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Abstract

We propose a method to generate 3D shapes using point clouds. Given a point-cloud
representation of a 3D shape, our method builds a kd-tree to spatially partition the points.
This orders them consistently across all shapes, resulting in reasonably good correspon-
dences across all shapes. We then use PCA analysis to derive a linear shape basis across
the spatially partitioned points, and optimize the point ordering by iteratively minimiz-
ing the PCA reconstruction error. Even with the spatial sorting, the point clouds are
inherently noisy and the resulting distribution over the shape coefficients can be highly
multi-modal. We propose to use the expressive power of neural networks to learn a dis-
tribution over the shape coefficients in a generative-adversarial framework. Compared
to 3D shape generative models trained on voxel-representations, our point-based method
is considerably more light-weight and scalable, with little loss of quality. It also out-
performs simpler linear factor models such as Probabilistic PCA, both qualitatively and
quantitatively, on a number of categories from the ShapeNet dataset. Furthermore, our
method can easily incorporate other point attributes such as normal and color informa-
tion, an additional advantage over voxel-based representations.

1 Introduction

The choice of representation is a critical for learning a good generative model of 3D shapes.
Voxel-based representations that discretize the geometric occupancy into a fixed resolution
3D grid offers compelling advantages since convolutional operations can be applied. How-
ever, they scale poorly with the resolution of the grid and are also wasteful since the geom-
etry of most 3D shapes lies on their surfaces, resulting in a voxel grid that’s mostly empty,
especially at high resolutions. Surface-based representations such as triangle meshes and
point clouds are more efficient for capturing surface geometry, but these representations are
inherently unstructured — because there is no natural ordering of the points, they are better
expressed as an unordered set. Consequently, unlike ordered representations, they are cannot
be easily generated using existing deep convolutional architectures. The exception is when
the points are in perfect correspondence across shapes, in which case a linear shape basis can
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Training Data: spatially partitioned point clouds
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Figure 1: Our network architecture for generating 3D shapes using spatially partitioned point clouds.
We perform PCA analysis on the training data to drive a shape basis and associated shape coefficients.
We then train a GAN to learn the multi-modal distribution over the coefficients. The generated coeffi-
cients are combined with the shape basis to produce the output point clouds.

be effective (e.g., for faces or human bodies). However estimating accurate global correspon-
dences is difficult and even poorly defined for categories such as chairs that have complex
and varying geometry. Thus generating 3D shapes as point clouds remains a challenge.

We propose a new method for learning a generative model for 3D shapes represented
as point clouds. Figure 1 illustrates our network architecture. The key idea is to use a
space-partitioning data structure, such as a kd-tree, to approximately order the points. Un-
like a voxel-grid occupancy representation, the kd-tree representation scales linearly with
the number of points on the surface and can adapt to the geometry of the model. Moreover
one can easily incorporate other point attributes such as surface normal, color, and texture
coordinates into this representation, making it possible to generate new shapes that auto-
matically include these information. We learn a shape basis over the ordered point clouds
using PCA analysis of the shape coordinates. The point ordering of each shape is then op-
timized by iteratively minimizing the PCA reconstruction error. Subsequently a new shape
basis can be learned on the reordered points. If the alignments induced by the kd-tree sorting
was perfect, the distribution of the coefficients would be simple. Indeed this is the assump-
tion behind generative models such as Probabilistic PCA [23] that models the distributions
of coefficients using independent Gaussians. However, imperfect alignment can lead to a
multi-modal and heavy-tailed distribution over the coefficients. To address this issue, we
propose to leverage the expressive power of neural networks and employ a Generative Ad-
versarial Network (GAN) [12] to learn the distribution over the shape coefficients. Unlike
other non-parametric distributions such as a mixture of Gaussians, the GAN linearizes the
distribution of shapes and allows interpolation between them using arithmetic operations. At
the same time our method remains light-weight and scalable, since most shape categories
can be well represented with a hundred basis coefficients.

We compare the proposed generative model to a 3D-GAN approach of Wu et al. [25] that
learns a convolutional architecture over a voxel-representation of 3D shapes. In addition we
compare to a Probabilistic PCA (PPCA) baseline using the same point-cloud representation.
Experiments on several categories in the ShapeNet dataset show that the proposed approach
outperforms PPCA and 3D-GAN, quantitatively and qualitatively. Compared to the 3D-
GANs our models are an order-of-magnitude faster and smaller. We then present several
experiments evaluating the role of the kd-tree on the quality of the generated shapes. We also
show that a 1D-convolutional GAN trained on the ordered list of point coordinates produces
samples of reasonable quality, suggesting that the kd-tree ordering plays a key role.
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2 Related Work

Generative models for 3D shapes. Recently, Wu ef al. in [25] proposed a generative model
of 3D shapes represented by voxels, using a variant of GAN adapted to 3D convolutions.
Two other works are also related. Rezende et al. [18] show results for 3D shape comple-
tion for simple shapes when views are provided, but require the viewpoints to be known and
the generative models are trained on 3D data. Yan et al. in [26] learn a mapping from an
image to 3D using multiple projections of the 3D shape from known viewpoints (similar to
a visual-hull technique). However, these models operate on a voxel representation of 3D
shape, which is difficult to scale up to higher resolution. The network also contains a large
number of parameters, which are difficult and take a long time to train. Our method uses spa-
tially partitioned point cloud to represent each shape. It is considerably more lightweight and
easy to scale up. In addition, by using a linear shape basis, our network is small hence much
easier and faster to train. Through experiments we show that the benefits of this lightweight
approach come with no loss of quality compared to previous work. Several recent tech-
niques [19, 22] have explored multi-resolution voxel representations such as octrees [16] to
improve their memory footprint at the expense of additional book keeping. But it remains
unclear if 3D-GANSs can generate high-resolution sparse outputs.

Learning a 3D shape bases using point-to-point correspondence. Another line of work
aims to learn a shape basis from data assuming a global alignment of point clouds across
models. Blanz and Vetter in [3] popularized the 3D morphable models for faces which are
learned by a PCA analysis of the point clouds across a set of faces with known correspon-
dences. The same idea has also been applied to human bodies [1], and other deformable cat-
egories [14]. However, establishing the point-to-point correspondence between 3D shapes is
a challenging problem. Techniques are based on global rigid or non-rigid pairwise alignment
(e.g., [2, 5, 8]), learning feature descriptors for matching (e.g., techniques in this survey [24]),
or fitting a parametric model to each instance (e.g., [6, 17]). Some techniques improve pair-
wise correspondence by enforcing cycle-consistency across instances [13]. However, none
of these techniques provide consistent global correspondences for shapes with varying and
complex structures (e.g., chairs and airplanes). Our method uses spatial sorting based on a
kd-tree structure. It is a fast and lightweight approximation to the correspondence problem.
However, unlike alignment-based approaches, one drawback of the kd-tree sorting is that it’s
not robust to rotations of the model instances. This is also a drawback of the voxel-based
representations. The ShapeNet dataset [7] used in our experiments already contains objects
that are consistently oriented, but otherwise one can apply automatic techniques (e.g., [21])
for viewpoint estimation to achieve this.

Representing shapes as sets. Another direction is to use loss functions over sets such as
Chamfer, Hausdroff, or Earth Mover’s Distance (EMD) to estimate similarity between mod-
els. The recent work of Fan et al. [10] explores this direction and trains a neural network to
generate points from a single image by minimizing the EMD between the generated points
and the model points. To apply this approach for shape generation one requires the evalu-
ation of the loss of a generated shape with respect to a distribution of target shapes. While
this can be approximated by computing statistics of EMD distance of the generated shape
to all shapes in the training data, this is highly inefficient since EMD computation alone
scales cubically with the number of points. Thus training neural architectures to generate
and evaluate loss functions over sets efficiently remains an open problem. The approximate
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Figure 2: Visualization of spatially partitioned points for six training shapes from each category.

Every point is colored by its index in the sorted order. This shows that the kd-tree sorting leads to
reasonably good correspondences between points across all shapes.

ordering induced by the kd-tree allows efficient matrix operations on the ordered vector of
point coordinates for training shape generators and discriminators.

3 Method

This section explains our method. To begin, we sample each training 3D shape using Poisson
Disk sampling [4] to generate a consistent number of evenly distributed points per shape. We
typically sample each shape with 1K points, and this can be easily increased or decreased
based on actual need. We then build a kd-tree data structure for each point cloud to spatially
partition the points and order them consistently across all shapes. Next, we compute the PCA
bases using all the point data. Finally, we train a GAN on the shape coefficients to learn the
multi-modal distribution of these coefficients and use it to generate new shapes.

Spatially partitioned point cloud. We use {P’} to represent a point cloud where i is the
point index and s is the shape index. By default the point data P includes the x, y, z coordinates
of a point, but can include additional attributes such as normal and color etc. We assume
each point cloud is centered at the origin and the bounding box is normalized so that the
longest dimension spans [-0.5, 0.5]. For each point cloud we build a kd-tree by the following
procedure: we start by sorting the entire point cloud along the x-axis, and split it in half,
resulting in a left subset and a right subset; we then recursively split each of the two subsets,
but this time along the y-axis; then along z-axis, and so on. Basically it’s a recursive splitting
process where the splitting axis alternates between x, y, and z. The splitting axes can also
be chosen in other ways (such as using the longest dimension at each split) to optimize the
kd-tree building, but it needs to be consistent across all point clouds.

The kd-tree building naturally sorts the point cloud spatially, and is consistent across all
shapes. For example, if we pick the first point from each sorted point cloud, they all have
the same spatial relationship to the rest of the points. As a result, this establishes reasonably
good correspondences among the point clouds. Figure 2 shows an illustration.

Computing PCA bases. We use PCA analysis to derive a linear shape basis on the spatially
partitioned point clouds. To begin, we construct a matrix P that consists of the concatenated
x,y,z coordinates of each point cloud and all shapes in a given category. The dimensionality
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Figure 3: Decay of PCA reconstruction error following / = 1000 iterations of the point optimiation

procedure. The vertical axis represents the PCA reconstruction error and the horizontal axis represents
the number of iterations.

of the matrix is 3N x § where N is the number of points in each shape, and S is the number
of shapes. We then perform a PCA on the matrix: P = UXV, resulting in a linear shape basis
U. Thanks to point sorting using kd-tree, a small basis set is sufficient to well represent all
shapes in a category. We use B to represent the size of the shape basis, and by default choose
B =100, which has worked well for all ShapeNet categories we experimented with. The
choice of B can be observed from the rapid dropping of singular values X following the PCA
analysis. Without a good spatial sorting method, it would require a significantly larger basis
set to accurately represent all shapes.

To include other point attributes, such as normal, we can concatenate these attributes
with the x,y, z coordinates. For example, a matrix that consists of both point and normal data
would be 6 N x § in size. We suitable increase the basis size (e.g. by choosing B = 200) to
accommodate the additional data. The rest of the PCA analysis is performed the same way.

Optimizing point ordering. While sorting using the kd-tree creates good initial correspon-
dences between points, the point ordering can be further optimized by iteratively reducing
the PCA reconstruction error through the following procedure. For shape’s point cloud {P}
(where s is the shape index and i is the point index), we perform random swapping K times.
Specifically, we first randomly select a pair of points (Pf?Pj ) and make them candidates for
swapping. If the resutling PCA reconstruction error is reduced, we swap the two points. This
is repeated K times. The reconstruction error of a vectorized point cloud P° using a basis U
is computed as follows:

Lree(P'U) = |[(P = w)TUTU + = P[5, (1)

where 1 = ‘—é‘ Y..ep P°. After every shape is processed, we then re-compute a new PCA basis
using the optimized point ordering. Finally, the whole procedure is repeated / iterations.
In our experiments, we have chosen to use K = 10%,7 = 103, Figure 3 shows the decay
of reconstruction error during the optimization procedure. The shapes used in this figure
are chair models from the ShapeNet dataset. Experiments show that the point optimization
improves the results both qualitatively and quantitatively.

Learning shape coefficients using GAN. Our method employs a GAN to learn the distri-
bution over the shape coefficients. Following the PCA analysis step, the matrix V captures
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the coefficients for all training shapes, i.e. the projections of each point cloud onto the PCA
basis. It provides a compact and yet accurate approximation of the 3D shapes. Therefore
our generative model only needs to learn to generate the shape coefficients. Since the di-
mensionality of the shape basis (B = 100) is much smaller (than the number of points on
each shape), we can train a GAN to learn the distribution of coeffcients using a simple and
lightweight architecture. In our setup, the random encoding z is a 100-D vector. The gener-
ator and discriminator are both fully connected neural networks consisting of 4 layers each,
with 100 nodes in each layer. Each layer is followed by a batch normalization step. Fol-
lowing the guidelines of previous architectures [25], our discriminator uses a LeakyReLU
activation while our generator uses regular ReLU.
The discriminator is trained by minimizing the vanilla GAN loss described as follows:

L4 = Evorliog (D(x))] +Ecu[log (1 - D(G(2))))- @)

where x represents the shape coefficients, D is the discriminator, G is the generator, U rep-
resents an uniform distribution of real numbers in (—1,1), and 7 is the training data. In
our experiments, we noticed that using the traditional loss for the generator leads to a highly
unstable training where the generated data converges to a single mode (which loses diver-
sity). To overcome this issue, we employ an approach similar to the one proposed in [20].
Specifically, let f(x) be the intermediate activations of the discriminator given an input x.
Our generator will try to generate samples that match some statistics of the activations of the
real data, namely mean and covariance. Thus, the generator loss is defined as follows:

Ly = By [f(¥)] = Eenv [f(G@)]II3 + llcovinr [f ()] = coveuv[f(GR)]I; ()

where cov is the vectorized covariance matrix of the activations. Using this loss results in a
much more stable learning procedure. During all our experiments the single mode problem
never occurred, even when training the GAN for thousands of epochs. We use the Adam
optimizer [15] with a learning rate of 10~ for the discriminator and 0.0025 for the generator.
Similarly to [25], we only train the discriminator if its accuracy is below 80%.

4 Experiments

Training data. To generate training data, we use several shape categories from the ShapeNet
dataset [7], including chairs, airplanes, cars etc. We sample each shape with 1K Poisson disk
sample points using the algorithm described in [4]. Poisson disk samples evenly disperse the
points over the surface, which turns out to work better at preserving geometric details than
using white noise samples. We can easily increase the number of sample points to 4K or 8K
and beyond. Unlike voxel-based representations, our method is lightweight, and increasing
the sample size only leads to moderate increases in computation resources and time.

Qualitative evaluation. Figure 4 shows a gallery of results generated using our method for
each of the three categories: airplane, chair, and car. The results are generated by randomly
sampling the encoding z and demonstrate a variety of shapes within each category. The train-
ing is very fast and generally completes within a few minutes. This is an order of magnitude
faster than training deep neural networks built upon voxel representations. Figure 5 shows
additional results for a mixed category that combines shapes from the chair and airplane
datasets. For this mixed category we used B = 300 basis. The results show the ability of our
method to capture the multi-modal distributions over mixed-category shapes.
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Figure 4: A gallery showing results of using our method to generate points clouds for three categories:
airplane, chair, and car. We use our method to train a GAN for each category separately. The training
is generally very fast and completes within a few minutes. The results shown here are generated by
randomly sampling the encoding z of the GAN.

Generating multiple point attributes. Our method can generate points with multiple at-
tributes, such as surface normal, color, by simply appending these attributes to the (x,y,z)
coordinates. The overall procedure remains the same except the shape basis is learned over
the joint space of positions and normals etc. Figure 6 shows chair results generated with nor-
mal. The ability to incorporate point attributes is an additional advantage over voxel-based
representations (which do not explicitly represent surface information of shapes).

Quantitative evaluation. We compare variations of our model to a PPCA baseline [23].
The PPCA model performs a linear factor analysis of the data using: y ~ Wx+ u + 0.
The matrix W is a basis, the latent variables x ~ N(0,1), noise ¢ ~ N(0,6%I) and the p
is the data mean. In other words, PPCA learns an independent Gaussian distribution over
the coefficients x, whereas our approach employs a GAN. We compare PPCA results with
variations of our model by changing the number of basis and examining its influence on the
quality of the results. The metric used in the evaluation is defined as follows. Let 7 and S
be the set of training and generated samples, respectively. We define our distance measure
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Figure 5: Results for a mixed category (chair + airplane) showing the ability of our method to capture
multi-modal distributions over mixed-category shapes.
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Figure 6: Chairs generated with normal. For visualization we shade each point as a square patch
centered at the point and oriented by the normal. This shows the ability of our method to generate not
only x,y,z coordinates but also incorporate associated point attributes such as normal.

d(T,S) using a variant of the Chamfer distance, as follows:

d(T,S)= mln t—s m1n t—s )

reT 5€ ses!

The results can be seen in Table 1. Our approach that uses a GAN to model the distribution
of coefficients consistently outperforms the PPCA baseline, which models the distribution as
a Gaussian. For the chairs and tables categories the difference between the PPCA and GAN
is large, suggesting that the distribution of the coefficients is highly multi-modal. The results
by varying the number of bases are also shown in the Table 1. Increasing the number of basis
beyond a hundred did not improve our results further.

Visual comparison to 3D-GAN. To compare our results with the 3D-GAN model [25],
we followed their description to implement our own version of the algorithm as there is no
publicly available implementation that can be trained from scratch. Figure 7 shows the 3D-
GAN results for the chair category. As in [25], the training data is generated by voxelizing
each shape to 642 resolution, and we employ the same hyper-parameters for our GAN model
as theirs. Our results, which can be found in Figure 4, compare favorably to 3D-GAN. In
addition, our network is significantly smaller and faster to train.

The role of the kd-tree. The kd-tree induces a shape-dependent but consistent ordering of
points across shapes. Moreover the ordering is locality preserving, i.e., two points that are
close in the underlying 3D shape are also likely to be close in the list after kd-tree ordering.
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Dataset | GAN(10) GAN(50) GAN(100) SGAN (100) | PPCA (100)

Chairs 2.57 2.53 2.37 2.19 2.88
Airplanes 1.96 1.93 1.94 1.48 2.29
Cars 1.45 1.42 1.44 1.25 1.59
Tables 2.88 2.68 2.66 2.34 3.18

Table 1: Distance (Eq.4) between the generated samples and training samples for different generative
models. The numbers in parentheses indicate the number of PCA coefficients used for each column.
SGAN is the GAN trained using the sorted data. The GAN approach outperforms the PPCA baseline
by a considerable margin even without thesorting procedure.

54

Figure 7: 3D-GAN result for the chair category. The models are generated by following [25].

We believe that this property is critical for the estimating a good initial basis for the shape
representation. In order to verify this hypothesis we consider an alternative scheme where
the points are ordered according to their x 4y + z value. Although consistent across shapes
this ordering does not preserve locality of the points and indeed yields poor results as seen
in Figure 8. However, other data structures that preserve locality such as locality-sensitive
hashing [11] and random-projection trees [9] are possible alternatives to kd-trees.

We also experimented an scheme for generating shapes where /1D convolutions on the
ordered points are used for both the generative and discriminative models in a GAN frame-
work. Instead of learning a linear shape basis with has wide support over all the points, the
ID-GAN architecture only has local support. Since the ordering is locality sensitive, one
might expect that convolutional filters with small support are sufficient for generation and
discrimination. This approach can also be robust to a partial reordering of the list due to
variations in the shape structures. Moreover, the ID-GAN can be directly learned on the
ordered point list without having to first learn a bases, and is even more compact than the
GAN+PCA basis approach. The architecture used for this experiments has the same number
of layers with our standard approach. The major difference is in the fact that we use 1D
convolutional layers instead of fully connected ones. The generator layers have a filter size
of 25 and the first one has 32 filters. The following layers double the number filters of the
previous layer. The discriminator is the mirrored version of the generator. Figure 9 shows the
results obtained using the 1D-GAN for the chair category. Remarkably, the generated shapes
are plausible, but are ultimately of worse quality than our GAN+PCA approach. Both these
experiments suggest that the kd-tree plays a important role for our method.

Shape interpolation. Similar to image-based GAN and 3D-GAN, we can perform shape
interpolation by linearly interpolating in the encoding space z. Specifically, we can pick
two encodings zi, 22, linearly interpolate them, and use our generative model to compute
the resulting point cloud. The interpolation results are shown in Figure 10. As observed,
the interpolated shapes are plausible and exhibit non-linearity that cannot be achieved by
directly interpolating the shape coefficients.
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Figure 8: Sorting point clouds using x +y + z values. Top row shows a visualization of the training
data using this sorting strategy. Bottom row shows the generated shapes for the chair category. They
are visually of poor quality compared to kd-tree sorting.

Figure 9: Samples from an alternative GAN architecture using 1D convolutions. Trained using the
the point clouds directly.

5 Conclusion and Future Work

We showed that conventional CNN architectures can be used to generate 3D shapes as point
clouds once they are ordered using kd-trees. We found that a hundred linear basis are gen-
erally sufficient to model a category of diverse shapes such as chairs. By employing GANs
to model the multi-modal distribution of the basis coefficients we showed that our method
outperforms the PPCA baseline approach. The ordering of points produced by the kd-tree
also allows reasonable shape generation using 1D-GANs. Our approach is of comparable
quality but considerably more lightweight than 3D voxel-based shape generators. Moreover
it allows the incorporation of multiple point attributes such normals and color in a seamless
manner. In future work we aim to explore if improving the point orderings during training
improves the reconstruction error. We also plan to investigate the role of space-partitioning
data structures on 3D shape classification and segmentation tasks.

B g MY

Figure 10: Interpolation of the encodings z between a start shape and an end shape for each of the
three categories shown here: airplane, car, and chair.
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