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The Devil is in the Decoder

BMVC 2017 Submission # 645

Abstract

Many machine vision applications require predictions for every pixel of the input
image (for example semantic segmentation, boundary detection). Models for such prob-
lems usually consist of encoders which decreases spatial resolution while learning a
high-dimensional representation, followed by decoders who recover the original input
resolution and result in low-dimensional predictions. While encoders have been studied
rigorously, relatively few studies address the decoder side. Therefore this paper presents
an extensive comparison of a variety of decoders for a variety of pixel-wise prediction
tasks. Our contributions are: (1) Decoders matter: we observe significant variance in
results between different types of decoders on various problems. (2) We introduce a
novel decoder: bilinear additive upsampling. (3) We introduce new residual-like con-
nections for decoders. (4) We identify two decoder types which give consistently high
performance.

1 Introduction

Many important machine vision applications require predictions for every pixel of the input
image. Examples include but are not limited to: semantic segmentation [18], boundary
detection [29], super-resolution [14], colorization [8], depth estimation [20], normal surface
estimation [4], saliency prediction [23], image generation networks (GANs) [21], and optical
flow [9]. Models for such applications are usually assembled of a feature extractor that
decreases spatial resolution while learning high-dimensional representation and a decoder
that recovers the original input resolution. While feature extractors were rigorously studied
(for example in the context of image classification), relatively few studies have been done on
the decoder side.

This work presents an extensive analysis of a variety of decoding methods on a broad
range of machine vision tasks: semantic segmentation, depth prediction, colorization, super-
resolution, and instance edge detection. We make the following contributions: (1) Decoders
matter: we observe significant variance in results between different types of decoders on
various problems. (2) We introduce a new bilinear additive upsampling layer, which results
in significant improvements over normal bilinear upsampling. (3) We introduce residual-
like connections for decoders. While the differences in spatial resolution and number of
feature channels of the input and output of the decoder make it impossible to use residual
connections directly, we show how to create residual-like connections. (4) We identify two
decoder types which give consistently high performance on all tested machine vision tasks.
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Figure 1: General schematic architecture used for dense prediction problems.

2 Decoder Architecture

Dense problems which require per pixel predictions are typically addressed with an encoder-
decoder architecture (see Fig. 1). First, a feature extractor downsamples the spatial resolution
(usually by a factor 8-32) while increasing the number of channels. Afterward, a ‘decoder’
upsamples the representation back to the original input size. Conceptually, such decoder can
be seen as a reversed operation to what encoders are doing. One decoder module consists of
at least one layer that increases spatial resolution, which we call an upsampling layer, and
possibly layers that preserve spatial resolution (e.g. standard convolution, a residual block,
an inception block).

Decoder architectures were previously studied only in the context of the single problem:
[13] studies 5× 5 transposed convolution which allows them to speed it up. [27] improved
on super-resolution through depth to space transformation. [22] analyzed artifacts which
transposed convolution causes in generator network in Generative Adversarial Networks.

Layers that preserve spatial resolution were well studied in the literature in the context
of neural architectures for image classification [1, 2, 7, 28]. Therefore we only analyze
the layers that increase spatial resolution - the upsampling layers. Unlike other studies on
decoder architectures, we do this on five different machine vision tasks.

2.1 Upsampling layers

Below we present and compare several ways of upsampling the spatial resolution in convo-
lution neural networks, a crucial part of any decoder.

2.1.1 Existing upsampling layers

Transposed Convolution. Transposed Convolutions are the most commonly used upsam-
pling layers and are also sometimes referred to as ‘deconvolution’ [3, 18, 31]. A Transposed
Convolution can be seen as a reversed convolution in the sense of how the input and out-
put relate to each other. However, is it not an inverse operation, since calculating the exact
inverse is an under-constrained problem and therefore ill-posed. Transposed convolution is
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Figure 2: Transposed convolution with kernel size 3 and stride 2.

equivalent to interleaving the input features with 0’s and applying a standard convolutional
operation. The calculations of a transposed convolution are illustrated in Fig. 2.
Decomposed Transposed Convolution. Decomposed Transposed Convolution is similar
to the transposed convolution, but conceptually it splits the main convolution operation up
into multiple low-rank convolutions. For images, it simulates a 2D transposed convolution
using two 1D convolutions. Regarding possible feature transformations, Decomposed Trans-
posed Convolution is strictly a subset of regular Transposed Convolution. As an advantage,
the number of trainable parameters is significantly reduced (Tab. 4).

Decomposed Transposed Convolution was successfully applied in the inception archi-
tecture [28] where it achieved state of the art results on ILSVRC2012 [26]. It was also used
to reduce the number of parameters of the network in [1].
Separable Transposed Convolution. Separable Convolution were used to build a simple
and homogenous network architecture [2] which achieved superior results to inception-v3
[28]. A Separable Convolution consists of two operations, a per channel convolution and
a pointwise convolution with 1× 1 kernel which mixes the channels. Separable transposed
convolution is defined in the same way through applying the transposed convolution (Fig. 2)
however, now on every single channel separately. Afterward, a pointwise 1×1 convolutional
kernel is applied. Again, regarding feature transformations, Separable Transposed Convo-
lutions are a strict subset of Transposed Convolutions. In most cases, it has even fewer
parameters than Decomposed Transposed Convolutions.
Depth To Space. Depth to Space [27] shifts the feature channels into the spatial domain
as illustrated in Fig. 4. Depth To Space preserves perfectly all floats inside the high dimen-
sional representation of the image, as it only changes their placement. The drawback of this
approach is that it introduces alignment artifacts. To be comparable with other upsampling
layers which have learnable parameters, before depth to space transformation we are apply-
ing a convolution with four times more output channels than for other upsampling layers.
Bilinear Upsampling. Bilinear Interpolation is another very popular approach for upsam-
pling the spatial resolution. To be comparable with other methods we assume there is addi-
tional convolutional operation applied after the upsampling. The drawback of this strategy
is that it is the memory and computationally intensive. The feature size is increased while
keeping the same amount of ’information’ counted in a number of floats.
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Figure 3: Decomposed transposed convolution.

2.1.2 Bilinear additive upsampling

To overcome the memory and computational problems of bilinear upsampling, we introduce
a new upsampling layer: bilinear additive upsampling. In this layer, we propose to do bilinear
upsampling as before, but we also add every N consecutive channels together, effectively
reducing the output by a factor N. This process is illustrated in Fig. 5. Please note that this
process is deterministic and has zero tunable parameters. Therefore, to be comparable with
other upsampling methods we apply a convolution after this upsampling method.

2.2 Skip Connections and Residual Connections
2.2.1 Skip Connections

Skip connections have been successfully used in many decoder architectures [10, 15, 16, 24,
25]. It uses features from the encoder in the decoder part of the same spatial resolution, as
illustrated in Fig. 1. For our implementation of skip connections, we apply the convolution
on the last layer of encoded features for given spatial resolution and concatenate them with
the first layer of decoded features for given spatial resolution as illustrated in Fig. 1.

2.2.2 Residual Connections for decoders

Residual connections[7] have been shown to be beneficial for a variety of tasks. However,
residual connections cannot be directly applied to upsampling methods since the output layer
has a higher spatial resolution than the input layer and a lower number of feature channels.
In this paper, we introduce a transformation which solves both problems.

In particular, the bilinear additive upsampling method which we introduced above (Fig. 5)
transforms the input layer into the desired spatial resolution and number of channels without
using any parameters. The resulting features contain much of the information of the original
features. Therefore we can apply this transformation (this time without doing any convo-
lution) and add its result to the output of any upsampling layer, resulting in a residual-like
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Figure 4: Depth To Space.

Upsampling method Parameters Operations Comments
Transposed whIO whWHIO

Dec. Transposed (w+h)IO (w+h)WHIO Subset of Transposed
Sep. Transposed whI + IO whWHI +WHIO Subset of Transposed

Conv and Depth To Space whI(4O) whWHI(4O)
Bilinear with Conv whIO wh(2W )(2H)IO

Bilinear additive with Conv whIO whWHIO

Table 1: Comparison of different upsampling methods. W,H - feature width and height, w,h
- kernel width and height, I,O - number of channels for input and output features.

connection. We demonstrate the effectiveness of our residual connection in Sec. 4.

3 Tasks and Experimental Setup

Instance boundaries detection. For instance-wise boundaries, we use PASCAL VOC
2012 segmentation [5]. This dataset contains 1,464 training and 1,449 validation images,
annotated with contours for 20 object classes for all instances. The dataset was originally
designed for semantic segmentation. Therefore only interior object pixels are marked, and
the boundary location is recovered from the segmentation mask. Similar to [11, 29], we
consider only object boundaries without distinguishing semantics, treating all 20 classes as
one.

As encoder or feature extractor we use ResNet-50 with stride 8, atrous convolution, ini-
tialized with the pre-trained weights. The input to the network is of size 321× 321. The
spatial resolution is reduced to 41× 41, after which we use 3 upsampling layers with addi-
tional convolution layer between to make predictions in the original resolution.

During training, we augment the dataset through rescaling the images by a random factor
between 0.5 and 2.0 and random cropping. We train the network with asynchronous stochas-
tic gradient descent for 40,000 iterations using a momentum of 0.9. We use a learning rate
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Figure 5: Bilinear additive upsampling, example for an input image with 4 channels.

of 0.0003 with a polynomial decay of power 0.99. We apply L2 regularization with weight
decay 0.0002. We use a batch size 5. We use sigmoid cross entropy loss per pixel (averaged
across all pixels), where 1 represents an edge, and 0 represents a non-edge pixel.

Edge detection is evaluated using two measures: f-measure for the best-fixed contour
threshold across the entire dataset and average precision (AP). During the evaluation, pre-
dicted contour pixels within three from ground truth pixels are assumed to be correct [19].
Super resolution. For super-resolution, we test our approach on the CelebA dataset, which
consists of 167,483 training images and 29,249 validation images [17]. We follow the setup
from [30]: the input images of the network are 16×16 images, which are created by resizing
the original images. The goal is to reconstruct the original images which have a resolution
of 128×128.

The network architecture used for super-resolution is similar to the one from [12]. We
use six resnet-v1 blocks with 32 channels after which we upsample by a factor of 2. We
repeat this three times to get to a target upsampling factor of 8. On top of this, we add 2
pointwise convolutional layers with 682 channels with batch normalization in the last layer.
Note that in this problem there are only operations which keep the current spatial resolution
or which upsample the representation. We train the network on a single machine with 1
GPU, batch size 32, using RMSProp optimizer with a momentum of 0.9, a decay of 0.95
and a batch size of 16. We fix the learning rate at 0.001 for 30000 iterations. We apply L2
regularization with weight decay 0.0005. The network is trained from scratch.

As loss we use the averaged L2 loss between the predicted residuals ŷ and true residuals y.
The ground truth residual y in the loss function is the difference between original 128×128
target image and the predicted upsampled image. All target values are scaled to [-1,1]. We
evaluate performance using standard metrics for super-resolution: PSNR and SSIM.
Colorization. We train and test our models on the ImageNet dataset [26], which consists
of 1,000,000 training images and 50,000 validation images.

For the network architecture, we follow [8], where we swap their original bilinear upsam-
pling method with the methods described in Sec. 2 in particular, these are three upsampling
steps of factor 2.

This model combines joint training of image classification and colorization, where we
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are mainly interested in the colorization part. The input image is resized to 224×224 pixels.
We train the network for 30,000 iterations using the Adam optimizer with a batch size of 32,
fixed the learning rate to 1.0. We apply L2 regularization with weight decay 0.0001. During
training, we randomly crop input image, perform random flipping.

As loss function we use the averaged L1 loss for pixel-wise color differences for the
colorization part, and a softmax cross entropy loss for the classification part.

Loss(y, ŷ,ycl , ŷcl) = 10|y− ŷ|− ycl log ŷcl (1)

Color predictions are made in the YPbPr color space (luminance, blue - luminance, red -
luminance), the luminance is ignored in the loss function during both training and evaluation
as is it provided by the input greyscale image. The output pixel value targets are scaled to
the range [0,1]. ycl is a one hot encoding of the predicted class label and ŷcl are the predicted
classification logits.

To evaluate colorization we follow [32]. We compute the average of root mean squared
error between the color channels in the predicted and ground truth pixels. Then for differ-
ent thresholds for root mean squared errors we calculate the accuracy of correctly predicted
colored pixels within given range. Based on these we compute Area Under the Curve [32].
Additionally, we calculate the top-1 and top-5 Inception-v3 [28] classification accuracy for
the colorized images on ImageNet dataset motivated by the assumption that better recogni-
tion corresponds to more realistic images.
Depth. We apply our method to depth prediction on NYUDepth v2 dataset [20]. We
train using the entire NYUDepth v2 raw data distribution, using the official split. There
are 209,822 train and test 187,825 images.

As encoder network, we are using ResNet-50 with stride 8 and atrous convolution, ini-
tialized with the pre-trained weights. We use input size 304×228 (width×height). Then we
upsample three times with convolutional layers in between to get back to original resolution.

We train the network with asynchronous stochastic gradient descent on 20 machines with
a momentum of 0.9 and batch size 16, using a fixed learning rate 0.001. We train for 30,000
iterations. We apply L2 regularization with weight decay 0.0005. We augment the dataset
through random changes in brightness, hue, saturation, random color removal and mirroring.

For depth prediction, we use the reverse Huber following [13].

Loss(y, ŷ) =

{
|y− ŷ| f or |y− ŷ|<= c
|y− ŷ|2 f or |y− ŷ|> c

(2)

c =
1
5

max
(b,h,w)∈[1...Batch Size][1...Height][1...Width]

|yb,h,w− ˆyb,h,w| (3)

The reverse Huber loss is equal to the L1(x) = |x| norm for x ∈ [−c,c] and equal to L2 norm
outside this range. In every gradient descent step c is set to 20% of the maximal pixel error
in the batch.

For evaluation we use the metrics from [4] i.e. mean relative error, root mean squared
error, root mean squared log error, the percentage of correct prediction within three relative
thresholds: 1.25,1.252,1.253.
Semantic segmentation. We evaluate our approach on the standard PASCAL VOC-2012
dataset [5]. We use both the training dataset and augmented dataset [6] which together
consists of 10,582 images. We test on the VOC Pascal 2012 validation dataset of 1,449
images.
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Figure 6: Our main results comparing a variety of decoders on five machine vision problems.
The upper part shows decoders without residual-like connections; the bottom shows decoders
with residual-like connections. The colors represent relative performance: red means top
performance, yellow means reasonable performance, blue means poor performance.

As the encoder network, we are using ResNet-50 with stride 8 and atrous convolution,
initialized with pre-trained weights on ImageNet dataset with an input size of 321× 321.
Decoder upsamples three times with factor 2 with the convolutional layer between them.

We train the network with asynchronous stochastic gradient descent on ten machines
with a momentum of 0.9 and batch size 12, starting from learning rate 0.001 with poly-
nomial decay with the power 0.9 for 100,000 iterations. We apply L2 regularization with
weight decay of 0.0001. We randomly augment the dataset through rescaling the images by
a random factor between 0.5 and 2.0 and random cropping of size 321×321.

We train and evaluate following the setup from [18]. We train the model using maximum
likelihood estimation per pixel (softmax cross entropy) and use mIOU (mean Intersection
Over Union) to benchmark the models.

4 Results

Our results are presented in Table 6. For the sake of discussion, since all evaluation metrics
are highly correlated, this table only reports a single metric per problem. A table with all
metrics can be found in the supplementary material. We first discuss the upper half of this
table, which compares the upsampling types described in Sec. 2.1 on our target problems,
both with and without the skip layer. Afterward, we discuss the benefits of adding our
residual connections, resulting in the bottom half of Table 6.

For semantic segmentation, the use of skip-layers improves performance. Separable
transposed convolutions are the best upsampling method. For depth prediction, all layers
except bilinear upsampling have good performance, whereas adding skip layers to these re-

Citation
Citation
{Long, Shelhamer, and Darrell} 2015



368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

AUTHOR(S): BMVC AUTHOR GUIDELINES 9

Method edge detection super-resolution colorization depth prediction sem. segmentation
Measure f-measure SSIM AUC MRE mIoU
Our method 0.63 0.68 0.951 0.165 0.658
Recent work 0.62 [11] 0.70 [30] 0.895 [32] 0.158 [4] 0.622 [18]

Table 2: Comparison of our bilinear additive upsampling + conv + res results with other
methods from the literature.

sults in equal performance except for depth-to-space, where it slightly lowers performance.
For colorization, all upsampling methods perform similarly, and the specific choice matters
little. For superresolution, networks with skip-layers are not possible because there are no
’encoder’ modules which high-resolution (and relatively low-semantic) features. Therefore
this problem has no skip-layer entries. Regarding performance, only all transposed variants
perform well on this task; other layers do not. For Instance Edge Detection, the skip-layer
is necessary to get good results. The best performance is obtained by Transposed, depth-to-
space, and bilinear additive upsampling.

Generalizing over problems, we see that (1) bilinear upsampling plus convolution is al-
ways inferior to other methods. (2) Skip layers make a difference: For semantic segmentation
and instance edge detection, they give performance improvements. (3) Separable transposed
convolutions have the most consistently good performance; only on instance edge detection,
it does not reach top performance.

We now add our bilinear additive upsampling layer to all upsampling methods. Results
are presented in the lower half of Table 6. For the majority of combinations, we see that
adding residual connections is beneficial. Interestingly, we now can identify two upsampling
methods which have consistently good results on all problems presented in this paper, both
which have residual connections: (1) transposed convolutions + residual connections. (2)
bilinear additive upsampling + residual connections.

Finally, we compare our results with recent works in Table 4. This comparison shows
that our used architectures are relatively strong and therefore well-suited for our evaluation
experiments.

5 Conclusions

This paper provided an extensive evaluation for different decoder types on a broad range
of machine vision applications. Our results demonstrate: (1) Decoders matter: there are
significant performance differences between different decoders depending on the problem at
hand. For example, skip layers were essential for both instance edge detection and semantic
segmentation. (2) We introduced the bilinear additive upsampling layer, which considerably
improves upon normal bilinear upsampling and which often results in top performance. (3)
We introduced residual-like connections, which in most cases yield improvements when
added to any upsampling layer. (4) There are two decoder types which give consistently
top performance among the problems which we studied: (A) Transposed Convolutions with
residual-like connections. (B) bilinear additive upsampling with residual-like connections.
We recommend using either of these two decoder types for dense prediction tasks.
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6 Appendix

Figure 7: The full results metrics related to 5 examined problems.


