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1 Network Architecture of the Proposed Model
Our model is an unified multi-modal learning framework, as illustrated in Fig. 2 of the main
paper. Here a detailed description of the network architecture is provided in Table 1. Note
that both the sketch and photo branches of the network follow the modified Sketch-a-Net
architecture in [3], while the text embedding is obtained from a bidirectional LSTM based
language model similar to those used in [1, 2]. The weights between the sketch and photo
branches are tied. The formulated quadruplet loss is applied to constrain the feature learning
on the linear transform of sketch, photo and text embeddings.

Branch Layer No. Input Layer(s) Layer Type Kernel Size Stride Pad Output

Sketch-photo branch

0 - Input - - - 225×225×1
1 0 Conv1 15×15 3 0 71×71×64
2 1 Pool1 3×3 2 0 35×35×64
3 2 Conv2 5×5 1 0 31×31×128
4 3 Pool2 3×3 2 0 15×15×128
5 4 Conv3 3×3 1 1 15×15×256
6 5 Conv4 3×3 1 1 15×15×256
7 6 Conv5 3×3 1 1 15×151×256
8 7 Pool5 3×3 2 0 7×7×256
9 8 FC6 1×1 1 0 1×1×512

Text branch
10 - Input - - - 1×1×40 (time stamp)
11 10 Word Embedding 1×1 1 0 1×1×300×40 (time stamp)
12 11 Bidirectional LSTM 1×512 1 0 1×1×1024 (last output)
13 12 FC8 1×1 1 0 1×1×256

Quadruplet loss 14 9 Linear Transform 1 1×1 1 0 1×1×256
15 9 Linear Transform 2 1×1 1 0 1×1×256

Table 1: The detailed configuration of each branch of the proposed model.

2 Experiments on Fine-grained Image Retrieval with
Sketch-Text Query

In this work we focus on the application scenario where both the text and sketch modalities
are available for learning a photo retrieval model; yet during testing, only one modality is
used for to conduct retrieval, i.e., we assume that the user of our model would only provide
either sketch or text, but not both as the query input. In this experiment, we investigate a
different application scenario where a user provides both a sketch and a text description as
input to our model for photo retrieval. Note that the same trained model for single modality
query is used here for multi-modality query. Since each modality can be used to compute a
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Round toe, woven loafers in rust suede with lace up 

front, suede upper, leather lining, leather sock, rubber 

sole .

Slip on classic espadrilles featuring a coral suede upper, 

black leather ankle strap with feature buckle by Gaimo, 

suede/leather upper, canvas sock, rubber sole.

The double strap, sling back sandal by OFFICE features 

a vibrant pink cow hair and grey leather upper, synthetic 

upper, leather insole, ruber sole

Peep toe , flats with cross strap upper in yellow leather, 

leather upper, leather sock and lining, synthetic sole.

Simple slip on in grey canvas with elastic inserts for 

stretch and a slim blue rubber sole. Light and easy 

to wear, ideal for sunny holidays, canvas upper,  canvas 

lining, canvas sock, rubber sole. 

Sketch + Text Query Top 5 retrieval result

Figure 1: Qualitative example of fine-grained image retrieval with both sketch and text query.

distance/similarity score for each photo in a gallery set, a simple strategy for fusing the two
query modality is to compute a weight sum of the two distances. In our experiments, we
give a weight of 0.8 to the sketch modality as it is clearly the strongest out of the two. Table
2 shows that after fusing the two query modalities, the retrieval performance is improved
compared to that obtained using each modality alone. This suggests that our model can
exploit the complementarity of the two modalities for better retrieval performance. Some
qualitative results can also be found in Figure 1.

Query Model Top 1 acc Top 10 acc
sketch→ photo Our full model 50.38% 84.73%

text→ photo Our full model 12.60% 37.40%
(sketch + text)→ photo Our full model 52.67% 87.02%

Table 2: The performance of fine-grained image retrieval when both sketch and text is avail-
able as input.
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