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5 Supplemental Materials

5.1 Implementation Details
The proposed deep networks are implemented in TensorFlow [3]. The filters of networks
are randomly initialized from a zero mean Gaussian distribution with standard deviation
0.005. We use ADAM [15] as our autoencoder(G) and discriminator(D) optimizer. All
deep-based models are trained on the same training images. In the training stage, we use
the size of 32 mini-batch, and set the momentum to 0.9. The learning rates are set to 5e−4
for autoencoder(G) and 5e− 5 for discriminator(D). We also decrease the learning rate by
multiplying 0.99 after each epoch. In addition, the pixel values of the removal regions in
the training and testing images are set to zero. The hyper-parameters in our models are
empirically set as λG = 1, λD = 0.03. More, we also apply gradient clipping in the range of
±10 to prevent exploding gradients in the networks.

5.2 Methods in Comparison
Previous methods can be roughly categorized into the vision-based[8, 12, 17, 29] and deep-
based[14, 22, 26] approaches:

Vision-based: CSH[17] is a patch-based method that can find the best coherent patches
and fill them into the missing regions. TNNR[12] and Field of Experts[29] are optimization
methods that can obtain the best solutions based on image structures to recover corrupted
regions. Finally, inpaints_nans[8] is a state-of-the-art inpainting tool which interpolates and
extrapolates missing elements in a 2D array. This method has been rated five stars on the
MathWorks file exchange. We use all the codes that provided by the authors on their project
pages.

Deep-based: Deep learning methods are widely used in image restoration problems (eg.
super-resolution, inpainting). RED-Net[22] is a deep autoencoder using l2-norm optimiza-
tion that tackles many image restoration tasks. In our comparison, we use a simple version
(10 layers) which can fully utilize the receptive field of training images. Context Encoder
(CE)[26] is the first conditional GANs for image inpainting. We use the torch code from the
author’s github, and the size input image is restricted to 128×128. Lately, image translation
has been a popular topic that was raised by Isola et al.[14]. Their proposed method (pix2pix)
can perform impressive transformations of different domain images, and they claimed their
method can also be used for image inpainting. We also adapt the code from their project
pages, and the size of input image is restricted to 256× 256. For fair comparison, the deep
model based methods are trained and validated on the same corrupted datasets in all the
experiments.
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5.3 Single vs Integrated Model
We want to prove that training with multiple types of corruptions can surely have better
model performances and generalization than only training with a single type of corruptions.
Hence, under the same network settings and hyper-parameters, we train four models with the
training data containing only one type of corruptions (Single model: Text, Line, Scribble,
Random), and compare them to our proposed model (Integrated model: include all types of
corruptions). In Figure 5, it shows the comparison of PSNR of different models on MSCOCO
[21] testing sets. There are five bars on a bin of corruption types. Each bar indicates a
different model. The model that is trained on a single type of corruption images fails to well
complete other types of corrupted images. This justified that merely using a model trained
on a single corruption is hard to generalized on other type of corruptions, and by integrating
all type of corruptions into training, the model can be not only more general, and even obtain
a small enhancement than those single models.

Figure 5: Quantitative results for models trained with different types of corruptions.
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5.4 Corruption Masks
Here we show the training corruption examples of corruptions that generated by M. As
in Figure 6, it contains different types of missing regions with a certain level of variant,
which helps our model in training, and pushes our model to capture the essential features in
corrupted images in order to reconstruct back to well-completed images. In training stage,
all the pixel values of corruption part are set to zero.

Figure 6: Examples of training corrupted masks generated fromM.

5.5 Performances beyond Model
There are some results on high resolution images and user-specified corruptions. In Figure 7,
first column is the corrupted images created by users, and the corrupted parts are visualized
in purple color. second column depicts the completed images by using our model. The
resolution of each images are 600×900 and 630×1200, respectively.

Figure 7: Qualitative results on high-resolution public images and user-defined corruption
masks.
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5.6 More Results on CUB, Flowers and MSCOCO
We also compare different methods on another dataset (Particular): 102-Category Flower[25].
It contains 8,189 flower images. We randomly pick 100 images for validation and 100 for
testing, and the rest are the training images.

Algorithms
Datasets, types CSH[17] TNNR[12] FoE[29] nans[8] RED-Net[22] CE[26] pix2pix[14] Ours
Flowers[25], Text 22.54/0.807 25.28/0.834 31.33/0.955 32.16/0.959 25.15/0.807 28.58/0.872 25.95/0.839 32.05/0.948
Flowers[25], Line 21.34/0.794 15.38/0.631 26.64/0.897 29.35/0.925 23.36/0.767 27.75/0.860 24.27/0.802 29.79/0.921
Flowers[25], Scribble 20.11/0.766 20.59/0.771 25.99/0.894 27.70/0.913 23.29/0.794 26.97/0.862 23.95/0.801 28.20/0.909
Flowers[25], Random 22.34/0.652 32.36/0.908 36.73/0.979 37.77/0.980 21.08/0.572 28.69/0.832 24.44/0.780 35.35/0.961
Average 21.58/0.755 23.40/0.786 30.17/0.931 31.74/0.944 23.22/0.735 28.00/0.856 24.66/0.805 31.35/0.935

Table 5: Quantitative results on Flowers dataset[25] and different types of corruptions. The
higher the (PSNR/SSIM) are, the closer the completed images are compared to the ground
truth images. Bold and under-line indicate the best and the second best performance, respec-
tively.

The following figures shows the additional results of four types of corruptions on differ-
ent datasets. Figure 9 to 12 are the results on CUB[31]. Figure 13 to 16 are the results on
Flowers[25]. Figure 17 to 20 are the results on MSCOCO[21]. Last, Figure 21 to Figure 24
are the results on BSDS500 test datasets.

5.7 Additional Results on Arbitrary Corruptions
In addition to the corruptions we introduced in the paper, we also apply our model toward
image completion on arbitrary shape missing regions. We first generate arbitrary masks that
are formed of different polygons , and then produce the training data and ground truth pairs.
In the experiments, we tackle the task: face completion by using CelebA datasets. Figure 8
shows the quantitative results which evaluated by PSNR and SSIM, and the visual outcomes.
For fair comparison, vision-based methods are not included in this evaluation since they lacks
of semantics to filled the missing content by merely considering similar information around.
Although we achieve the highest PSNR and SSIM, the quality of the recovered faces can be
further justified (e.g. user study) in the future.

Figure 8: The testing results of face completion on CelebA datasets. The evalua-
tion (PSNR/SSIM) metrics are shown within the bracket behind methods. RED-Net[22]
(26.67/0.849), CE[26] (27.06/0.845), pix2pix[14] (26.83/0.853), and Ours (27.90/0.869).
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Figure 9: Results of text corruptions on CUB[31] datasets
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Figure 10: Results of line corruptions on CUB[31] datasets
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Figure 11: Results of scribble corruptions on CUB[31] datasets
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Figure 12: Results of random corruptions on CUB[31] datasets
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Figure 13: Results of text corruptions on Flowers[25] datasets
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Figure 14: Results of line corruptions on Flowers[25] datasets
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Figure 15: Results of scribble corruptions on Flowers[25] datasets
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Figure 16: Results of random corruptions on Flowers[25] datasets
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Figure 17: Results of text corruptions on MSCOCO[21] datasets
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Figure 18: Results of line corruptions on MSCOCO[21] datasets
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Figure 19: Results of scribble corruptions on MSCOCO[21] datasets
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Figure 20: Results of random corruptions on MSCOCO[21] datasets
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Figure 21: Results of text corruptions on BSDS500[24] datasets
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Figure 22: Results of line corruptions on BSDS500[24] datasets
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Figure 23: Results of scribble corruptions on BSDS500[24] datasets
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Figure 24: Results of random corruptions on BSDS500[24] datasets
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