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Abstract

Event cameras are bio-inspired vision sensors that output pixel-level brightness changes
instead of standard intensity frames. They offer significant advantages over standard
cameras, namely a very high dynamic range, no motion blur, and a latency in the order
of microseconds. We propose a novel, accurate tightly-coupled visual-inertial odom-
etry pipeline for such cameras that leverages their outstanding properties to estimate
the camera ego-motion in challenging conditions, such as high-speed motion or high
dynamic range scenes. The method tracks a set of features (extracted on the image
plane) through time. To achieve that, we consider events in overlapping spatio-temporal
windows and align them using the current camera motion and scene structure, yielding
motion-compensated event frames. We then combine these feature tracks in a keyframe-
based, visual-inertial odometry algorithm based on nonlinear optimization to estimate
the camera’s 6-DOF pose, velocity, and IMU biases. The proposed method is evaluated
quantitatively on the public Event Camera Dataset [19] and significantly outperforms the
state-of-the-art [28], while being computationally much more efficient: our pipeline can
run much faster than real-time on a laptop and even on a smartphone processor. Fur-
thermore, we demonstrate qualitatively the accuracy and robustness of our pipeline on a
large-scale dataset, and an extremely high-speed dataset recorded by spinning an event
camera on a leash at 850 deg/s.
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1 Introduction

Event cameras, such as the Dynamic Vision Sensor (DVS) [16], work very differently from a
traditional camera. They have independent pixels that only send information (called “events”)
in presence of brightness changes in the scene at the time they occur. Thus, the output is not
an intensity image but a stream of asynchronous events at microsecond resolution, where
each event consists of its space-time coordinates and the sign of the brightness change (i.e.,
no intensity). Event cameras have numerous advantages over standard cameras: a latency in
the order of microseconds, low power consumption, and a very high dynamic range (130 dB
compared to 60 dB of standard cameras). Most importantly, since all the pixels are indepen-
dent, such sensors do not suffer from motion blur.

The task of estimating a sensor’s ego-motion from a combination of images and measure-
ments from an Inertial Measurement Unit (IMU), called Visual-Inertial Odometry (VIO), has
important applications in various fields, for example augmented/virtual reality (AR/VR) ap-
plications. VIO has been thoroughly studied in the past decades, and is today a mature
research field [4]. State-of-the-art VIO pipelines have shown impressive large-scale track-
ing results, with an overall drift below 0.5 % of the travelled distance ([15], [6]). However,
VIO still fails in a number of situations, such as high-speed motions or high-dynamic range
scenes. In the first case, large amounts of motion blur on the images spoil the visual infor-
mation, forcing the pipeline to rely on integration of the IMU, resulting in large amounts
of accumulated drift1. In the second case, due to the limited dynamic range of standard
cameras, large regions on the image are either over-, or under-exposed, which reduces dras-
tically the amount of information exploitable. It is in these challenging scenarios that the
above-mentioned advantages of event cameras could be exploited to yield accurate and ro-
bust ego-motion estimation.

In this paper, we present a novel visual-inertial odometry (VIO) algorithm for event
cameras. Our algorithm takes as input a stream of events and inertial measurements, and
outputs camera poses at a rate proportional to the camera velocity. To achieve this, we track
a set of features in the events, and fuse these feature tracks with the IMU measurements
using a keyframe-based visual-inertial pipeline that uses nonlinear optimization.

Contribution. Our main contribution is a tightly-coupled visual-inertial odometry pipeline
for event cameras that is significantly more accurate than the state-of-the-art [28], while
being more efficient. More precisely, our contributions include:

• A novel feature tracker for event cameras that works on event frames, synthesized by
fusing the events in a spatio-temporal window using the current estimate of the camera
motion and the scene structure.

• The integration of these feature tracks in a keyframe-based, visual-inertial pipeline
based on nonlinear optimization, yielding a robust and accurate VIO pipeline for event
cameras.

• A quantitative evaluation of our pipeline compared to the state-of-the-art [28] on the
public Event Camera Dataset [19], and some qualitative results on a large scale and a
high-speed sequence.

1http://www.vectornav.com/support/library/imu-and-ins , see the first table under Case 1
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2 Related Work
In the past decade, many works have considered to use event cameras for ego-motion esti-
mation. Early works focused on addressing restricted, and easier instances of the problem:
[5], [11], [9] and [22] showed how to do rotation-only (3 DOF) pose estimation, and [26]
proposed a simultaneous tracking and mapping algorithm for event cameras that works for
planar (2D) motion and planar scenes. Other authors have used complementary sensing
modalities, additionally to an event camera: [27] used an event camera equipped with a
depth sensor to jointly estimate the camera pose and 3D scene structure, and [13] proposed a
low-latency, feature-based 6 DOF visual odometry pipeline that uses a frame-based sensor,
where features are detected in the frames and tracked in the event stream. Event-based, 6-
DOF visual odometry (using only an event camera) has been first shown only very recently:
[12] proposed three parallel filters that jointly estimate the camera pose, 3D map of the scene,
and image intensity, and [21] proposed a geometric approach that combines a global image
alignment technique with an event-based reconstruction algorithm [20] to estimate the cam-
era pose and 3D map of the scene without requiring image reconstruction. Few works have
considered using an event camera with an IMU (the problem of event-based, visual-inertial
odometry). [18] showed how to fuse events and inertial measurements into a continuous time
framework. However, their approach is not suited for real-time usage because of the expen-
sive optimization required to update the spline parameters upon receiving every event. Very
recently, [28] proposed an event-based visual-inertial odometry algorithm, EVIO, that works
in real-time (albeit, for limited motion speeds, and number of features). They proposed
to track a set of features in the event stream using an iterative Expectation-Maximization
scheme, that jointly solves for the feature appearance and optical flow. The feature tracks
are then fed to an EKF filter to produce new pose estimates. EVIO is the closest approach
to this work. In Section 5, we compare our approach to [28] in terms of accuracy, and show
significant improvements compared to it.

3 Preliminaries
In this section, we introduce the notation that we will use throughout the rest of the paper.
We also introduce the IMU model used, and provide formulas for discrete integration of the
equations of motion.

Coordinate Frame Notation. A point P represented in a coordinate frame A is written
as position vector ArP. A transformation between frames is represented by a homogeneous
matrix TAB that transforms points from frame B to frame A. Its rotational part is expressed as
a rotation matrix RAB ∈ SO(3). Our algorithm uses a sensor composed of an event camera
and an IMU rigidly mounted together. The sensor body is represented relative to an inertial
world frame W . Inside it, we distinguish the camera frame C and the IMU-sensor frame
S. To obtain TSC, an extrinsic calibration of the camera + IMU system must be performed,
using for example the Kalibr toolbox [8].

IMU Model and Motion Integration. An IMU usually includes a 3-axis accelerometer
and a 3-axis gyroscope, and allows measuring the rotational rate and the acceleration of the
sensor with respect to an inertial frame. The measurements, Sã(t) and Sω̃(t), are affected by
additive white noise η and slowly varying sensor biases b:

Sω̃(t) = W ω(t)+bg(t)+ηg(t), Sã(t) = RT
WB(t)(W a(t)−W g)+ba(t)+ηa(t), (1)

where W g is the gravity vector in world coordinates.
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Figure 1: Overview of the proposed pipeline: (i) Events are grouped in spatio-temporal
windows, and fused to build motion-compensated frames. (ii) New features are extracted if
necessary; all feature tracks are updated, and outliers filtered using 2-point RANSAC. (iii)
Feature tracks that can be triangulated are converted to persistent, and added to the map. The
remaining ones are kept as candidate tracks. (iv) Selected frames are added to the optimizer,
and trigger a global optimization.

Denoting a position vector and velocity, respectively as Ar and Av, the equations of mo-
tion can be numerically integrated as follows [6]:

RWB(t +∆t) = RWB(t)exp
(

Sω̃(t)−bg(t)−ηgd(t)∆t
)

W v(t +∆t) = W v(t)+W g∆t +RWB(t)(Sã(t)−ba(t)−ηad(t))∆t
W r(t +∆t) = W r(t)+W v(t)∆t + 1

2W g∆t2 + 1
2 RWB(t)(Sã(t)−ba(t)−ηad(t))∆t2)

(2)

where exp : se(3)→ SE(3) denotes the exponential map, and ηad , ηgd are the noise variables.

Event Data. Let us denote the set of events observed as ε = {ek}. The kth event is rep-
resented as a tuple ek = (xk, tk, pk), where xk = (xk,yk) is the event location on the image
plane, tk its timestamp, and pk its polarity.

4 Visual-Inertial Odometry with an Event Camera

Our visual-inertial odometry pipeline is classically composed of two parallel threads:

• the front-end (Section 4.1) takes a stream of events as input. It establishes feature
tracks and triangulates landmarks, both of which are passed to the back-end.

• the back-end (Section 4.2) fuses the feature tracks, landmarks, and IMU measurements
to continuously update the current and past sensor states.

Figure 1 gives an overview of the modules involved and their interactions. The rest
of this section is organized as follows. Section 4.1.1 describes how we partition the event
stream in spatio-temporal windows and synthesize motion-corrected event images, Section
4.1.2 provides details about feature tracking and landmark triangulation, and Section 4.1.3
gives additional implementation details. The back-end of our algorithm, a keyframe-based
nonlinear optimization algorithm, is described in Section 4.2.

4.1 Front-end

Our pipeline takes a stream of events as input, and produces a set of motion-corrected event
images (Section 4.1.1) that are fed to a visual odometry front-end (Sections 4.1.2 and 4.1.3).
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Figure 2: We split the event stream in a set of overlapping spatio-temporal windows. Events
are depicted as blue dots on the timeline. The windows {Wk} are marked in red (N = 4, S = 2
here). Note that the temporal size of each window is automatically adapted to the event rate.
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Figure 3: Motion correction: the inertial
measurements in [t f

k , t
f
k +∆t f

k ] (red squares)
are integrated to compute the relative trans-
formation Tt f

k ,t
f
k +∆t f

k
. Each event (blue dot)

e j is reprojected to camera frame Ct f
k

us-
ing the linearly interpolated pose Tt j and the
linearly interpolated depth Z(x j).

Figure 4: Synthesized event frames. From
top left to bottom right: standard cam-
era image; 3000 events (noisy informa-
tion); 30000 events (motion-blurred im-
age); 30000 events with motion-correction.

4.1.1 Synthesis of Motion-Corrected Event Frames

Spatio-temporal Windows of Events. The set of observed events ε is split in a set of
overlapping spatio-temporal windows {Wk} (Fig. 2). The kth window is defined as the set
of events Wk = {ekS, ...,ekS+N−1}, where N is the window size parameter, and S a step size
parameter that controls the amount of overlap between successive windows. Note that the
start time t f

k := tkS and duration of each window ∆t f
k are controlled by the events, which

preserves the data-driven nature of the sensor. With this notation, Wk spans the time interval
[tkS, tkS+N−1] := [t f

k , t
f
k +∆t f

k ].

From Events to Event Frames. A naive way to synthesize an event image from a window
of events Wk would be to accumulate them as follows: Ik(x) = ∑e j∈Wk

δ (x−x j), i.e., the
intensity I at pixel x is simply the sum of the events that fired at the pixel location x =
x j. However, this yields event images that are not usable for reliable feature detection or
tracking, as illustrated in Fig. 4: small window sizes do not convey enough information,
while large window sizes induce motion blur.

Inspired by [9], we propose to locally correct the motion of each event according to
its individual time stamp. This allows to synthesize motion-corrected event frames, used
subsequently to establish feature tracks.
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Motion Compensation of Events. We synthesize a motion-corrected event image Ik (see
Figs. 3 and 4) as follows: Ik(x) = ∑e j∈Wk

δ (x−x′j), where x′j is the corrected event position,
obtained by transferring event e j to the reference camera frame Ct f

k
:

x′j = π

(
Tt f

k ,t j
(Z(x j)π

−1(x j))
)
, (3)

where π (.) is the camera projection model, obtained from prior intrinsic calibration.
Adopting the short-hand notations: Tt j := TWC(t j), and Tti,t j := TC(t f

i )C(t f
j )

, the incremen-

tal transformation Tt f
k ,t

f
k +∆t f

k
is obtained through integration of the IMU measurements in

[t f
k , t

f
k +∆t f

k ] using (2). The necessary starting pose Tt f
k
, and the IMU biases bg,ba are known

from the state estimation thread. The remaining quantities required to evaluate (3) are:

• Tt f
k ,t j

, which we linearly interpolate from Tt f
k

and Tt f
k +∆t f

k
, in the space of rigid-body

motion transformations SE(3).

• Z(x j), which we estimate using 2D linear interpolation (on the image plane) of the
current landmarks

{
l j
}

, reprojected on the current camera frame Ct j .

In practice, we observed that using the median depth of the current landmarks instead of
linearly interpolating the depth gives satisfactory results, at a lower computational cost.

4.1.2 Feature Detection and Tracking. Landmark Triangulation

Feature Detection. New features are detected whenever the number of feature tracks falls
below a certain threshold, or if the current frame is selected as a keyframe (see Section 4.1.3).
We use the FAST corner detector [23] on a motion-compensated event frame. We use a
bucketing grid to ensure that the features are evenly distributed over the image.

Feature Tracking and Landmark Triangulation. We maintain two sets of landmarks:
candidate landmarks, and persistent landmarks, whose 3D position in space has been suc-
cessfully triangulated. Newly extracted features are initialized as candidate landmarks, and
are tracked across event frames. As soon as a candidate landmark can be reliably triangu-
lated, it is converted to a persistent landmark, and added to the local map.

Both types of landmarks are tracked from Ik to Ik+1 using pyramidal Lukas-Kanade track-
ing [2]. The incremental transformation Tt f

k ,t
f
k+1

(integrated from the IMU measurements in

[t f
k , t

f
k+1]) is used to predict the feature position in Ik+1. The patches around each features

are warped through an affine warp, computed using Tt f
k ,t

f
k+1

, prior to pyramidal alignment.

Landmarks that are not successfully tracked in the current frame are discarded immediately.

Outlier Filtering. We use two-point RANSAC [25] (using the relative orientation between
the current frame and the last keyframe) to further filter out outlier feature tracks.

4.1.3 Additional Implementation Details

Keyframe Selection. A new keyframe is selected either when the number of tracked fea-
tures falls below a threshold, or when the distance to the last keyframe (scaled by the median
scene depth) reaches a minimum threshold.
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Initialization. To initialize our pipeline we add the first frames to the back-end without
initializing any feature track. The back-end in turn estimates the initial attitude of the sensor
by observing the gravity direction. The displacement between the following frames is then
estimated by integrating IMU measurements.

4.2 Back-end
In this section, we describe how we fuse feature tracks from the event stream obtained in
Section 4.1.2 to update the full sensor state over time.

As opposed to the EKF-based filtering employed in [28], we prefer to rely on a full
smoothing approach based nonlinear optimization on selected keyframes. Indeed, such ap-
proaches have been shown to outperform pipelines in terms of accuracy [24]. This has re-
cently been made computationally tractable by the development of the pre-integration theory
[17], [7], that consists of combining many inertial measurements between two keyframes into
a single relative motion constraint, thus avoiding to reintegrate inertial measurements in each
step of the optimization.We base our back-end implementation on OKVIS [15]. For space
reasons, we omit the details of the pipeline and refer the reader to the original publications
[14], [15].

The visual-inertial localization and mapping problem is formulated as a joint optimiza-
tion of a cost function that contains weighted reprojection errors er and inertial error terms es:

J :=
K

∑
k=1

∑
j∈J (k)

e j,kT W j,k
r e j,k +

K−1

∑
k=1

ek
s

T Wk
sek

s

where k denotes the frame index, and j denotes the landmark index. The set J (k) contains
the indices of landmarks visible in the kth frame. Additionally, W j,k

r is the information matrix
of the landmark measurement l j, and W k

s that of the kth IMU error. The optimization is
carried out, not on all the frames observed, but on a bounded set of frames composed of M
keyframes (selected by the front-end, see Section 4.1.3), and a sliding window containing
the last K frames. In between frames, the prediction for the sensor state is propagated using
the IMU measurements that fall in between the frames. We employ the Google Ceres [1]
optimizer to carry out the optimization.

Reprojection Error. e j,k
r = z j,k−π

(
Tk

CSTk
SW l j

)
where z j,k is the measured image coordi-

nate of the jth landmark on the kth frame.

IMU Measurement Error Term. We use the IMU kinematics and biases model intro-
duced in (2) to predict the current state based on the previous state. Then, the IMU error
terms are simply computed as the difference between the prediction based on the previous
state and the actual state. For orientation, a simple multiplicative minimal error is used.

Keyframe Marginalization. Keeping all keyframes in the Gauss-Newton system state
quickly becomes untractable. However, simply discarding measurements from past keyframes
neglects valuable information. To overcome this problem we partially marginalize out old
keyframes using the Schur complement on the corresponding observations. This turns old
measurements into a prior for our system, represented as summands in the construction of
the Schur complement. Details are provided in [15].
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Figure 5: corridor_dataset. Left: trajectory and point cloud estimated by our
pipeline, overlaid with a map of the building. Right: Two motion-corrected event frames
used by our pipeline, with overlaid persistent landmarks (green) and candidate landmarks
(blue). Red circles are RANSAC outliers.

5 Evaluation
For all the experiments presented below, we used the DAVIS [3] sensor, which embeds a
240×180 pixels event camera with a 1 kHz IMU. In addition to the event stream and IMU
measurements, the sensor provides standard images, which are not used by our pipeline.

5.1 Quantitative: Accuracy and Performance
We use the Event Camera Dataset [19] to evaluate quantitatively the accuracy of our pipeline.
The dataset features various scenes with ground truth tracking information. In particular, it
contains extremely fast motions and scenes with very high-dynamic range.

Evaluation Metrics. The estimated and ground truth trajectories were aligned with a 6-
DOF transformation (e.g. in SE3), using the subset [5− 10s]. We computed the mean
position error (Euclidean distance) and the yaw error as percentages of the total travelled
distance. Due to the observability of the gravity direction, the error in pitch and roll di-
rection is constant and comparable between our approach and EVIO. Thus we omit them
for compactness. Additionally, we use the relative error metrics proposed in [10], which
evaluate the relative error by averaging the drift over trajectories of different lengths (Fig. 6).

Parameters. The window size N was manually selected for all datasets, always in the
range of [104− 105] events, except for the shapes_translation and shapes_6dof
for which we used N = 3000 (since the global event rate is much lower in those). This
translates to a temporal window size of about 5 to 10 milliseconds. We used S = N for all the
experiments, e.g., no overlap between successive windows. The patch size used for feature
tracking was 32×32 pixels, with 2 pyramid levels.

Accuracy and Performance. Table 1 and Fig. 6 demonstrate the remarkable accuracy
of our pipeline compared to EVIO [28], the state-of-the-art. We ran the same evaluation
code (alignment and computation of error metrics) for our method and EVIO, using raw
trajectories provided by the authors.

Our method runs on average 50% faster than real-time on a laptop, even for fast motions
that yield very high event rates. For example the boxes_6dof dataset was processed in
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Sequence Our proposed method EVIO [28] (CVPR’17)
Mean
Position*
Error (%)

Mean
Yaw
Error
(deg/m)

Mean Po-
sition Er-
ror (%)

Mean
Yaw
Error
(deg/m)

boxes_6dof 0.69 0.09 4.13 0.92
boxes_translation 0.57 0.04 3.18 0.67
dynamic_6dof 0.54 0.26 3.38 1.20
dynamic_translation 0.47 0.11 1.06 0.25
hdr_boxes 0.92 0.01 3.22 0.15
hdr_poster 0.59 0.09 1.41 0.13
poster_6dof 0.82 0.11 5.79 1.84
poster_translation 0.89 0.03 1.59 0.38
shapes_6dof 1.15 0.08 2.52 0.61
shapes_translation 1.28 0.41 4.56 2.60

Table 1: Accuracy of the proposed approach
against EVIO [28], the state-of-the-art.

Time (ms)
synthesize event frame 4.23
feature detection 0.69
feature tracking 0.90
two-point RANSAC 0.08
add frame to back-end 1.47
wait for back-end 1.29
total time 8.23

Table 2: Time spent in differ-
ent modules, for a single spatio-
temporal window.
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Figure 6: Comparison of the proposed approach versus EVIO on three datasets from [19].
Relative errors are measured over different segments of the trajectory. Additional plots for
all the datasets are provided in the supplementary material.

41.7 s, which corresponds to 3.2 million events/s or 1.45 times faster than real-time. Table
2 shows the time spent per spatio-temporal window on an Intel Core i5-4278U@2.60GHz.
The total time per event frame is 8.23 ms. We also run our algorithm on a smartphone CPU
(Odroid-XU4@2GHz) and we measured a total time of 20ms.

5.2 Qualitative Results
To further demonstrate the capabilities of our method, we present two additional datasets:
corridor, and spinning_leash. The corridor dataset was recorded by walking in
our building with a DAVIS sensor, bringing it back to its exact start position. Fig. 5 shows
a top-view of the estimated trajectory and the accumulated landmarks. In the absence of
ground truth, we estimate the accumulated drift as the distance between the first position and
the last position: about 50 cm for a 55 m trajectory, i.e. less than 1 % drift.

The spinning_leash dataset was recorded by spinning really fast a DAVIS camera,
attached to a leash, in our office (Fig. 7). Despite the extreme velocity of the motion, our
pipeline successfully tracks the camera pose with low drift.

5.3 Discussion
Our outstanding results compared to [28] can be explained in part because we use a nonlin-
ear optimization approach, as opposed to a filtering approach, whose accuracy is known to
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Figure 7: spinning_leash dataset. Left: Person spinning an event camera attached to
a leash. The camera is barely visible due to motion blur. The trajectory estimated in real-
time by our algorithm is superimposed on the image. Top-right: Trajectory estimated by our
method (red) and plain IMU integration (blue). Bottom-right: motion-corrected event frame
(same legend as Fig. 5) compared to an image obtained by spinning a standard camera at the
same speed.

quickly deteriorate due to the accumulation of linearization errors.
Due to its simplicity, our feature tracker can be implemented efficiently, making real-

time tracking possible on the CPU. By contrast, the feature tracker used in [28] relies on an
expensive, iterative Expectation-Maximization scheme which severely throttles the speed of
the overall pipeline.

6 Conclusion
We presented a novel, tightly-coupled visual-inertial odometry pipeline for event cameras.
Our method significantly outperforms the state-of-the-art [28] on the challenging Event
Camera Dataset [19], while being computationally more efficient; it can run on average
50 % faster than real-time on a laptop. We also demonstrated qualitatively the accuracy and
robustness of our pipeline on a large-scale dataset, and an extremely high-speed dataset. We
believe this work makes a significant step towards the use of event cameras for high-impact
applications, such as the navigation of mobile robots, or AR/VR applications.
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