3D) is proposed. HOJ3Ds are projected using linear dis-
criminant analysis (LDA) and clustered to visual words, which are used to train a Hidden
Markov Model (HMM) to extract the temporal dependencies. The skeleton configuration
and actions can be mapped to points and curves, respectively, in a lie group and then SVM
can be deployed for classification, as in [20]. It is also common to combine multiple sources
of features, such as in [6], where skeleton joint angles, joint angular velocities, and joint
velocities, are combined into a 1D feature vector for each frame. Feature vectors for consec-
utive frames are then concatenated and fed to a Random Forests classifier. The drawback of
all the aforementioned methods so far is that they need hand-engineering of features.

Recently, deep-learning techniques have become widely used in many application do-
mains. Convolution Neural Networks (CNN) [13] is a neural network architecture that is
typically used in deep networks for automatic feature extraction from raw data. The CNN1D,
CNN2D, and CNN3D can be applied to extract features from 1D signals, 2D images, and
3D volumetric or video data, respectively. The extracted features are then fed to a classifier,
which is typically a fully connected (dense) neural network layer(s). In [22], CNN3D is pro-
posed for action recognition from the raw RGB videos to extract the spatio-temporal patterns
of the performed actions. In [23], three CNN2D channels are initially trained on the Ima-
geNet dataset, then fine tuned to be used in action recognition. The three CNN2D channels
receive raw depth data for action classification to extract features from the weighted hierar-
chical depth motion maps sequence of an action. In [2], the motion represented by the optical
flow and different poses from the tracks of human body parts over the action are aggregated
to form the inputs to two parallel CNN2D. The output of each CNN2D is used to construct
a frame descriptor (min and max values), and hand-crafted P-CNN features are formed from
the concatenation of both the frame descriptors and video descriptor (differences between
frame descriptors). P-CNN features are used to train a SVM classifier.

Another group of techniques relies on Recurrent Neural Networks (RNNs) or Long-
Short Term Memory (LSTM) for capturing the temporal dependencies in the skeleton joint
sequences for action recognition, such as [4] and [29]. The gesture recognition method in
[14] uses a bidirectional LSTM with one hidden layer for backward and forward LSTMs.

CNN can be combined with LSTM to perform classification, bringing the best of the
two worlds together: automatic features extraction by the CNN, and the capturing of the
temporal dependencies in sequences of these features by the LSTM. Towards this end, we
propose a (M)ulti-modal (C)NN + (simultaneously)STM (MCL) action recognition model.
The model benefits from the presence of 3D skeleton data and image data to capture the two
main aspects of an action: the motion and part shape. Moreover, it integrates the modalities
by focusing only on the relevant body parts in the images instead of letting the network
discover already known information on its own, which has the effect of reducing the training
time and reducing the possibility of over-fitting. In order to evaluate the effectiveness of the
proposed recognition model, we tested it on the NTU RGB+D [19] human action recognition
dataset, which is a large dataset, suitable for the training needs of deep learning models.

The rest of the paper is organized as follows: the most recent works related to the pro-
posed model are discussed in Section 2. Section 3 introduces the architecture of the proposed
model (MCL). Experiments are presented and results are analyzed in Section 4. The conclu-
sion of the paper and the future work are summarized in Section 5.
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2 Related Work

The problem of recognizing human actions from 3D skeleton and/or RGB images is not new.
However, the techniques for solving the problem are continuously evolving and improving.
In the following, we summarize the most recent research related to the proposed model,
which applies deep learning techniques, and show how our proposed approach is different.

In [1], CNN3D plus LSTM are used as a two-step action classification model. CNN3D
receives the action video then extracts the spatio-temporal features by applying a set of 3D
filters. The derived features are passed to a LSTM, which works as a classifier for the whole
feature sequence. Unlike our proposed method, this method uses only a single modality,
which is the video for the whole body. Our method fuses and integrates multiple modalities.

In [4], a Hierarchical Bidirectional RNN (HBRNN) is introduced. The whole body skele-
ton is divided into five parts: left arm, right arm, spine, left leg, and right leg. Parts are input
to parallel branches of the model at the lowest level of the hierarchy. The outputs from pairs
of branches are merged at the next level to represent bigger body parts, and so on until the
whole body is represented. Finally, the output is classified using a fully-connected softmax
layer. Similar to this approach, our proposed model divides the body into parts. However,
our approach also fuses multiple modalities, not just 3D skeleton data.

In [29], an action recognition model based on a deep LSTM with fully connected layers
is suggested. A regularization term is added to automatically learn the co-occurrences among
body joints and a dropout technique is proposed to the LSTM gates to prevent over-fitting.
In our method, deep LSTM is also used, but preceded with CNN1D and CNN2D to extract
features from skeleton as well as part image data.

In [8], the ordered sequence of optical flow of action frames is computed and then fed
to a LSTM in temporal order for robust classification of actions. This approach captures
the body motion via optical flow while in our approach, we capture it via the skeleton data,
which is known to be useful for action recognition [27]. Moreover, this approach does not
use the shape information in the images as we do.

Part-aware LSTM [19] is proposed for action recognition, which separates the memory
cell of the LSTM into sub-cells, one for each human body part. Finally, the outputs of all sub-
cells are concatenated in one vector. The aim of this design was to force the system to learn
how to classify the action based on the long-term temporal representation of each part alone
before concatenating their outputs to make the final decision. Different from our approach,
this approach only uses 3D skeleton data and does note use CNN for feature extraction.

Spatio-Temporal LSTM (ST-LSTM) is proposed in [15], in which a tree-traversal method
is used for the spatial representation of 3D skeleton. Also, a trust gate is added to LSTM,
for temporal representation, ST-LSTM(TT+TG) , to check the reliability of the inputs. This
model is currently considered the state of the art in human action recognition from skeleton
data. However, it relies only on skeleton data without fusing multiple modalities, as we do.

In [24] a multi-modal gesture recognition system is proposed which uses Deep Belief
Networks (DBN) and CNN3D to manage the skeleton dynamics and RGB/depth images,
respectively. Then, their decisions are fused to learn the emission probabilities of a Hidden
Markov Model (HMM). The ModDrop model [16] fuses multiple modalities (articulated
pose, depth maps, audio stream, and RGB images) in a deep convolutional gesture recogni-
tion system with multiple branches to deal with all modalities. Some modalities are dropped
during training to overcome the presence of noisy data. Similar to [16, 24], we use multiple
modalities. However, we focus on integrating the modalities and using a hybrid end-to-end
system that includes both spatial feature extraction and temporal modeling.
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Figure 1: One running example of two actions, Reading and Clapping, from the NTU dataset
[19], where the skeleton poses are relatively similar at times #, # + 1, and ¢ 4+ 2 while the body
shapes are different. Upon integrating pose with part shapes, our model can discriminate
between the two actions.

3 Network Model for Representing Multiple Modalities

Luckily, commonly used depth sensors readily provide data in multiple modalities, such as
3D skeleton, RGB images, depth maps, and even more. These modalities are complementary
to one another as far as action recognition is concerned. For example, the 3D skeleton data
capture the pose and motion of the action performer. However, they are often very noisy.
Moreover, they do not capture other important information about the action, such as the
hand shape and the manipulated object. This extra information can possibly be extracted
from RGB images and/or depth maps. Therefore, we believe that fusing multiple modalities
is unavoidable for robust action recognition.

Multiple modalities are not only complementary, they are also integrable. For example,
3D skeleton data give us information about the location of the body and its parts in the images
and depth maps. Hence, if we are training a network on an image, we do not need to waste
space and processing time in areas of the image outside the body, nor we need to waste the
network’s training epochs in trying to automatically recognize where the important parts in
the image are. Therefore, we believe that integrating multiple modalities can be very helpful
for efficient and effective action recognition.

In our proposed model, we make use of the two notions above. First, our model uses
both 3D skeleton data and image data. Second, we benefit from our knowledge of the 3D
skeleton data to focus only on the body parts such as face, left hand, right hand, left foot,
and right foot, in the images because these parts typically include most of the information
needed to recognize the performed action that is not captured in the skeleton data. Figure 1
shows samples of two different actions, in which the poses are similar at times ¢,  + 1, and
t + 2 while the body part shapes (the hands in this case) can differentiate between them.

The proposed model consists of two sub-models: CL1D (for CNN+LSTM for 1D data)
to receive the 3D skeleton stream, and CL2D (for CNN+LSTM for 2D data) to receive the
image stream for different body parts. The two sub-models benefit from the power of the
CNN to extract the spatial dependencies of the input stream, which is adjacent joints in the
case of the skeleton, and adjacent pixels in the case of the images. Then, the extracted
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Figure 2: The architectures of the two sub-models, CL1D and CL2D, and the unified model,
MCL: (a) CL1D’s architecture to deal with the skeleton data; (b) CL2D’s architecture to deal
with images for one body part; (c) MCL’s architecture, which combines models for skeleton
data and images for multiple body parts (face, left hand, right hand, left foot, and right foot).

features are fed to a LSTM to model the temporal pattern in the extracted features. The
outputs of the two sub-models are combined to make the final classification decision. In the
next subsections, the architectures of CL1D, CL2D, and MCL are presented.

3.1 CLI1D: The Pose and Motion Model

The 3D skeleton is an excellent source of information about the body pose and motion over
time. The CL1D sub-model focuses on the 3D skeleton modality to capture such informa-
tion. The 3D skeleton is typically provided as the 3D coordinates for a number of body
joints. In the following, we will first explain the pre-processing performed on those raw joint
coordinates. Then, we will explain the architecture of the CL1D sub-model.

3.1.1 3D Skeleton Preprocessing

There are three main preprocessing steps: (1) Joint rearrangement, (2) Coordinate normal-
ization, and (3) Frames sampling.

Joint rearrangement aims to put the skeleton coordinates in the form that enables the
CNNID to detect the spatial pattern in the body part joints. We followed the joint arrange-
ment scheme proposed in [15], which selects only 16 out of the 25 skeleton joints provided
by the Kinect v2 sensor. The joints are arranged in a tree-traversal order while allowing
repetition of some joints such that the total number of joint instances becomes 31. Joint co-
ordinates are stacked so that joints of the same traversal path are put next to one another and
ordered according to their position in the traversal tree. In this way, neighboring coordinates
are more correlated, which makes it easier for the network to learn patterns of correlation
between the adjacent joint coordinates.

The second processing stage is the joint coordinate normalization. The objective of this
step is to make the joint coordinates invariant to the subject’s location and orientation with
respect to the camera and invariant to the subject’s skeleton size. It is performed over two
phases. The first phase transforms the skeleton joint coordinates from the camera coordi-
nates to subject coordinate system, whose origin and main axes are defined with respect to
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the subject’s body. The second phase maps each dimension of the joint coordinates over the
entire sequence onto the interval [0, 1]. In other words, this phase treats all the joints coordi-
nates in the whole sequence as one group of points and linearly maps this group into the unit
3D box such that each of the box’s boundaries includes at least one point.

The last pre-processing step is frame sampling, which has two objectives: First, to fix the
length of the input sequence to make it suitable for training the network. Second, to make
the model more robust by introducing some randomness. Particularly, we follow the frame
sampling scheme of [19], which divides the input sequence into N equally long segments,
and then randomly chooses one frame from each segment. Similar to [19], we chose N = 8.

3.1.2 CL1D’s Architecture

The first sub-model receives randomly chosen frames from N segments, as explained above.
For the skeleton produced by the Kinect v2, which has 25 joints, only 16 joints are selected,
some of which are repeated to reach 31 joints as in [15]. Therefore, the skeleton is repre-
sented by 93 values (31 joints x 3 dimensions). With N = 8, the input layer to CL1D has
(8%x93) nodes. The overall architecture of CL1D is shown in Figure 2(a). The architecture
consists of two stages: 1D Feature Extraction (FE1D ) and Classification.

The feature extraction stage, FE1D, uses three consecutive convolutional layers with
numbers of filters 32, 48, and 64, respectively, all of size 3 x 1, and a rectified linear (relu)
activation function to simplify and improve the speed of training [3]. This three-layer design
allows for three levels of feature extraction, which would hopefully match the intuition of
detecting low level (edge-like) patterns at the lowest level, body part motion at the second
level, and whole body motion at the top level (similar to the three-level manually-designed
hierarchy in [1]).

The output of each convolutional layer is reduced in size using a max-pooling layer that
halves the number of features. After that, the reduced features are sent one sample at a
time to the LSTM to learn the temporal pattern present in the sequence of features over
time. The number of LSTM neurons was chosen to be 128, which was found to give the
best validation accuracy over the trials of 16, 32, 64, 128, and 256 neurons. We use two
cascaded LSTMs of the same architecture except that the first returns the whole generated
output sequence (8 x 128) after each time step while the second returns the last output (128).
The two LSTMs follow the formulation in [7] to update their input (i), forget (f), output
(0") gates, in addition to cell state (C") as well as its output vector (h'), at each time step. The
input vector (U") to the first LSTM layer is the extracted feature maps of the previous layer
while the output vector of the first LSTM layer is the input to the second LSTM layer. For
completeness, we include below the LSTM update equations:

i = sigmoid(W,;U" +Wyh' ' + W,C' =" +b;) (1)
f' = sigmoid(Wi ;U' + Wy ph' =" + W C' 1+ by) )
o' = sigmoid(WoU' + Wioh' ™' + WeoC' ™' + b,) 3)
C' = f1 = 4 itanh(Wy U+ Wyeh' ™ +b,) @)
h' = o'tanh(C") 5)

Where i, f!, and o', are the input, forget, and output gates, respectively; U’ and C' are the
the input vector and the cell state at time #; 4’ and h'~! are the output vectors (hidden states)
at time ¢ and 7 — 1, respectively; b, is the bias for cell state; also, b;, by, and b, are the biases
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of the input, forget, and output gates, respectively; while W,;, Wy;, Wei, Wyp, Wir, Wer, Wy,
Wios Weor Wae, Whe, and W,,, are weight matrices.

Finally, the classification stage of CL1D uses two Fully Connected Layers (FCL), with
a number of hidden neurons equal to the number of classes in the dataset. The first FCL
uses tanh as an activation function and the second uses the softmax activation function to
determine the probability of assigning an input sequence to one of the action classes. We
also use a dropout layer [3] of probability 0.5 after the first LSTM layer to avoid over-fitting.

3.2 CL2D: The Part-Shape Model

Despite the utility of 3D skeleton data in identifying an action, they are lacking vital el-
ements, such as both hands and feet shapes and the manipulated objects. In the second
sub-model of our proposed model, CL2D, we use the images as a complementary modality
to 3D skeleton data. To make processing and learning faster, we integrate our knowledge
about the skeleton data by cropping only specific body part regions from the images. In the
following, we will first explain the pre-processing steps, then, the architecture of CL2D and
how it is used with the body parts is explained.

3.2.1 Image Preprocessing

The preprocessing of RGB images involves three stages. First, we convert every RGB image
to grayscale in order to save in time and space complexities. Then, the target body parts,
which are the face, left hand, right hand, left foot, and right foot, in this paper, are cropped
from the image. This is done by finding the smallest bounding box in the image that includes
all the part’s joints. Then, a margin of 20% of each dimension of the bounding box is added
to the two sides of that dimension to make sure the entire part is visible in the cropped patch.
Finally, all cropped patches of the body parts are resized to 16 x 16. In the second step, the
intensity is normalized by subtracting the mean pixel values over the training samples and
dividing by the range, which is 255. Finally, in the third step, to fix the number of frames,
the same frame sampling procedure used in the CL1D sub-model is applied (Section 3.1).

3.2.2 CL2D’s Architecture

Figure 2(b) illustrates the architecture of the CL2D sub-model, which is used with each
body part to represent its shape. CL2D, similar to CL1D, consists of two stages: 2D Part
Feature Extraction (FE2D,,,) and Classification. As shown in Figure 2(c), five instances of
FE2Dpan, which are FE2D ¢, FE2Dyy,, FE2D,y,, FE2D;y, and FE2D,r, are simultaneously
deployed in our model to extract face, left hand, right hand, left foot, and right foot part
2D features, which are not captured in the 3D skeleton data. Similar to CL1D’s architec-
ture, CL2D deploys both convolutional and LSTM layers. However, different from CL1D’s
architecture, CL2D uses only one max-pooling layer after the third convolutional layer be-
cause the input dimension is relatively small, 16 x 16. Similar to CL1D, the CL2D deploys
two cascaded LSTM layers, of 128 neurons each, after the three CNN2D, max-pooling, and
flatten layers. The LSTM layers follow the update equations 1- 5. A dropout layer of prob-
ability 0.5 is added in between the two LSTM layers to avoid over-fitting. As illustrated in
Figure 2(b), 32, 48, and 64 filters are used for the first, second, and third CNN2D layers of
CL2D, respectively, all of size 3 x 3. The first CNN2D layer receives 8 images one at a time
of size 16 x 16.
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The output of each Flatten layer of the feature extraction phase of all parts are concate-
nated together to generate one feature vector that represents the body shape in each action.
The classification stage of the CL2D sub-model is identical to the CL1D sub-model’s classi-
fication stage.

3.3 Combining Pose-Motion and Part-Shape Models in MCL

The main contribution of our work is to combine and integrate both the pose and motion,
which are captured by the CL1D sub-model, and body parts shapes, which are captured by
the the CL2D sub-model. Both of the mentioned sub-models, CL1D and CL2D, are first
trained separately. Afterwards, their flattened output features (FE1D, FE2Dy , FE2Dy,
FE2D.;,, FE2D,y, and FE2D)y) are concatenated to generate one feature vector, F, which
represents both motion and shape of the body as shown in equation (6). The classification
phase of MCL receives the F' and trains two consecutive FCLs with a number of neurons
equal to the dataset classes in each. The first FCL uses tanh activation function while the
second uses a softmax activation function. The overall architecture of the proposed combined
model (MCL) is shown in Figure 2(c).

F = [FE1D||FE2D;|[FE2Dy;,||[FE2D,;||FE2D, ;| FE2D;/] (6)

4 Experiments

In this section, we begin with a brief description of the dataset, then, we explain the imple-
mentation details, and finally, we present our experimental results and comparisons.

4.1 Dataset Description

We performed our experiments on one of the challenging datasets, which is the NTU-
RGB+D [19]. This dataset consists of 56880 samples' of 60 action classes. This large size
fits well with the data-hungry nature of deep learning. The actions are performed by 40 sub-
jects of different ages and body lengths. Also, the dataset is collected simultaneously from
three Kinect cameras with different viewing angles and distances from the subject, making an
overall of 17 different setups. We followed the evaluation protocol suggested by the authors
of the dataset [19], which consists of two scenarios: cross-view and cross-subject. While
many other action recognition datasets have been publicly released [21, 25, 28], none of
them suits our method, which requires the availability of both skeleton and image sequences,
along with the mapping between joints and their locations in the images. Moreover, none of
them is large enough for reliably training deep learning models.

4.2 Implementation Details

Experiments are conducted on a workstation with an Intel (R) Xeon(R) CPU E5-2699 v3 @
2.30 GHZ, 256 GB RAM, and a GPU of type NVIDIA Quadro K4200, running a Windows
10 64-bit operating system. We used the latest version of Theano and Keras packages [12] for
the implementation of the sub-models (CL1D and CL2D) and the combined model (MCL).

I'The authors reported that 302 samples are missing skeletons and should be removed.
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The two sub-models, CL1D and CL2D, are trained using the root mean square propagation
optimizer’, which is a good choice when LSTM is involved in the model.

We followed the same technique described in [19] to filter out erroneous skeleton models
in the data.

The proposed combined model has about 6 million parameters, which means that the
model needs a huge amount of time to be trained. To overcome this problem, we deployed
fine-tuning by training each sub-model separately. The first sub-model is trained as an in-
dependent model over the 3D skeleton data until no improvement in validation accuracy is
observed. Then, we saved the model weights that achieved the highest validation accuracy.
At the same time we trained the CL2D sub-model which receives the body parts. However,
because this sub-model is considerably slower to train (one day to be trained for only 15
epochs on our machine), we saved only the weights of this model that achieved 35% as a
validation accuracy. To train the combined model, we loaded the saved weights of the two
sub-models, froze the first sub-model from further training, and left the second sub-model
opened to continue training with the merging part®. In this way, we reduced the number of
learning parameters and increased the speed of training the combined model.

4.3 Experimental Results and Discussions

As explained earlier, we performed two types of experiments as in [19]: cross-view (CV) and
cross-subject (CS). Table 1 summarizes the obtained results for our experiments compared to
the state of the art method, which is the ST-LSTM (TT+TG) model [15] and other methods.

Table 1 shows the results of nineteen methods/models that were tested in both the CS
and CV scenarios. Some of them used hand-crafted features, and others used deep learning
methods to automatically extract features. The results of the first 13 methods were obtained
from [19]. The methods from 1 to 6 in the table used hand-crafted features based on the
depth and/or 3D skeleton data. HOG? [17], Super Normal Vector [26], and HON4D [18]
achieved their highest score (32.24%, 32.82%, and 30.56 % respectively) in the CS scenario
because these representations are not view-point invariant. On the other hand, Lie Groups
[20], Skeleton Quads [5], and FTP Dynamic Skeletons [10] achieved better scores (52.76
%, 41.56%, and 65.22 % ) in the CV scenario because these representations are view-point
invariant and hence perform better in the CV scenario because in this scenario the same
subject may appear in training and testing, which make the problem easier. Deep learning
techniques are used from method 7 to the end of the table. The best scores that were achieved
in both CV and CS scenarios, which are 62.99 % and 70.27 %, respectively, are obtained
by using 2-Layer P-LSTM [19]. Methods 14, 15 and 16 are the work of [15], which is
considered the current state of the art with scores outperforming prior methods.

The last three rows in the table contain our results. When CL1D is used to classify actions
based on the body motion alone, the recognition rate for both CS and CV experiments are
alert(64.2% and 72.11%), respectively. However, when MCL is used to capture both the
body motion and part shape, the results go up to 74.2 % and 81.4%, for the CS and CV
scenarios, respectively, which are superior to the current state of the art.

The table contains an extra row for the results of MCL trained on the upper body part
as whole after being cropped and reduced to the size of 128 x 128. This model was trained
for the same number of epochs as the MCL (body parts) model. However, 20 frames are

2The optimizer parameters are selected to be as follows: learning rate (L, = 0.001), gradient moving average
decay factor (p = 0.9), fuzzy factor (¢ = 10~3), and learning rate decay over each update (decay = 0.0).
3The MCL is trained for 200 epochs after fine tuning.
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Method CS Cv
1 HOG? [17] 32.24% | 22.27%
2 Super Normal Vector [26] 31.82% | 13.61%
3 HONA4D [18] 30.56% 7.26%
4 Lie Group [20] 50.08% | 52.76%
5 Skeletal Quads [5] 38.62% | 41.36%
6 FTP Dynamic Skeletons [10] 60.23% | 65.22%
7 HBRNN-L [4] 59.07% | 63.97%
8 1 Layer RNN [19] 56.02% | 60.24%
9 2 Layer RNN [19] 56.29% | 64.09%
10 1 Layer LSTM [19] 59.14% | 66.81%
11 2 Layer LSTM [19] 60.69% | 67.29%
12 1 Layer P-LSTM [19] 62.05% | 69.40%
13 2 Layer P-LSTM [19] 62.93% | 70.27%
14 ST-LSTM (Joint Chain) [15] 61.7 % 75.5%
15 | ST-LSTM (Tree Traversal) [15] | 65.2% 76.1%
16 ST-LSTM (TT +TG) [15] 69.2% 77.7%
17 CL1D 64.2% 72.11%
18 MCL (upper body) 70.03% | 78.01%
19 MCL (body parts) 74.2% 81.4%

Table 1: Cross subjects and Cross views accuracies in NTU RGB+D dataset

sampled per sequence in this model because training with less samples caused under-fitting.
Despite the extra information provided to this model, it took much longer training time to
exceed the state of the art results, and yet fell clearly behind the MCL model with body
parts, especially in the CS scenario. This verifies our initial hypothesis that combining and
integrating modalities, as well as leveraging the powers of CNN and LSTM are effective
mechanisms in action recognition.

We also notice that the enhancement obtained by our proposed method in the CV scenario
is less than the enhancement obtained in the CS scenario. This is primarily because part
images are not view-invariant. Addressing this issue is part of our future work.

5 Conclusion and Future Work

The MCL model is proposed in this paper to combine both CNN and LSTM deep learning
techniques and also incorporate multiple modalities for action recognition. The CNN layers
are used to extract features from an input modality. The type of the deployed CNN depends
on the type of the modality, e.g. CNNI1D is used for skeleton data and CNN2D is used for
images. A prototype for MCL is developed that combined the two modalities of 3D skeleton
and images. Not only the two modalities are combined, but, they are also integrated by
using knowledge of body location in the image from the skeleton data to crop the body parts.
Experiments on the large NTU-RGB+D dataset in two experimental scenarios (CS and CV)
showed the superiority of the proposed model over prior work. In the future, we will extend
this work by deploying and integrating more modalities.
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