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Abstract

Compared with raw images, the more common JPEG images are less useful for ma-
chine vision algorithms and professional photographers because JPEG-sRGB does not
preserve a linear relation between pixel values and the light measured from the scene. A
camera is said to be radiometrically calibrated if there is a computational model which
can predict how the raw linear sensor image is mapped to the corresponding rendered
image (e.g. JPEGs) and vice versa. This paper begins with the observation that the rank
order of pixel values are mostly preserved post colour correction. We show that this
observation is the key to solving for the whole camera pipeline (colour correction, tone
and gamut mapping). Our rank-based calibration method is simpler than the prior art
and so is parametrised by fewer variables which, concomitantly, can be solved for using
less calibration data. Another advantage is that we can derive the camera pipeline from
a single pair of raw-JPEG images. Experiments demonstrate that our method delivers
state-of-the-art results (especially for the most interesting case of JPEG to raw).

1 Introduction

Many computer vision algorithms (e.g. photometric stereo [18], photometric invariants [11],
shadow removal [14], and colour constancy [2]) assume that the captured RGBs in images are
linearly related to the actual scene radiance. However, the imaging pipeline in a digital cam-
era is necessarily non-linear in order to produce perceptually-pleasing photos rather than its
physically-meaningful counterparts. In this paper, we present a new rank-based radiometric
calibration method which solves for the bi-directional mappings between the camera’s RAW
responses and the rendered RGBs produced by digital camera.

There is prior art in this field which models the pipeline with a large number of param-
eters (up to several thousand [5]) which both means a large corpus of data is required to
uncover the pipeline and that there is at least tacitly the premise that the underlying pipeline
is quite complex. The key insight in our approach is that post-colour correction (a 3× 3
matrix correction) the linear corrected raw RGBs are to the greatest extent in the same rank
order as the final rendered RGBs. Building on this insight, we develop a simple rank-based
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radiometric calibration model that “solves for” the camera pipeline with many fewer param-
eters and concomitantly needs much less training data.

In Fig. 1, we illustrate a conventional image reproduction pipeline that holds for many
cameras [15]. An exemplar raw image, Fig. 1a, is mapped by a 3×3 colour correction ma-
trix to give the image shown in Fig. 1b. The colour correction matrix implements several
processing steps (e.g. illumination correction [4, 20], display RGB mapping [1], and colour
preference adjustments [20]). It is well-known that a display device cannot display all cap-
tured image colours that some RGBs will fall outside the RGB cube after mapping (e.g. the
pixels marked in purple in Fig. 1b). We therefore need gamut mapping, e.g. [5, 12, 15], to
bring the colours back inside the cube as shown in Fig. 1c. Finally, the gamut mapped im-
age is tone mapped to arrive at the final rendered output [4, 15, 20] shown in Fig. 1d. Tone
mapping accounts for the display non-linearity [1], dynamic range compression and some
aspects of preference [21].

a) RAW b) Colour Corrected d) Tone Mappedc) Gamut Mapped

f(T (M⇢))T (M⇢)M⇢⇢

Figure 1: a) a RAW input image is colour corrected to give image b). Non-displayable
colours are highlighted in purple pseudo colour. Gamut mapping, in step c), brings colours
within gamut. Finally, in d), a tone mapping step results in the final rendered image.

The colour processing pipeline – for cameras, in general, can be written as Eqn. 1.

P = f (Γ(Mρ))︸ ︷︷ ︸ = Γ( f (Mρ))︸ ︷︷ ︸ ≈ LUT(ρ)︸ ︷︷ ︸
(1a) (1b) (1c)

(1)

Here and throughout this paper, ρ denotes a camera RAW and P refers to its rendered RGB
counterpart. Respectively, the 3×3 correction matrix, gamut mapping and tone mapping are
denoted by the matrix M and the functions Γ() and f (). The function f () can implement a
single or three per-channel tone curves. Because gamut mapping only implements a small
change in comparison with colour and tone mapping steps, the order of gamut mapping
and tone mapping may be switched (Eqn. 1b & c), a property that we exploit in this paper.
Equally, we can also roll all three processing steps into one and directly solve for a 3D LUT
(Look-Up-Table) that maps RAW to rendered counterparts. This LUT function is denoted
LUT() [16] in Eqn. 1c. Readers may refer to the top row of Fig. 1 to link each mathematical
function to our example processed image.

In radiometric calibration, given a set of ρ and P, one seeks to solve for the parametrised
pipeline parts (e.g. M, Γ(), f () and LUT()). A disadvantage of the current best performing
methods is that a great deal of data may be required to fit their assumed models. In Eqns. 1a
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and 1b, the gamut mapping step could be modelled by 1000s of Radial Basis functions [5,
15, 16] and in Eqn. 1c, the deployed LUT could also have several thousand control points.

Our proposed method begins with the simple observation [8] that, assuming the gamut
mapping step makes small changes to image colours, we expect the rank ordering of the
rendered P to be the same as ρ multiplied by the correction matrix M (because a tone curves
are always monotonically increasing). Suppose that two rendered (JPEG) responses – in
the 1st red colour channel – are denoted Pa

1 and Pb
1 ; and that Pa

1 > Pb
1 . The rank order

of two corresponding raw red channel measurements post colour correction is written as
M1ρa > M1ρb (where M1 denotes the first row of M and ρa and ρb are a pair of raw RGBs).
Rewriting: this implies that M1(ρ

a− ρb) > 0 which mathematically defines a half-space
constraint. If we visualise the row vector M1 as a point in 3-space then this inequality –
which we call a ranking constraint – forces the point to be located in one half of 3-space but
not the other. Because we have multiple pixels, each pair of pixels (2 raw and 2 JPEG RGBs)
generates a half space constraint and intersecting all these constraints delimits the region in
which M1 must lie. Our experiments demonstrates that a small numbers of patches suffices
to estimate M accurately. Once we have M we then find the best rank preserving tone curves
f (). At this stage, only using M and f () we have a tolerable approximation of the pipeline.
Indeed, we argue that our construction of M and f () also incorporates, to a first order, gamut
mapping. Now we adopt (Eqn 1c) and find a 125-parameter LUT to “mop up” any remaining
errors due to gamut mapping (higher order terms).

2 Related work
Using the pipeline form Eqn 1b, Chakrabarti et al. [5] first solve for M and f () (in a least-
squares sense) in iteration and then solve directly for Γ(). In their approach, f () is con-
strained to be a 7th order monotonic polynomial. They model Γ() with the radial basis
function (RBF) method of [15] where several thousands of RBFs are potentially used. A
restriction of the above calibration is presented in [4] where the gamut mapping Γ() is ig-
nored. This less general model works tolerably well on many real pairs of raw and rendered
images and this is a point we will return to later in this paper. In either version ([5] or [4]),
the coupled nature of the minimization means that a global minimum is not guaranteed to
be found. Thus, a random start search is incorporated – multiple minimisations are carried
out – in order to find their best parameters. Kim et al. [15] solve for the pipeline in the form
of Eqn. 1a and makes additional assumptions to decouple the optimization. They assume
that images of the same scene are captured with respect to two or more exposures and their
Γ() is a multi-thousand set of RBFs. Regarding solving for f (), Debevec et al. [6] showed
how relating corresponding pixels under known exposure differences suffices to solve for
f () (assuming there is no gamut mapping step). Importantly, in [15], it was argued that for
the set of desaturated pixels (i.e. RAWs far from the RGB cube boundary) the gamut map-
ping step has little or no effect and can be ignored. Relative to this assumption, f () can be
solved using the Debevec method. Given f () then the colour correction matrix M can be
found (again using desaturated pixels). Though, for typical capture conditions, e.g. for most
mobile phones, multiple exposures are not available and so the requirement that multiple
exposures are needed is a weakness in this method. Finally, in [15] a gamut mapping RBF
network is “trained”. Of course, if a large number of radial basis functions are used to model
gamut mapping (as proposed in [15] or [5]) then solving for Γ() requires a large corpus of
data. Further the application of gamut mapping is expensive and its parametrisation is large.
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In [16] it was shown that is possible to ignore the underlying structure of the colour
processing pipeline and directly solve for the best 3D surjective function – implemented as a
LUT that maps the RAWs to rendered RGBs (Eqn. 1c). Finally, in [17], a method is presented
for solving for f () by examining the edge distribution in an image. This method has the
advantage that the method works for a single image (no need for multiple exposures) but
the disadvantage that the method is sensitive to processing steps such as image sharpening
which is used extensively in mobile phone image processing.

3 The rank-based method
As the reader shall see, to make the rank-based method work we need to assume that the
gamut mapping step Γ() only makes small adjustments to colour. In fact our assumption is
more nuanced. We assume that – to a first order – gamut mapping can mostly be implemented
as an affine transform and that this affine transform can be folded into the colour correction
matrix M and the monotonically increasing tone mapping functions f ().

3.1 Gamut Mapping as an Affine Transform
In Eqn. 1b, gamut mapping is applied when, after colour correction, colours are mapped
outside the colour cube and become non-displayable. Let us use a Taylor expansion to model
Γ() around a point a inside the gamut:

Γ(Mρ)≈ Γ(a)+ J(a)(ρ−a) (2)

where J is the 3×3 Jacobian (matrix of derivatives of Γ). Not only does Eqn. 2 show that, to a
first approximation, gamut mapping is an affine transform it is also one of the gamut mapping
algorithms proposed in [12]. In particular, [12] solves, with good results, for the best affine
transform that maps image colours inside the gamut and which are, simultaneously, close to
the non-gamut mapped colours:

min
T,o

Σi||T Mρ
i
+o−Mρ||2 s.t. 0≤ T Mρ

i
+o≤ 1 (3)

In Eqn. 3, T and o are respectively a 3×3 matrix and 3×1 offset vector defining the affine
gamut mapping algorithm. The 3-vectors of 0s and 1s are denoted 0 and 1. Eqn. 3 is solved
directly by Quadratic Programming [13]. The gamut mapping shown in Fig. 1c is the result
of solving Eqn. 3.

Here, we make two important remarks about affine gamut mapping: 1) Gamut mapping
and colour correction combined can be represented by the single affine transform: 3× 3
matrix T M and offset o; 2) It follows that the rank-based method presented in the next
section will actually solve for T M. The offset term can be incorporated directly in f () (since
an offset does not change ranking).

3.2 Rank-based estimation for colour correction
Let us denote the kth row of M as Mk, let us assume that given two colour corrected RAWs,
Mkρa and Mkρb that the rank order is the same as for the corresponding rendered RGBs:

Pa
k > Pb

k ⇒ Mkρ
a > Mkρ

b⇒ Mk(ρ
a−ρ

b)> 0 (4)

Citation
Citation
{Lin, Lu, Kim, and Brown} 2012

Citation
Citation
{Lin, Gu, Yamazaki, and Shum} 2004

Citation
Citation
{Giesen, Schuberth, Simon, Zolliker, and Zweifel} 2007

Citation
Citation
{Giesen, Schuberth, Simon, Zolliker, and Zweifel} 2007

Citation
Citation
{Gill, Murray, and Wright} 1981



GONG, FINLAYSON, DARRODI: CONCISE RADIOMETRIC CALIBRATION BY RANKING 5

Defining the difference vector d j = ρa−ρb:

Mkd j > 0 (5)

where it is understood the superscript j denotes the difference vector from the jth of
(n

2

)
pairs

of n image pixel values. Suppose that we have a vector Mk where Eqn. 5 holds, then the
inequality cannot be true for −Mk. That is Eqn. 5 defines a half plane constraint [3, 8]. The
vector d j is perpendicular to the half-plane: any Mk less than 90 degrees to d j is a possible
solution. Given multiple difference vectors then we have multiple half-plane constraints
which taken together delimit a region in 3-space where Mk must lie. Denoting the half-plane
asH(d j), Mk must satisfy:

Mk ∈
⋂

j

H(d j) (6)

Let us visualise the computation of Mk using ranking. Without loss of generality let us
assume that Mk,3 = 1. We rewrite Eqn. 5 as

Mk,1d j
1 +Mk,2d j

2 +d j
3 > 0 (7)

If [a b c] is a solution to Eqn. 6, then [a/c b/c c/c] for Eqn. 7 is also true since Mk,1 = a/c
and Mk,2 = b/c. Solutions for [Mk,1,Mk,2] lie on one side of the line, i.e. the 3D half-space
constraints maps directly to a 2D half-plane constraint. Or, if we consider the whole set of
collations, the cone in 3D, defined by Eqn. 6, maps to a 2D convex region [7]. Denoting
half-planes as P(d j) we, equivalently, solve for

[Mk,1,Mk,2] ∈
⋂

j

P(d j) (8)

The intersection problem of Eqn. 8 is easily visualised. In Fig. 2a we show the intersection
of 4 half plane constraints and indicate the solution set where Mk must lie.

We solve for M one sensor channel at a time. Empirically, we have to be careful not to
generate too many half planes. In our experiment, we generate half-planes from all pairs
of up to 50 randomly selected unique RAWs, generating 2450 half-planes. Due to noise or
small deviations in real camera data, it is likely that no common intersection can be found
that satisfy every half-planes constraint. To solve this problem, we generate 100,000 unit
length vectors that are uniformly distributed on the surface of the unit sphere [19], which is
visualised in Fig. 2b. With respect to this sampling, the furthest distance between any point
and its nearest neighbour is less than 1.15 degrees. So, the orientation of the rows of M are
found to this accuracy. For each point on the sphere (i.e. a possible row of Mk), we count
how many half-space constraints are satisfied. The point on the unit sphere that satisfies most
half-plane constraints – or the median of multiple points if there is a tie – defines Mk. To
make our approach robust, we find randomly select 50 colours 25 times and for each trial
find the best Mk. Overall, we find the M that places all the corresponding raw and rendered
image RGBs in the most similar rank order. That is, if we plot the mapped raw red responses,
for example, against the rendered red JPEG corresponding values then the graph should be
a monotonically increasing function. How well a monotonically increasing function fits our
data can be used to judge the efficacy of each M.

Ranking can only estimate M up to an unknown scaling of its rows. Suppose for a
rendered achromatic RGB PA = [0.5 0.5 0.5]ᵀ and the corresponding raw ρA = [a b c]ᵀ,

Citation
Citation
{Berg, Cheong, Kreveld, and Overmars} 2008

Citation
Citation
{Finlayson, Darrodi, and Mackiewicz} 2016

Citation
Citation
{Finlayson} 1996

Citation
Citation
{Rakhmanov, Saff, and Zhou} 1994



6 GONG, FINLAYSON, DARRODI: CONCISE RADIOMETRIC CALIBRATION BY RANKING

a) b)

Mk,1

Mk,2

Mk,3

(a, b, c)

Mk,3 = 1

Mk,1

Mk,2

P1

P2

P4 P3

(a/c, b/c)

Mk = [a/c, b/c, 1]

Mk,3 = 1

Figure 2: a) The region where 4 half-plane constraints intersect delimit the region where
[Mk,1,Mk,2] must lie where the black point is a feasible solution. b) On an unit sphere, each
vector represented by the origin and a blue surface point is a probe for a possible solution
(e.g. the black arrow). All 3D points and constraints are projected to a 2D plane Mk,3 = 1.

we apply: 0.5diag(MρA)−1MρA = [0.5 0.5 0.5]ᵀ where diag() places a vector along the
diagonal of a diagonal matrix. After this step, M ← 0.5diag(MρA)−1M maps achromatic
colours correctly. Because M ← DM (where in the example, D = 0.5diag(MρA)−1) we
might also solve for D in a least-squares sense by including all colours indexed i close to
the achromatic axis: minD ∑i ||DMρ i−Pi|| (our experiment does not include this additional
step).

3.3 Rank-preserving optimization of tone curves
We now solve for the optimal per-channel tone curves which map colour corrected RAWs
to corresponding rendered RGBs. Let us denote the ith colour corrected RAW and rendered
RGB pixel pairs for the kth channel as (ρk,i,Pk,i). Then, the kth-channel rank-preserving tone
curve fk() is optimised as a 7th order monotonic and smooth polynomial function as follows:

min
fk()

Σi|| fk(ρk,i)−Pk,i||2 +λ

∫
t
|| f ′′k (t)||2dt s.t. f ′k()≥ 0. (9)

where the first term is for data fitness, the second term is for curve smoothness and λ is a
small weight (e.g. 10−5). This polynomial fitting is solved by Quadratic Programming [13].
In this paper, we further denote the combination of all 3-channel mappings f1−3() as f ().

3.4 Gamut correction step
As argued previously, we propose that f (Mρ) has the expressive power to implement colour
correction, tone correction and gamut mapping (to the first order in a Taylor expansion).
However, we wish to add a further gamut mapping step for the higher order terms. But,
since our hypothesis is that much of the gamut mapping will have been accounted for we are
going to adopt a simple small parameter solution. Further, this additional correction is going
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to be carried out at the end of the process, we adopt Eqn. 1b. Specifically, we find a 5×5×5
LUT by using lattice regression [10] that minimises minLUT () Σi||LUT( f (Mρ

i
))−Pi||2.

3.5 Rank-based recovery of raw

Suppose we wish to map rendered RGBs to RAWs. Using the method presented in Section
3.2, M has already been solved in the RAW-to-JPEG forward estimation phrase. Now, in
a least-squares optimal way, we use the same polynomial fitting method (Eqn. 9) to find
f−1 by optimising min f−1() Σi|| f−1(Pi)−Mρ

i
||. Finally, we solve for the backward LUT()

by optimising minLUT () Σi||LUT(M−1 f−1(Pi))−ρ
i
|| where the LUT is fitted by a 5×5×5

lattice regression [10].

3.6 Parameter counting

Assuming we solve for 3 independent tone curves then our method requires 9 (for M) +
24 (for f ()) + 125 (for Γ()) = 158 parameters which is significantly less (even an order of
magnitude less) than [5, 15, 16].

4 Evaluation

Our evaluation is based on the most challenging dataset that we have encountered: [5] which
contains the RAW/JPEG intensity pairs of 140 colour checker patches viewed under multiple
viewing conditions. Specifically, the colour chart is captured by 8 cameras (3 of which are
JPEG-only) and under 16 illuminants across many different exposures.

Below, we carried out the same experiment described in [5]. We are interested in validat-
ing whether our method, with much reduced number of parameters can produce, similar or
even better results compared with [5]. We evaluate both RAW-to-JPEG and JPEG-to-RAW.
The dataset [5] captures a sort of “worst-case” viewing conditios. Normally, when we cap-
ture a picture there is a single prevailing illuminant colour. In the dataset of Chakrabarti
et al., all camera processing parameters are turned off and then the same reflectances are
viewed under multiple coloured lights. As Forsyth observed [9], the reddest red camera re-
sponse cannot be observed under a blue light. And, then he exploited this observation to
solve for the colour of the light. Yet, in this dataset the reddest red, the greenest green and
the bluest blue can all appear simultaneously in the same image. Practically, we believe the
need to divine a pipeline for the all lights all surfaces case means the prior art pipelines are
probably more complex than they need to be.

As described in [5], for each camera, we estimate the parameters of a calibration model
using different subsets of available RAW-JPEG pairs. For each subset and a selected camera,
the root mean-squared error (RMSE) between the prediction and ground truth is validated
by using all available RAW-JPEG pairs. Table 1a and Table 1c shows the RAW-to-JPEG
mapping error (where pixel intensities are coded as integers in the interval [0,255]. In the
table, Prob denotes the Chakrabarti method (with several thousands parameters) and RB the
rank-based method with 158 parameters. We found that our forward errors are close to the
results of [5], especially for the condition of less than 3 illuminants which are more likely
to occur in the real world. Evidently, for the many illuminant case the prior art has a small
advantage. Remembering that JPEGs are coded as integers in [0,255] the RMSE is typically
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1 or less (for RB compared to Prob). Practically, when the “fits” are viewed visually (by
looking at images) it has hard to see the difference between the two methods.

For computer vision, we are more interested in the performance of JPEG-to-RAW map-
ping which is shown in Table 1b and Table 1c. In [5], a probabilistic framework for mapping
rendered RGB to raw was presented. Here we take their mean estimates as the most likely
RAW predictions. We found that our method generally reduces the errors of [5] by ∼ 34%.
Our supplementary material also includes the additional experiment results compared with
“[4] + our LUT” for interested readers.

The reader might be interested why our simple method seems to work so well going
from rendered to raw (better than [5]) but not quite as well as the prior art in the forward
direction (albeit visually almost indistinguishable). Our hypothesis here is that the LUT in
the forward direction is applied post the tone curve. This curve (at least for dark values) has
a very high slope and, consequently, the coarsely quantised 5× 5× 5 LUT cannot capture
gamut mapping well. Yet, in the reverse direction (JPEG to RAW) the LUT is applied in
linear raw where a course uniform quantisation is more justified.

5 Calibration with small numbers of parameters

We wished to visually validate our claim that we can calibrate with few parameters. We
took 4 RAW+JPEG pairs (for different cameras) from [4]. We then uniformly selected 140
corresponding pixels from the RAW and JPEG. We solved for all the 158 parameters in our
rank-based method. We then applied our model to the rest of the image. The result of this
experiment for 4 images (JPEG-to-RAW) is shown in Fig. 3.

Rendered JPEG Ground Truth RAW Estimated RAW M, f() M, f(), LUT()
0.0153 0.0098

0.0632

0.0026

0.0353

0.0247

0.0022

0.0167

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 3: Visualisation of one-shot radiometric calibration through a simulated 140-patch
colour checker, shown at the top-right corner of each Rendered JPEG image. The error maps
in the 4th and 5th columns respectively visualise the per pixel RMSE for our rank-based
method with & without the gamut mapping LUT. The RMSE of each whole image is shown
at the top-right corner of each error map. All raw images are shown with a 0.5 gamma.
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a) RAW-to-JPEG Uniform 8K 10 Exp. 1 Illu. 10 Exp. 2 Illu. 4 Exp. 4 Illu.

Camera Prob RB Prob RB Prob RB Prob RB

Canon_EOS_40D 1.84 2.56 9.79 10.10 7.53 4.13 4.06 5.87
Canon_G9 2.17 3.70 6.51 6.20 3.41 5.48 3.09 4.79
Canon_PowerShot_S90 2.44 3.24 4.88 4.52 3.58 4.34 3.40 4.04
Nikon_D7000 1.72 4.03 8.05 10.03 3.32 5.39 26.06 6.48
Panasonic_DMC-LX3 1.65 3.65 7.33 8.70 5.25 4.56 3.05 7.98

8 Exp. 4 Illu. 4 Exp. 6 Illu. 8 Exp. 6 Illu.

Camera Prob RB Prob RB Prob RB

Canon_EOS_40D 2.91 4.13 3.60 4.11 2.25 3.61
Canon_G9 2.79 5.48 3.12 4.74 2.77 4.67
Canon_PowerShot_S90 2.95 4.34 3.27 3.70 2.75 3.93
Nikon_D7000 2.41 5.39 2.77 5.04 1.92 4.95
Panasonic_DMC-LX3 2.77 4.56 2.94 4.26 2.33 4.14

b) JPEG-to-RAW Uniform 8K 10 Exp. 1 Illu. 10 Exp. 2 Illu. 4 Exp. 4 Illu.

Camera Prob RB Prob RB Prob RB Prob RB

Canon_EOS_40D 0.079 0.060 0.085 0.072 0.080 0.064 0.075 0.072
Canon_PowerShot_G9 0.126 0.075 0.143 0.104 0.120 0.079 0.120 0.082
Canon_PowerShot_S90 0.065 0.052 0.073 0.058 0.069 0.074 0.066 0.057
Nikon_D7000 0.143 0.090 0.543 0.123 0.140 0.098 0.229 0.108
Panasonic_DMC-LX3 0.082 0.058 0.090 0.072 0.082 0.063 0.073 0.071

8 Exp. 4 Illu. 4 Exp. 6 Illu. 8 Exp. 6 Illu.

Camera Prob RB Prob RB Prob RB

Canon_EOS_40D 0.071 0.064 0.077 0.065 0.069 0.063
Canon_PowerShot_G9 0.121 0.079 0.126 0.076 0.126 0.080
Canon_PowerShot_S90 0.069 0.074 0.063 0.059 0.066 0.058
Nikon_D7000 0.144 0.098 0.147 0.094 0.143 0.101
Panasonic_DMC-LX3 0.077 0.063 0.074 0.060 0.077 0.064
c) Uniform 8K (JPEG-Only Camera Test) RAW-to-JPEG JPEG-to-RAW

Camera Raw Proxy Prob RB Prob RB

FUJIFILM_J10 Panasonic_DMC-LX3 10.43 11.51 0.279 0.077
Galaxy_S_III Nikon_D7000 11.34 13.13 0.114 0.074
Panasonic_DMC_LZ8 Canon_PowerShot_G9 8.85 12.23 0.146 0.085

Table 1: RMSE between ground truth and prediction for bidirectional RAW and JPEG con-
versions: Prob denotes [5] and RB is our rank-based method. “Exp.” and “Illu.” are respec-
tively short for “Exposure” and “Illuminant”. “Raw Proxy” is the camera used to capture
raw for the camera which does not support raw image capturing.
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6 Conclusion
In this paper we have shown how the rank order of image responses is a powerful tool for
solving for the individual steps in a camera processing pipeline (colour correction, gamut
and tone mapping). A simple ranking argument, relating colour corrected RAWs to cor-
responding rendered RGBs suffices to solve for the colour correction matrix. Then, the
rank-preserving tone map is found and, finally, a simple gamut correction step is derived.
Compared with the prior art, our rank-based method requires the fewest assumptions and
delivers state-of-the-art radiometric calibration results.
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