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Abstract

Anti-sparse representation was recently considered for unsupervised hashing, due to
its remarkable robustness to the binary quantization error. We relax the existing spread
property [4, 22] for anti-sparse solutions, to a new Relaxed Spread Property (RSP) that
demands milder conditions. We then propose a novel Transformed Anti-Sparse Hashing
(TASH) model to overcome several major bottlenecks, that have significantly limited the
effectiveness of anti-sparse hashing models. TASH jointly learns a dimension-reduction
transform, a dictionary and the anti-sparse representations in a unified formulation. We
have conducted extensive experiments on real datasets and practical settings, and demon-
strate the highly promising performance of TASH.

1 Introduction

Hashing is a set of approaches to transform a data sample to a low-dimensional bit sequence
[17, 23, 24]. When the semantic similarity information like the class label is available, su-
pervised hashing methods obtain promising performance by explicitly considering semantic
consistency. Unsupervised hashing methods, as another main category, rely only on unla-
beled data to generate binary hashing codes, making them more challenging to achieve good
performance. In this paper, our main focus is on the task of unsupervised hashing.

The seminal work of [8] formulated the paradigm for the locality-sensitive hashing (LSH),
which guarantees that the hashing codes of similar data will be closer in the Hamming space.
Despite its elegant theoretic guarantee and computational simplicity, the classic random
hyperplane-based LSH methods [2] suffer from high code redundancy. More recently, learn-
ing to hash has gained increasing popularity. A few representation methods include spectral
hashing [28], spherical hashing [7], density sensitive hashing [11], discrete graph hashing
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[16], and iterative quantization (ITQ) [5]. Such methods involve learning a compound hash-
ing function that maps vectors ∈ Rp to binary codes ∈ Bc, such that the Hamming distance
between codes preserves the similarity between original vectors.

As the critical problem of learning to hash, the choice of hashing functions influences the
flexility of partitioning the space and the efficiency of computing hashing codes. The most
popular choice is arguably the linear hashing function, e.g., in [5], that projects the vectors
onto random or learned directions and then takes the sign to produce binary codes. Such a
typical “project and sign” strategy, however, was suggested by [1] to be sub-optimal for the
typical hashing case p > c, where the projection cannot be orthogonal and the strategy may
lead to a bad quantizer (check Example (9) in [1] ).

Motivated by such observations, recent approaches adopt more sophisticated encoding
strategies, such as spherical function [7], kernelized function [13], sparse coding [32], and
neural network [14]. Our particular interest is paid to the anti-sparse coding model for hash-
ing [4, 10, 26]. For a data sample x ∈ Rp, its anti-sparse code a ∈ Rc can be solved via:

mina ||a||∞, s.t. Da = x (1)

where D ∈ Rp×c is the dictionary. The binary code is obtained by simply thresholding a
at zero. This objective of anti-sparse coding (1) resembles the better-known sparse coding
[27], except the `0 or `1 norm being replaced by the `∞ norm. As a result, in contrast to con-
centrating the signal representation on few elements, the solution of (1) is called “spread”
or “democratic”: it offers a robust representation of a vector in a higher dimensional space
with all the components sharing the information approximately evenly. [4, 22] showed that a
usually has most entries reaching the same absolute maximum magnitude, therefore resem-
bling to an antipodal signal ∈ Bc. Therefore, converting x to its anti-sparse representation a
reduces the quantization error underpinning the binarization (sign) function.

Despite the appealing advantages of minimizing quantization distortions and introducing
a non-linear hashing function, the study of anti-sparse coding for hashing has so far been
limited and preliminary. First, while dictionary learning has become the standard tool for
sparse coding [27], existing anti-sparse hashing models [1, 10] only exploited fixed tight
frames D. [22] proved that given a full-spark overcomplete D, at least c− p+ 1 elements
of the anti-sparse solution would be stuck to the extreme values ±||a||∞, referred to as the
spread property hereinafter (see Lemma 2 in [22]). However, the overcomplete assumption
becomes impractical when it comes to hashing, whose goal is to represent high-dimensional
x (e.g., image descriptors with the dimensionality of thousands) with a compact code (tens
or hundreds of bits). Following the above theoretical results, [1, 10] either tested only on
synthetic data, or conducted benchmark evaluations in the unusual setting of c > p. Their
demonstrated efficiency thus cannot be on par with many state-of-the-art models that work
effectively under c < p. A straightforward idea is to apply principal component analysis
(PCA) as pre-processing, to project x to a lower dimension d ≤ c. However, it is not jointly
considered with the hashing step, and will inevitably cause considerable information loss.

This paper makes multi-fold contributions to overcome the above theoretical and prac-
tical limitations. First, we derive the new Relaxed Spread Property (RSP), that avoids the
strong assumption of D, as well as unties the lower bound of extreme elements with the num-
ber of rows p. Next, to reduce the practical gap between c and p, we propose a novel Trans-
formed Anti-Sparse Hashing (TASH) model, which learns dimension-reduction transform,
dictionary and anti-sparse representation simultaneously. To our best knowledge, TASH is
the first model that optimizes the three in a unified formulation. We then present a systemat-
ical evaluation of TASH, which clearly manifests its highly competitive performance.
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2 Theoretical Result
[4] observed the spread property of `∞ minimization (1) w.r.t. a tight frame D ∈ Rp×c (p <
c), and claimed the lower bound of c− p+ 1 on the minimum number of entries whose
magnitudes reach ‖a‖∞. However, it remains unclear how their result can be extended from
the “noiseless” setting (1) to the “noisy” case such as (7). Besides, their claim was stated
without explicitly specifying requirements on the dictionary, except for being a tight frame.
[22] formally analyzed the solution to the `∞ minimization under the inequality constraint
of the approximation accuracy ε , denoted by Pε

∞. They established that if the frame has full
spark, then every solution to Pε

∞ has at least c− p+1 extreme entries. The results imply that
for full-spark and highly overcomplete D, solving constrained `∞ minimization is guaranteed
to lead to an anti-sparse representation with most entries being extreme.

Despite a few deterministic and random constructions of full-spark frames being known,
it is challenging to ensure that a learned dictionary D in (6) will satisfy the full spark con-
dition. Further, the lower bound c− p+ 1 remains to be associated with the redundancy
(c/p). We thus seek an alternative to replace the strong full spark condition and the high
redundancy implication of D.

Our result, termed as the Relaxed Spread Property (RSP), is stated below. Define the in-
dependent cardinality of a matrix D∈Rp×c to be the minimal number of columns arbitrarily
selected from D such that

span of selected columns⊇ span of remaining columns.
As an equivalent definition, the independent cardinality is the smallest number of columns
arbitrarily selected from D, such that their span is equal to the span of D.

As a special case, if D has full spark (which requires p≤ c), then its independent cardi-
nality is p, and RSP is reduced to the result of [22]. For a non-full spark D, we do not see
a general relation between its spark and independent cardinality, as the two are formulated
for different purposes. Just like spark, the independent cardinality of a matrix is NP-hard to
compute. Importantly, all our conclusions below stay valid for arbitrary D, even p > c.

Theorem 2.1. Let a∗ be the optimal solution to the following `∞ regularized optimization

mina
1
2‖Da− x‖2 +λ‖a‖∞, (2)

where D ∈ Rp×c and λ > 0. Then a∗ includes at least c− t + 1 extreme entries with the
magnitude ‖a∗‖∞, where t is the independent cardinality of D. Further, it indicates that the
intensity of a∗ is evenly distributed

‖a∗‖∞ ≤
1√

c− t +1
‖a∗‖.

Proof. First, if Da∗ is 0, then a∗ must be 0 and the claim is satisfied automatically. Second,
we consider the case Da∗ is nonzero, and prove the claim by contradiction. Assume that k
elements in a∗ are extreme values with k ≤ c− t. Let Ω denote the index of elements in a∗

that are extreme, and Ω̄ be the complementary set. Note that |Ω| = k and |Ω̄| = c− k ≥ t.
From the definition of the independent cardinality, we know that

range(D
Ω̄
)⊇ range(DΩ).

It follows that there must exist a nonzero vector v satisfying

D
Ω̄

v = Da∗ = DΩa∗Ω +D
Ω̄

a∗
Ω̄
.
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Next we construct a new solution a′ with a′
Ω
= (1− θ)a∗

Ω
, a′

Ω̄
= (1− θ)a∗

Ω̄
+ θv. One can

verify that the Da′ = Da∗ for any θ . Thus, the function value of the square term are the same
for a∗ and x′. But next we will see ‖a∗‖∞ > ‖a′‖∞ if θ is chosen appropriately, which leads
the contradiction that a∗ is not the optimal solution. To see that, we have

‖a′‖∞ = max
{
|1−θ |‖a∗Ω‖∞, |1−θ |

∥∥∥∥a∗
Ω̄
+

θ

1−θ
v
∥∥∥∥

∞

}
.

To show ‖a∗‖∞ > ‖a′‖∞, it suffices to show that there exist a θ ∈ (0,1) such that∥∥∥∥a∗
Ω̄
+

θ

1−θ
v
∥∥∥∥

∞

≤ ‖a∗Ω‖∞ = ‖a∗‖∞.

Since ‖a∗
Ω̄
‖∞ < ‖a∗

Ω
‖∞, a∗

Ω̄
is an interior point in the box set {y ∈ Rc−k : ‖y‖ ≤ ‖a∗‖∞}.

Therefore, given an arbitrary direction v 6= 0, shifting a∗
Ω̄

alone such direction by a tiny (as
long as θ is small enough) step θ

1−θ
can guarantee that a∗

Ω̄
+ θ

1−θ
v is still in the box set,

which proves (2). The second claim is implied similarly.

RSP holds without hinging on any assumption of D, e.g., being a tight frame or full
spark. Moreover, the lower bound by RSP on the number of extreme entries in a is not tied
with the number of rows p in D. That is different from the lower bound given by [4, 22], and
potentially allows for less overcomplete D with sufficiently small independent cardinality. In
future work, we also aim to minimize the independent cardinality of D using some tractable
loss function, which can be incorporated into TASH and regularize the learning of D.

3 Model and Algorithm
RSP relaxes the requirement of the classical spread property, i.e., it is no longer necessary
to ensure a full-spark or tight-frame D. Although it is infeasible to directly minimize the
independent cardinality of D, RSP provides the promise in choosing D more flexibly, mo-
tivating us to introduce a dictionary learning step. However, with c ≤ p in the hashing
practice, solving (2) usually will not produce a with most entries reaching the extreme. Our
most important innovation is to jointly learn a dimensionality reduction transform matrix
P ∈ Rd×p, where d < p, so that the input for anti-sparse coding becomes Rd instead of Rp.

3.1 Model Formulation

Assume the data matrix X∈Rp×n, consisting of n training samples xi ∈Rp, i = 1, 2, ... n. The
goal is to obtain a hashing code matrix B ∈ Bc×n. While the integer constraint is intractable,
we instead seek to solve the anti-sparse representation A ∈ Rc×n, with ai ∈ Rc denoting its
i-th column, i = 1, 2, ... n, such that B = IA>0. With the transform matrix P ∈ Rd×p, we
correspondingly define the dictionary D ∈Rd×c, where d j ∈Rd denotes its j-th column, j =
1, 2, ... c. Note that by adjusting d, D may be overcomplete (d < c), complete (d = c), or
undercomplete (d > c). Assume that P is pre-selected, the following model implements the
anti-sparse coding with dictionary learning and fixed transform (λ is a constant):

minD,A
1
2 ||DA−PX||22 +λ ∑

n
i=1 ||ai||∞, s.t. ||d j|| ≤ 1, j = 1,2, ...,c. (3)
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P could be chosen as a PCA matrix or other common dimensionality reduction operators.
An alternative would be to learn P jointly as well, with the key problem to design a proper
regularization function on P. Directly setting P as a variable in (3) leads to the trivial solution
of P = 0 and A = 0. Another option inspired by the transform learning literature [29, 30]
is to set PPT = I, which seeks to learn P with normalized and mutually uncorrelated rows.
Seemingly plausible at the first glance, that would lead to another set of trivial solutions, i.e.,
A≈ 0 and PX≈ 0, implying that P is always nearly orthogonal to X and PX hardly captures
any meaningful information. We recall that solving the following form gives out P∗ as the
d× p PCA projection matrix of X (Id denotes a d×d identity matrix):

minP ||PTPX−X||2F , s.t. PPT = Id . (4)

Inspired by (4), one viable regularization would be to minimize the information loss through
the transformation P, measured by ||PTPX−X||2F , in addition to PPT = I. That leads to the
form below (β is a constant):

minD,A,P
1
2 ||DA−PX||2F +λ ∑

n
i=1 ||ai||∞ + β

2 ||P
TPX−X||2F ,

s.t. ||d j|| ≤ 1, j = 1,2, ...,c; PPT = Id .
(5)

In order to alleviate the entangled constraints and avoid higher-order terms on P, we intro-
duce an auxiliary variable Q ∈ Rd×p, and relax (5) as:

minD,A,P,Q
1
2 ||DA−PX||2F +λ ∑

n
i=1 ||ai||∞ + β

2 (||Q
T PX−X||2F + ||P−Q||2F),

s.t. ||d j|| ≤ 1, j = 1,2, ...,c; QQT = Id .
(6)

The formulation (6) will be the default TASH model throughout the paper.
Previous anti-sparse models [1, 10] are simplistic instances of TASH (6) that learn only

A, with fixed D, P being the identity matrix and no Q. Another well-known hashing model,
ITQ [5], is also related to (6). To see this, one may let d = c, fix P as the PCA matrix, set
D as a unitary (rotation) matrix to be jointly learned, and view `∞-regularization as a convex
relaxation from the nonconvex binary constraint.

After obtaining D and P from the training model (6), the testing stage for any xnew solves:

minanew
1
2 ||Danew−Pxnew||22 +λ ||anew||∞. (7)

3.2 Algorithm Development
We hereby present an iterative coordinate descent algorithm for (6). At the k-th iteration (k
= 0, 1, 2, ...), we sequentially solve the following four subproblems.

A-subproblem The A-subproblem can be updated separably for each ai:

minai
1
2 ||Dkai−Pkxi||22 +λ ||ai||∞, i = 1,2, ...,n. (8)

We implement the sub-differential set-based algorithm proposed by [4] to solve (8), which
is similar to path-following methods based on continuation techniques.

D-subproblem The D-subproblem updates Dk+1 via a least-squares problem with spher-
ical constraints. It is solved using the Lagrange dual method [15] for efficiency, as only c
dual variables are involved:

minD
1
2 ||DAk+1−PkX||2F s.t. ||d j|| ≤ 1, j = 1,2, ...,c. (9)
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P-subproblem The P-subproblem solves an unconstrained quadratic optimization, with an
closed-form update formula:

Pk+1 = {DkAkXT +βQk(XXT + Ip)}∗{(1+β )XXT +β Ip}−1. (10)

Q-subproblem The Q-subproblem minimizes a quadratic form with the orthogonality
constraint (let Z = Pk+1X for simplicity):

minQ ||QT Z−X||2F + ||Pk+1−Q||2F , s.t. QQT = Id . (11)

Despite its concise form, solving (11) can be difficult due to the non-convex constraint. The
feasible set of (11) is often referred to as the Stiefel manifold, and can lead to many local
minimizers [31]. We develop an algorithm based on the alternating direction method of
multipliers (ADMM) to efficiently solve (11). By variable splitting and introducing another
auxiliary variable R ∈ Rd×p, (11) can be first re-written as:

minQ,R ||QT Z−X||2F + ||Pk+1−Q||2F , s.t. Q = R,RRT = Id . (12)

The augmented Lagrangian function of (12) is:

||QT Z−X||2F + ||Pk+1−Q||2F+< Y,Q−R >+ δ

2 ||Q−R||2F +Φ(R). (13)

Here Y ∈ Rd×p is the Lagrange multiplier attached to the equality constraint, δ is a positive
constant with the default value 1, and Φ(R) is the penalty function that takes 0 when RRT =
Id and infinity elsewhere. ADMM minimizes (13) with respect to Q, R and updates Y in an
alternating manner (t = 0, 1, 2... denotes the iteration number). Minimizing (13) w.r.t. Q
enjoys the closed-form solution:

Qt+1 = (ZZT +(δ +1)Id)
−1 ∗ (ZXT +P−Yt +δRt) (14)

Minimizing (13) over R leads to the following problem:

minR Φ(R)−< Yt ,R >+ δ

2 ||Qt+1−R||2F , (15)

whose solution is characterized below (the proof follows the proof of Theorem 2.1 in [3]):

Theorem 3.1. The optimal solution of (15) is R = UVT , where U ∈ Rd×d , V ∈ Rp×d are
composed of the top-d left and right singular vectors of Qt+1 +

Yt
δ

, respectively.

Y is then updated as: Yt+1 = Yt +δ (Qt+1−Rt+1).

3.3 Complexity Analysis
For each ai problem (8), the complexity of one iteration is dominated by the inverse of a
Gram matrix of a dynamic partition of D, which is (loosely) upper-bounded by O(c3) when
applying Gauss-Jordan elimination. It thus roughly takes O(C1nc3) to update the entire A
once, where C1 is a constant accounting for iterations, etc. For optimizing (9), each step
inverses a c× c matrix, leading to the complexity of O(C2c3). Computing (10) causes a
negligible cost of O(dcn+ d pn+ d p2), as the matrix inverse can be pre-calculated and no
iteration is used. The Q-subproblem has a complexity of O(C4 pd2), owing to the singular
value decomposition required to solve (15) per iteration.
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(a) (b) (c)

Figure 1: The average mAP comparisons at different numbers of bits: (a) Caltech-256 (gist
512d); (b) Caltech-256 (cnn 1024d); (c) CIFAR-10 (gist 320d).

(a) (b) (c) (d)

Figure 2: The comparisons of precision-recall curves on Caltech-256 (gist 512d) at: (a) 32
bits; (b) 64 bits; (c) 128 bits; (d) 256 bits.

The overall complexity of the iterative coordinate descent algorithm for training TASH
is hence: O(C′1nc3 +C′2c3 +C′3(dcn+d pn+d p2)+C′4 pd2), where C′1,C

′
2,C
′
3 and C′4 are all

constants absorbing outer loop, and inner loop iterations when necessary. The overall com-
plexity scales linearly with the data volume n, quadratically with the input feature dimension
p, quadratically with the transformed dimension d, and cubically with the hash length c. For
the testing stage (7), its complexity is the same as the A-subproblem: O(C1c3) per sample.

In practice, the main efficiency bottleneck lies in solving the A-subproblem per iteration.
That implies a potential acceleration strategy to solve all ai problems parallelly. Increasing
c has the most notable impact on the practical running time. The influences of raising d
and p are not as obvious. Besides, we usually only need to solve A, D, and Q subproblems
inexactly, which reduces C′1,C

′
2 and C′4.

4 Experiments for Unsupervised Hashing
4.1 Comparison with State-of-the-Art Methods
We evaluate our methods on two popular benchmarks: Caltech-256 [6] and CIFAR-10 [12].
Both have been widely used to evaluate unsupervised hashing methods. Caltech-256 consists
of 29,780 images, each of which is associated with one of 256 object categories. CIFAR-20
contains 60,000 images from 10 classes. We use 512-dimension GIST [19] descriptors and
1024-dimension CNN features from the VGG model [21] to create two views of Caltech-
256, referred to as Caltech-256 (gist 512d) and Caltech-256 (cnn 1024d), respectively. We
use 320-dimension GIST descriptors to produce the CIFAR-10 (gist 320d) set. In each of
these datasets, we form a query set by randomly choosing 1,000 samples and construct a
non-overlapping training set using the rest1.

1We used the pre-processed datasets as well as visualization tools from: https://github.com/
willard-yuan/hashing-baseline-for-image-retrieval
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(a) (b) (c) (d)

Figure 3: The comparison of curves of recall versus number of retrieved samples on Caltech-
256 (gist 512d) at: (a) 32 bits; (b) 64 bits; (c) 128 bits; (d) 256 bits.

(a) (b) (c) (d)

Figure 4: The comparison of curves of precision versus number of retrieved samples on
Caltech-256 (gist 512d) at: (a) 32 bits; (b) 64 bits; (c) 128 bits; (d) 256 bits.

We compare TASH with a variety of state-of-the-art unsupervised hashing methods: ITQ
[5]; PCA Hashing (PCAH); [18]; PCA projection followed by random orthogonal trans-
formation (PCA-RR) [9]; Spectral Hashing (SH) [28]; Spherical Hashing (SpH) [7]; Lo-
cal Sensitive Hashing (LSH) [2]; Shift-invariant Kernel-based Locality-sensitive Hashing
(SKLSH) [20]; Density Sensitive Hashing (DSH) [11]. LSH and SKLSH rely only on ran-
domized data-independent linear projections, while all others utilize the training dataset.

We initialize D using a tight frame D0, generated by QR decomposition from an i.i.d.
Gaussian matrix. We initialize both P and Q as the PCA matrix of X. These proper initializa-
tions make TASH converge fast, and for simplicity we use 10 iterations for all experiments.
TASH also has a few hyperparameters to decide. d is usually chosen no larger than c: we fix
d = c here, and will discuss the trade-off of d in the next section. We select λ proportionally
to c: λ = δc, while in this paper we use the same empirical δ = 5

128 for all datasets. However,
we observe that fine-tuning δ per each dataset may lead to TASH performance better than
reported. The default value of β is 5.

We vary the hashing code length c from 32 bits to 256 bits, to evaluate the performance
of all the methods on compact codes and relatively long codes. We adopt the following
four classical criteria for evaluation: 1) the mean average precision (mAP); 2) the precision
and recall (PR) curve; 3) the recall values at different number of retrieved samples; 4) the
precision values at different number of retrieved samples. Each measure is computed for all
comparison methods at different numbers of bits (32, 64, 128, 256).

Fig. 1 (a) compares all the methods in terms of mAP on the Caltech-256 (gist 512d) set.
While PCAH fails to perform well due its simplistic nature, two relevant methods, ITQ and
PCA-RR, show competitive results for most code sizes. ITQ even marginally outperform
TASH at 32 bits. But as the bit number rises, ITQ and PCA-RR lag behind TASH with
growingly large margins. Another notable competitor, SKLSH, shows a strongly upward
trajectory and gets the second best mAP at 256 bits. It is owing to the theoretical conver-
gence guarantee of SKLSH that the Hamming distance between binary codes can precisely
approximate the distance in the kernel space when enough bits are assigned. LSH also im-
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(a) (b) (c)

Figure 5: The learned representations of one test sample from Caltech-256 (gist 512d),
through (a) PCAH, (b) ITQ and (c) TASH models.

proves as the code length increases, and almost reaches the performance level of ITQ and
PCA-RR at 256 bits. However, both SKLSH and LSH have unsatisfactory performance at
small number of bits (the mAP of SKLSH is almost as poor as that of PCAH at 32 bits).
That observation certifies the importance of learning from data, in particular when the code
length is small. Finally, while some methods (ITQ, PCA-RR) perform better with compact
codes and some others (SKLSH, LSH) better for longer codes, TASH outperforms all its
competitors in almost all cases, with noticeable margins.

Figs. 1 (b) and (c) demonstrate the mAP results on Caltech-256 (cnn 1024d) and CIFAR-
10 (gist 320d), respectively. Fig. 1 (c) share similar trends as (a). It is interesting to com-
pare Figs. 1 (a) and (b) to find out that more sophisticated features (such as CNN features)
greatly benefit the mAPs of data-dependent hashing methods, such as ITQ, PCA-RR and
even PCAH, while SKLSH seems to be negatively affected here. In both settings, TASH
maintains its persistent advantage over all other competitors.

Fig. 2 further investigates the key trade-off between the precision and recall of all meth-
ods on Caltech-256 (gist 512d). PCAH actually deteriorates as the number of bits increases.
ITQ and SKLSH performs comparably with TASH at 32 bits and 256 bits, respectively. But
TASH is the only one that maintains top performance at all numbers of bits, and significantly
outperform all else at 64 and 128 bits. Figs. 3 and 4 record the precision and recall changes
w.r.t the number of retrieved samples on Caltech-256 (gist 512d), both of which re-confirm
the consistent performance superiority and robustness of TASH. Interestingly, some methods
with less competitive mAPs show promising in these two curves, such as SpH.

4.2 Visualization and Analysis

(a) (b) (c)

Figure 6: The average mAP comparisons on Caltech-256 (gist 512d), with (a) learned or
fixed dictionary D, (b) different coefficients β and (c) different transformed dimensions d.

We visualize three learned representations (before quantization) of one sample from
Caltech-256 (gist 512d), in Fig. 5, by PCAH, ITQ and TASH, respectively. It is easy to
see that the quantization from the PCAH feature (a) will suffer the strongest distortion in the
binarization step, since most energy concentrates on a few first elements, which also impairs
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the discriminability of the resulting binary codes. The ITQ feature (b) greatly alleviates the
problem by rotating the PCA feature and re-balancing the magnitudes. The TASH feature
(c) will have the minimum quantization error, as it naturally resembles an antipodal signal
and most of its entries already take the two extreme values.

Fig. 6 (a) compares solving TASH with the learned dictionary D, and with the fixed tight
frame D0. As expected, the capability to adapt the basis to the training data greatly benefits
TASH, especially for large c. Fig. 6 (b) studies the effect of choosing β , with the baseline β =
0 defined as using PCA matrix for P and no Q. Clearly, learning the transform P contributes
dramatically to the outstanding performance of TASH, as compared to the baseline. On the
other hand, overly large β s like 10 and 20 start to weaken the results. When β → ∞, the
objective of (6) turns close to that of (3), which is also reflected by the major overlapped
parts between the β =20 and β = 0 (PCA) curves.

Fig. 6 (c) presents particularly interesting results, on varying the transformed dimen-
sion d. Our default TASH models sets d = c. We also test and compare the performance
of different TASH models with d = c/1.5, d = c/2, d = c× 1.5, d = c× 2. As the main
observation, it is always preferable to choose d ≤ c than d > c. Moreover, a smaller d ≤ c
is not necessarily more favorable, e.g., d = c/2, due to heavier information loss in the di-
mensionality reduction process. The optimal d is thus decided by the trade-off between:
1) adopting reasonably large d in order to preserve more information during the transform;
and 2) keeping d sufficiently small w.r.t. c, which usually implies that more elements of
anti-sparse solutions are stuck to the extreme. Actually, the two curves of d = c/1.5 and d =
c get fairly close: the former is even slightly better at 32 bits.

5 Discussions and Conclusions
The paper contributes both theoretically and practically to making anti-sparse models more
effective for hashing. The proposed TASH model jointly learns a dimension-reduction trans-
form, a dictionary and the anti-sparse representations in a unified formulation. We evaluate
TASH on several real-world datasets and compare it against a large variety of unsupervised
hashing methods, which confirms its highly competitive performance and strong robustness.
Visualizations and analysis add to the explainability of results. Since the A-subproblem is
relatively costly to solve, whose complexity strongly depends on the data scale n and the
hash length c, our immediate future work is to learn its fast approximations [25, 26].
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