
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): BMVC AUTHOR GUIDELINES 1

The Devil is in the Decoder

BMVC 2017 Submission # 645

Abstract

Many machine vision applications require predictions for every pixel of the input
image (for example semantic segmentation, boundary detection). Models for such prob-
lems usually consist of encoders which decreases spatial resolution while learning a
high-dimensional representation, followed by decoders who recover the original input
resolution and result in low-dimensional predictions. While encoders have been studied
rigorously, relatively few studies address the decoder side. Therefore this paper presents
an extensive comparison of a variety of decoders for a variety of pixel-wise prediction
tasks. Our contributions are: (1) Decoders matter: we observe significant variance in
results between different types of decoders on various problems. (2) We introduce a
novel decoder: bilinear additive upsampling. (3) We introduce new residual-like con-
nections for decoders. (4) We identify two decoder types which give consistently high
performance.

1 Introduction

Many important machine vision applications require predictions for every pixel of the input
image. Examples include but are not limited to: semantic segmentation [18], boundary
detection [29], super-resolution [14], colorization [8], depth estimation [20], normal surface
estimation [4], saliency prediction [23], image generation networks (GANs) [21], and optical
flow [9]. Models for such applications are usually assembled of a feature extractor that
decreases spatial resolution while learning high-dimensional representation and a decoder
that recovers the original input resolution. While feature extractors were rigorously studied
(for example in the context of image classification), relatively few studies have been done on
the decoder side.

This work presents an extensive analysis of a variety of decoding methods on a broad
range of machine vision tasks: semantic segmentation, depth prediction, colorization, super-
resolution, and instance edge detection. We make the following contributions: (1) Decoders
matter: we observe significant variance in results between different types of decoders on
various problems. (2) We introduce a new bilinear additive upsampling layer, which results
in significant improvements over normal bilinear upsampling. (3) We introduce residual-
like connections for decoders. While the differences in spatial resolution and number of
feature channels of the input and output of the decoder make it impossible to use residual
connections directly, we show how to create residual-like connections. (4) We identify two
decoder types which give consistently high performance on all tested machine vision tasks.

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Uijlings and Ferrari} 2015

Citation
Citation
{Ledig, Theis, Huszar, Caballero, Aitken, Tejani, Totz, Wang, and Shi} 2016

Citation
Citation
{Iizuka, Simo-Serra, and Ishikawa} 2016

Citation
Citation
{Nathanprotect unhbox voidb@x penalty @M {}Silberman and Fergus} 2012

Citation
Citation
{Eigen and Fergus} 2014

Citation
Citation
{Pan, Sayrol, Giro-i Nieto, McGuinness, and O'Connor} 2016

Citation
Citation
{Nguyen, Yosinski, Bengio, Dosovitskiy, and Clune} 2016

Citation
Citation
{Ilg, Mayer, Saikia, Keuper, Dosovitskiy, and Brox} 2016

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091

2 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 1: General schematic architecture used for dense prediction problems.

2 Decoder Architecture

Dense problems which require per pixel predictions are typically addressed with an encoder-
decoder architecture (see Fig. 1). First, a feature extractor downsamples the spatial resolution
(usually by a factor 8-32) while increasing the number of channels. Afterward, a ‘decoder’
upsamples the representation back to the original input size. Conceptually, such decoder can
be seen as a reversed operation to what encoders are doing. One decoder module consists of
at least one layer that increases spatial resolution, which we call an upsampling layer, and
possibly layers that preserve spatial resolution (e.g. standard convolution, a residual block,
an inception block).

Decoder architectures were previously studied only in the context of the single problem:
[13] studies 5× 5 transposed convolution which allows them to speed it up. [27] improved
on super-resolution through depth to space transformation. [22] analyzed artifacts which
transposed convolution causes in generator network in Generative Adversarial Networks.

Layers that preserve spatial resolution were well studied in the literature in the context
of neural architectures for image classification [1, 2, 7, 28]. Therefore we only analyze
the layers that increase spatial resolution - the upsampling layers. Unlike other studies on
decoder architectures, we do this on five different machine vision tasks.

2.1 Upsampling layers

Below we present and compare several ways of upsampling the spatial resolution in convo-
lution neural networks, a crucial part of any decoder.

2.1.1 Existing upsampling layers

Transposed Convolution. Transposed Convolutions are the most commonly used upsam-
pling layers and are also sometimes referred to as ‘deconvolution’ [3, 18, 31]. A Transposed
Convolution can be seen as a reversed convolution in the sense of how the input and out-
put relate to each other. However, is it not an inverse operation, since calculating the exact
inverse is an under-constrained problem and therefore ill-posed. Transposed convolution is

Citation
Citation
{Laina, Rupprecht, Belagiannis, Tombari, and Navab} 2016

Citation
Citation
{Shi, Caballero, Husz{á}r, Totz, Aitken, Bishop, Rueckert, and Wang} 2016

Citation
Citation
{Odena, Dumoulin, and Olah} 2016

Citation
Citation
{Alvarez and Petersson} 2016

Citation
Citation
{Chollet} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2015

Citation
Citation
{Dumoulin and Visin} 2016

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

Citation
Citation
{Zeiler, Krishnan, Taylor, and Fergus} 2010

092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AUTHOR(S): BMVC AUTHOR GUIDELINES 3

Figure 2: Transposed convolution with kernel size 3 and stride 2.

equivalent to interleaving the input features with 0’s and applying a standard convolutional
operation. The calculations of a transposed convolution are illustrated in Fig. 2.
Decomposed Transposed Convolution. Decomposed Transposed Convolution is similar
to the transposed convolution, but conceptually it splits the main convolution operation up
into multiple low-rank convolutions. For images, it simulates a 2D transposed convolution
using two 1D convolutions. Regarding possible feature transformations, Decomposed Trans-
posed Convolution is strictly a subset of regular Transposed Convolution. As an advantage,
the number of trainable parameters is significantly reduced (Tab. 4).

Decomposed Transposed Convolution was successfully applied in the inception archi-
tecture [28] where it achieved state of the art results on ILSVRC2012 [26]. It was also used
to reduce the number of parameters of the network in [1].
Separable Transposed Convolution. Separable Convolution were used to build a simple
and homogenous network architecture [2] which achieved superior results to inception-v3
[28]. A Separable Convolution consists of two operations, a per channel convolution and
a pointwise convolution with 1× 1 kernel which mixes the channels. Separable transposed
convolution is defined in the same way through applying the transposed convolution (Fig. 2)
however, now on every single channel separately. Afterward, a pointwise 1×1 convolutional
kernel is applied. Again, regarding feature transformations, Separable Transposed Convo-
lutions are a strict subset of Transposed Convolutions. In most cases, it has even fewer
parameters than Decomposed Transposed Convolutions.
Depth To Space. Depth to Space [27] shifts the feature channels into the spatial domain
as illustrated in Fig. 4. Depth To Space preserves perfectly all floats inside the high dimen-
sional representation of the image, as it only changes their placement. The drawback of this
approach is that it introduces alignment artifacts. To be comparable with other upsampling
layers which have learnable parameters, before depth to space transformation we are apply-
ing a convolution with four times more output channels than for other upsampling layers.
Bilinear Upsampling. Bilinear Interpolation is another very popular approach for upsam-
pling the spatial resolution. To be comparable with other methods we assume there is addi-
tional convolutional operation applied after the upsampling. The drawback of this strategy
is that it is the memory and computationally intensive. The feature size is increased while
keeping the same amount of ’information’ counted in a number of floats.

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Alvarez and Petersson} 2016

Citation
Citation
{Chollet} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2015

Citation
Citation
{Shi, Caballero, Husz{á}r, Totz, Aitken, Bishop, Rueckert, and Wang} 2016

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

4 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 3: Decomposed transposed convolution.

2.1.2 Bilinear additive upsampling

To overcome the memory and computational problems of bilinear upsampling, we introduce
a new upsampling layer: bilinear additive upsampling. In this layer, we propose to do bilinear
upsampling as before, but we also add every N consecutive channels together, effectively
reducing the output by a factor N. This process is illustrated in Fig. 5. Please note that this
process is deterministic and has zero tunable parameters. Therefore, to be comparable with
other upsampling methods we apply a convolution after this upsampling method.

2.2 Skip Connections and Residual Connections
2.2.1 Skip Connections

Skip connections have been successfully used in many decoder architectures [10, 15, 16, 24,
25]. It uses features from the encoder in the decoder part of the same spatial resolution, as
illustrated in Fig. 1. For our implementation of skip connections, we apply the convolution
on the last layer of encoded features for given spatial resolution and concatenate them with
the first layer of decoded features for given spatial resolution as illustrated in Fig. 1.

2.2.2 Residual Connections for decoders

Residual connections[7] have been shown to be beneficial for a variety of tasks. However,
residual connections cannot be directly applied to upsampling methods since the output layer
has a higher spatial resolution than the input layer and a lower number of feature channels.
In this paper, we introduce a transformation which solves both problems.

In particular, the bilinear additive upsampling method which we introduced above (Fig. 5)
transforms the input layer into the desired spatial resolution and number of channels without
using any parameters. The resulting features contain much of the information of the original
features. Therefore we can apply this transformation (this time without doing any convo-
lution) and add its result to the output of any upsampling layer, resulting in a residual-like

Citation
Citation
{Kendall, Badrinarayanan, and Cipolla} 2015

Citation
Citation
{Lin, Milan, Shen, and Reid} 2016{}

Citation
Citation
{Lin, Doll{á}r, Girshick, He, Hariharan, and Belongie} 2016{}

Citation
Citation
{Pinheiro, Lin, Collobert, and Doll{á}r} 2016

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

AUTHOR(S): BMVC AUTHOR GUIDELINES 5

Figure 4: Depth To Space.

Upsampling method Parameters Operations Comments
Transposed whIO whWHIO

Dec. Transposed (w+h)IO (w+h)WHIO Subset of Transposed
Sep. Transposed whI + IO whWHI +WHIO Subset of Transposed

Conv and Depth To Space whI(4O) whWHI(4O)
Bilinear with Conv whIO wh(2W)(2H)IO

Bilinear additive with Conv whIO whWHIO

Table 1: Comparison of different upsampling methods. W,H - feature width and height, w,h
- kernel width and height, I,O - number of channels for input and output features.

connection. We demonstrate the effectiveness of our residual connection in Sec. 4.

3 Tasks and Experimental Setup

Instance boundaries detection. For instance-wise boundaries, we use PASCAL VOC
2012 segmentation [5]. This dataset contains 1,464 training and 1,449 validation images,
annotated with contours for 20 object classes for all instances. The dataset was originally
designed for semantic segmentation. Therefore only interior object pixels are marked, and
the boundary location is recovered from the segmentation mask. Similar to [11, 29], we
consider only object boundaries without distinguishing semantics, treating all 20 classes as
one.

As encoder or feature extractor we use ResNet-50 with stride 8, atrous convolution, ini-
tialized with the pre-trained weights. The input to the network is of size 321× 321. The
spatial resolution is reduced to 41× 41, after which we use 3 upsampling layers with addi-
tional convolution layer between to make predictions in the original resolution.

During training, we augment the dataset through rescaling the images by a random factor
between 0.5 and 2.0 and random cropping. We train the network with asynchronous stochas-
tic gradient descent for 40,000 iterations using a momentum of 0.9. We use a learning rate

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman}

Citation
Citation
{Khoreva, Benenson, Omran, Hein, and Schiele} 2015

Citation
Citation
{Uijlings and Ferrari} 2015

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

6 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 5: Bilinear additive upsampling, example for an input image with 4 channels.

of 0.0003 with a polynomial decay of power 0.99. We apply L2 regularization with weight
decay 0.0002. We use a batch size 5. We use sigmoid cross entropy loss per pixel (averaged
across all pixels), where 1 represents an edge, and 0 represents a non-edge pixel.

Edge detection is evaluated using two measures: f-measure for the best-fixed contour
threshold across the entire dataset and average precision (AP). During the evaluation, pre-
dicted contour pixels within three from ground truth pixels are assumed to be correct [19].
Super resolution. For super-resolution, we test our approach on the CelebA dataset, which
consists of 167,483 training images and 29,249 validation images [17]. We follow the setup
from [30]: the input images of the network are 16×16 images, which are created by resizing
the original images. The goal is to reconstruct the original images which have a resolution
of 128×128.

The network architecture used for super-resolution is similar to the one from [12]. We
use six resnet-v1 blocks with 32 channels after which we upsample by a factor of 2. We
repeat this three times to get to a target upsampling factor of 8. On top of this, we add 2
pointwise convolutional layers with 682 channels with batch normalization in the last layer.
Note that in this problem there are only operations which keep the current spatial resolution
or which upsample the representation. We train the network on a single machine with 1
GPU, batch size 32, using RMSProp optimizer with a momentum of 0.9, a decay of 0.95
and a batch size of 16. We fix the learning rate at 0.001 for 30000 iterations. We apply L2
regularization with weight decay 0.0005. The network is trained from scratch.

As loss we use the averaged L2 loss between the predicted residuals ŷ and true residuals y.
The ground truth residual y in the loss function is the difference between original 128×128
target image and the predicted upsampled image. All target values are scaled to [-1,1]. We
evaluate performance using standard metrics for super-resolution: PSNR and SSIM.
Colorization. We train and test our models on the ImageNet dataset [26], which consists
of 1,000,000 training images and 50,000 validation images.

For the network architecture, we follow [8], where we swap their original bilinear upsam-
pling method with the methods described in Sec. 2 in particular, these are three upsampling
steps of factor 2.

This model combines joint training of image classification and colorization, where we

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Liu, Luo, Wang, and Tang} 2015

Citation
Citation
{Yu and Porikli} 2016

Citation
Citation
{Kim, Lee, and Lee} 2015

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Iizuka, Simo-Serra, and Ishikawa} 2016

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

AUTHOR(S): BMVC AUTHOR GUIDELINES 7

are mainly interested in the colorization part. The input image is resized to 224×224 pixels.
We train the network for 30,000 iterations using the Adam optimizer with a batch size of 32,
fixed the learning rate to 1.0. We apply L2 regularization with weight decay 0.0001. During
training, we randomly crop input image, perform random flipping.

As loss function we use the averaged L1 loss for pixel-wise color differences for the
colorization part, and a softmax cross entropy loss for the classification part.

Loss(y, ŷ,ycl , ŷcl) = 10|y− ŷ|− ycl log ŷcl (1)

Color predictions are made in the YPbPr color space (luminance, blue - luminance, red -
luminance), the luminance is ignored in the loss function during both training and evaluation
as is it provided by the input greyscale image. The output pixel value targets are scaled to
the range [0,1]. ycl is a one hot encoding of the predicted class label and ŷcl are the predicted
classification logits.

To evaluate colorization we follow [32]. We compute the average of root mean squared
error between the color channels in the predicted and ground truth pixels. Then for differ-
ent thresholds for root mean squared errors we calculate the accuracy of correctly predicted
colored pixels within given range. Based on these we compute Area Under the Curve [32].
Additionally, we calculate the top-1 and top-5 Inception-v3 [28] classification accuracy for
the colorized images on ImageNet dataset motivated by the assumption that better recogni-
tion corresponds to more realistic images.
Depth. We apply our method to depth prediction on NYUDepth v2 dataset [20]. We
train using the entire NYUDepth v2 raw data distribution, using the official split. There
are 209,822 train and test 187,825 images.

As encoder network, we are using ResNet-50 with stride 8 and atrous convolution, ini-
tialized with the pre-trained weights. We use input size 304×228 (width×height). Then we
upsample three times with convolutional layers in between to get back to original resolution.

We train the network with asynchronous stochastic gradient descent on 20 machines with
a momentum of 0.9 and batch size 16, using a fixed learning rate 0.001. We train for 30,000
iterations. We apply L2 regularization with weight decay 0.0005. We augment the dataset
through random changes in brightness, hue, saturation, random color removal and mirroring.

For depth prediction, we use the reverse Huber following [13].

Loss(y, ŷ) =

{
|y− ŷ| f or |y− ŷ|<= c
|y− ŷ|2 f or |y− ŷ|> c

(2)

c =
1
5

max
(b,h,w)∈[1...Batch Size][1...Height][1...Width]

|yb,h,w− ˆyb,h,w| (3)

The reverse Huber loss is equal to the L1(x) = |x| norm for x ∈ [−c,c] and equal to L2 norm
outside this range. In every gradient descent step c is set to 20% of the maximal pixel error
in the batch.

For evaluation we use the metrics from [4] i.e. mean relative error, root mean squared
error, root mean squared log error, the percentage of correct prediction within three relative
thresholds: 1.25,1.252,1.253.
Semantic segmentation. We evaluate our approach on the standard PASCAL VOC-2012
dataset [5]. We use both the training dataset and augmented dataset [6] which together
consists of 10,582 images. We test on the VOC Pascal 2012 validation dataset of 1,449
images.

Citation
Citation
{Zhang, Isola, and Efros} 2016

Citation
Citation
{Zhang, Isola, and Efros} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2015

Citation
Citation
{Nathanprotect unhbox voidb@x penalty @M {}Silberman and Fergus} 2012

Citation
Citation
{Laina, Rupprecht, Belagiannis, Tombari, and Navab} 2016

Citation
Citation
{Eigen and Fergus} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman}

Citation
Citation
{Hariharan, Arbel{á}ez, Bourdev, Maji, and Malik} 2011

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

8 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 6: Our main results comparing a variety of decoders on five machine vision problems.
The upper part shows decoders without residual-like connections; the bottom shows decoders
with residual-like connections. The colors represent relative performance: red means top
performance, yellow means reasonable performance, blue means poor performance.

As the encoder network, we are using ResNet-50 with stride 8 and atrous convolution,
initialized with pre-trained weights on ImageNet dataset with an input size of 321× 321.
Decoder upsamples three times with factor 2 with the convolutional layer between them.

We train the network with asynchronous stochastic gradient descent on ten machines
with a momentum of 0.9 and batch size 12, starting from learning rate 0.001 with poly-
nomial decay with the power 0.9 for 100,000 iterations. We apply L2 regularization with
weight decay of 0.0001. We randomly augment the dataset through rescaling the images by
a random factor between 0.5 and 2.0 and random cropping of size 321×321.

We train and evaluate following the setup from [18]. We train the model using maximum
likelihood estimation per pixel (softmax cross entropy) and use mIOU (mean Intersection
Over Union) to benchmark the models.

4 Results

Our results are presented in Table 6. For the sake of discussion, since all evaluation metrics
are highly correlated, this table only reports a single metric per problem. A table with all
metrics can be found in the supplementary material. We first discuss the upper half of this
table, which compares the upsampling types described in Sec. 2.1 on our target problems,
both with and without the skip layer. Afterward, we discuss the benefits of adding our
residual connections, resulting in the bottom half of Table 6.

For semantic segmentation, the use of skip-layers improves performance. Separable
transposed convolutions are the best upsampling method. For depth prediction, all layers
except bilinear upsampling have good performance, whereas adding skip layers to these re-

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

AUTHOR(S): BMVC AUTHOR GUIDELINES 9

Method edge detection super-resolution colorization depth prediction sem. segmentation
Measure f-measure SSIM AUC MRE mIoU
Our method 0.63 0.68 0.951 0.165 0.658
Recent work 0.62 [11] 0.70 [30] 0.895 [32] 0.158 [4] 0.622 [18]

Table 2: Comparison of our bilinear additive upsampling + conv + res results with other
methods from the literature.

sults in equal performance except for depth-to-space, where it slightly lowers performance.
For colorization, all upsampling methods perform similarly, and the specific choice matters
little. For superresolution, networks with skip-layers are not possible because there are no
’encoder’ modules which high-resolution (and relatively low-semantic) features. Therefore
this problem has no skip-layer entries. Regarding performance, only all transposed variants
perform well on this task; other layers do not. For Instance Edge Detection, the skip-layer
is necessary to get good results. The best performance is obtained by Transposed, depth-to-
space, and bilinear additive upsampling.

Generalizing over problems, we see that (1) bilinear upsampling plus convolution is al-
ways inferior to other methods. (2) Skip layers make a difference: For semantic segmentation
and instance edge detection, they give performance improvements. (3) Separable transposed
convolutions have the most consistently good performance; only on instance edge detection,
it does not reach top performance.

We now add our bilinear additive upsampling layer to all upsampling methods. Results
are presented in the lower half of Table 6. For the majority of combinations, we see that
adding residual connections is beneficial. Interestingly, we now can identify two upsampling
methods which have consistently good results on all problems presented in this paper, both
which have residual connections: (1) transposed convolutions + residual connections. (2)
bilinear additive upsampling + residual connections.

Finally, we compare our results with recent works in Table 4. This comparison shows
that our used architectures are relatively strong and therefore well-suited for our evaluation
experiments.

5 Conclusions

This paper provided an extensive evaluation for different decoder types on a broad range
of machine vision applications. Our results demonstrate: (1) Decoders matter: there are
significant performance differences between different decoders depending on the problem at
hand. For example, skip layers were essential for both instance edge detection and semantic
segmentation. (2) We introduced the bilinear additive upsampling layer, which considerably
improves upon normal bilinear upsampling and which often results in top performance. (3)
We introduced residual-like connections, which in most cases yield improvements when
added to any upsampling layer. (4) There are two decoder types which give consistently
top performance among the problems which we studied: (A) Transposed Convolutions with
residual-like connections. (B) bilinear additive upsampling with residual-like connections.
We recommend using either of these two decoder types for dense prediction tasks.

Citation
Citation
{Khoreva, Benenson, Omran, Hein, and Schiele} 2015

Citation
Citation
{Yu and Porikli} 2016

Citation
Citation
{Zhang, Isola, and Efros} 2016

Citation
Citation
{Eigen and Fergus} 2014

Citation
Citation
{Long, Shelhamer, and Darrell} 2015

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

10 AUTHOR(S): BMVC AUTHOR GUIDELINES

References
[1] Jose M. Alvarez and Lars Petersson. Decomposeme: Simplifying convnets for end-

to-end learning. CoRR, abs/1606.05426, 2016. URL http://arxiv.org/abs/
1606.05426.

[2] François Chollet. Xception: Deep learning with depthwise separable convolutions.
CoRR, abs/1610.02357, 2016. URL http://arxiv.org/abs/1610.02357.

[3] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285, 2016.

[4] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels
with a common multi-scale convolutional architecture. CoRR, abs/1411.4734, 2014.
URL http://arxiv.org/abs/1411.4734.

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[6] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jitendra
Malik. Semantic contours from inverse detectors. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 991–998. IEEE, 2011.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/
abs/1512.03385.

[8] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let there be color!: joint end-
to-end learning of global and local image priors for automatic image colorization with
simultaneous classification. ACM Transactions on Graphics (TOG), 35(4):110, 2016.

[9] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and
Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks.
arXiv preprint arXiv:1612.01925, 2016.

[10] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model un-
certainty in deep convolutional encoder-decoder architectures for scene understanding.
CoRR, abs/1511.02680, 2015. URL http://arxiv.org/abs/1511.02680.

[11] Anna Khoreva, Rodrigo Benenson, Mohamed Omran, Matthias Hein, and Bernt
Schiele. Weakly supervised object boundaries. CoRR, abs/1511.07803, 2015. URL
http://arxiv.org/abs/1511.07803.

[12] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution
using very deep convolutional networks. CoRR, abs/1511.04587, 2015. URL http:
//arxiv.org/abs/1511.04587.

[13] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir
Navab. Deeper depth prediction with fully convolutional residual networks. In 3D
Vision (3DV), 2016 Fourth International Conference on, pages 239–248. IEEE, 2016.

http://arxiv.org/abs/1606.05426
http://arxiv.org/abs/1606.05426
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1411.4734
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1511.02680
http://arxiv.org/abs/1511.07803
http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1511.04587

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

AUTHOR(S): BMVC AUTHOR GUIDELINES 11

[14] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew P. Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic single
image super-resolution using a generative adversarial network. CoRR, abs/1609.04802,
2016. URL http://arxiv.org/abs/1609.04802.

[15] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian D. Reid. Refinenet: Multi-path re-
finement networks for high-resolution semantic segmentation. CoRR, abs/1611.06612,
2016. URL http://arxiv.org/abs/1611.06612.

[16] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan,
and Serge J. Belongie. Feature pyramid networks for object detection. CoRR,
abs/1612.03144, 2016. URL http://arxiv.org/abs/1612.03144.

[17] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision (ICCV),
2015.

[18] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3431–3440, 2015.

[19] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics. In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423,
July 2001.

[20] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012.

[21] Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and Jeff Clune.
Plug & play generative networks: Conditional iterative generation of images in latent
space. arXiv preprint arXiv:1612.00005, 2016.

[22] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard
artifacts. Distill, 1(10):e3, 2016.

[23] Junting Pan, Elisa Sayrol, Xavier Giro-i Nieto, Kevin McGuinness, and Noel E
O’Connor. Shallow and deep convolutional networks for saliency prediction. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
598–606, 2016.

[24] Pedro H. O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to
refine object segments. CoRR, abs/1603.08695, 2016. URL http://arxiv.org/
abs/1603.08695.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. CoRR, abs/1505.04597, 2015. URL http://
arxiv.org/abs/1505.04597.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1611.06612
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1603.08695
http://arxiv.org/abs/1603.08695
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

12 AUTHOR(S): BMVC AUTHOR GUIDELINES

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y.

[27] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob
Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1874–1883,
2016.

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015. URL http://arxiv.org/abs/1512.00567.

[29] Jasper RR Uijlings and Vittorio Ferrari. Situational object boundary detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4712–4721, 2015.

[30] Xin Yu and Fatih Porikli. Ultra-resolving face images by discriminative generative
networks. In European Conference on Computer Vision, pages 318–333. Springer,
2016.

[31] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolu-
tional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 2528–2535. IEEE, 2010.

[32] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
European Conference on Computer Vision, pages 649–666. Springer, 2016.

http://arxiv.org/abs/1512.00567

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

AUTHOR(S): BMVC AUTHOR GUIDELINES 13

6 Appendix

Figure 7: The full results metrics related to 5 examined problems.

