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Abstract

We propose a tracker-independent framework to determine time instants when a
video tracker fails. The framework is divided into two steps. First, we determine tracking
quality by comparing the distributions of the tracker state and a region around the state.
We generate the distributions using Distribution Fields and compute a tracking quality
score by comparing the distributions using the L1 distance. Then, we model this score
as a time series and employ the Auto Regressive Moving Average method to forecast
future values of the quality score. A difference between the original and forecast returns
an error signal that we use to detect a tracker failure. We validate the proposed approach
over different datasets and demonstrate its flexibility with tracking results and sequences
from the Visual Object Tracking (VOT) challenge.

1 Introduction
Detecting tracking errors is important to support self-aware systems and to correct [2] or to
remove [17] failing trackers in a fusion framework. Validating the quality of a tracker over
time can help determine time instants when these errors occur. The ability of the tracker
to stay on target can be quantified by a tracking quality measure, which can be estimated
using features, trajectories or both (hybrid approach). Feature-based track quality estima-
tors (TQEs) exploit tracker-independent covariance descriptors [23], internal properties of
the trackers such as the observation likelihood [19] or the spatial uncertainty of particle
filters (PF) [2, 25]. Trajectory-based TQEs may use tracker correlation [11], target veloc-
ity [28] or a time-reversed approach [17, 33]. Hybrid approaches estimate tracking quality
by combining multiple TQEs with a naive Bayes classifier [29] or by computing a weighted
average of the quality scores [5]. These approaches are tuned to specific data [28], eval-
uate quality using heuristically determined thresholds [5, 23], depend upon specific track-
ers [2, 24, 25] or have a high computational cost [33]. Moreover, challenges such as motion
blur, sudden changes in target motion and low resolution further make the task of detecting
time instants of tracking failure difficult.

A TQE can be employed to detect tracking errors by analysing the temporal changes
of the filter uncertainty [25] or by modelling these changes via a mixture of Gamma distri-
butions [24]. However, these approaches are limited to the use of PFs. An example of a
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Figure 1: Block diagram of the proposed framework.

tracker-independent approach for the validation of tracking quality is comparing covariance
descriptors (using colour features) over consecutive frames [23]. Nonetheless, this approach
employs a heuristically set threshold for detecting tracking errors and is therefore limited to
specific data. Using the reversibility property of Markov chains, tracking errors can be de-
tected by comparing results of the tracker to those obtained when running the same tracker
in the reverse temporal direction [33]. However, using a reverse tracker is computationally
expensive and is affected by a decision latency.

In this paper we propose a failure detection framework that uses only the output of a
tracker and a state-background discrimination approach to estimate tracking quality. The
background region around the state is split into smaller regions of the same size as the
state. We then determine the distributions of the state and of each background region us-
ing distribution fields (DF) [27], where DF represents a smoothed histogram of the image
region composed of several layers (bins). We compare the state and background distribu-
tions to quantify the similarity between the two regions, thus producing a track quality score.
Raw (noisy) values of the track quality score can have variable ranges for different sequences
and trackers, thereby limiting the state-of-the-art (SOA) methods to specific sequences or
trackers [23, 24, 25]. To address this problem and detect tracking errors, we model the score
as a time series using the Auto Regressive Moving Average (ARMA) model and forecast
future values of the time series. The difference between the original and the forecast gener-
ates a forecast error signal, which has a uniform range of values for any video data. We then
detect significant changes (tracking errors) within the forecast error signal using an experi-
mentally derived threshold. Figure 1 shows the block diagram of the proposed approach.

2 Track quality estimation
We perform background analysis to estimate the tracking quality. Background analysis is
generally used for foreground detection (FD) [3] and tracking-by-detection (TD) [6, 13].
FD approaches generate over time a background model to separate moving objects from the
scene [3], whereas TD approaches track the target by employing local search regions around
the estimated state from the current time instant [9, 13].

Let I = {It}T
t=1 be an image sequence and xt = [ut ,vt ,wt ,ht ] be the tracker state at time

t = 1, ...,T , where [ut ,vt ] is the position, and wt and ht are the width and height of the
bounding box of the target, respectively. Using past motion and position information of the
state over a sliding temporal window, we select in It the background region Bt around the
state region St defined by xt . Bt encloses both the state and its surrounding background.

To select Bt , we first predict the target position in the next frame. We use past information
over a short sliding temporal window, ∆t1, to determine the average displacement and the
direction of movement of the target (Figure 2(a)). Let ~ν∆t1 be the directional feature of a
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Figure 2: Background and state region selection. (a) xt−∆t , ..., xt−1 (enclosed in the blue
bounding boxes) and motion information ~ν∆t1 over a past temporal window ∆t1; (b) back-
ground region Bt (enclosed in the red bounding box) and state region St (enclosed in the
yellow bounding box) selected at frame It ; (c)-(d) distributions of Bt and St represented with
colour DF [32].

tracker [1], which represents both the average displacement and direction of the target over
∆t1 and is computed as:

~ν∆t1 =
1

∆t1

t−1

∑
t ′=t−∆t1

[ut ′+1−ut ′ ,vt ′+1− vt ′ ], (1)

where the position of the target in It is predicted as [ût , v̂t ] = [ut−1,vt−1] +~ν∆t1 . The back-
ground region Bt , centred at [ût , v̂t ] with width and height of ŵt = wt−1 + d(wt−1 +ht−1)/4e
and ĥt = wt−1 + d(wt−1 +ht−1)/4e, respectively [9], where d.e defines the ceil operation, is
then selected from frame It .

We determine the distributions of the two regions using colour DF [32]. DFs have been
employed for background subtraction [8, 30] as well as for tracking [10, 22, 27, 32] and com-
bine the power of histograms and intensity gradients to preserve both visual information and
the spatial structure of the image region [32]. A DF is a collection of probability distributions
where each distribution defines the probability of a pixel taking the feature value (e.g. colour
intensity).

Let dSt (i, j,c,m) be the DF, where i = 1, ...,ht and j = 1, ...,wt define the pixel location
in St , c ∈ {R, G, B} is the feature channel and m = 1, ...,M is the index of the layer. A DF is
generated in three steps. The first step explodes the image into multiple layers (Figure 2(c))
resulting in a Kronecker delta function at each pixel location:

dSt (i, j,c,m) =





1 if d St (i, j,c)
λ e= M,

0 otherwise,
(2)

where λ , the size of each layer, is the ratio between the maximum feature value (e.g. 255 for
an RGB channel) and M. The second step spatially spreads the information in dSt (i, j,c,m)
by convolving dSt (i, j,c,m) with a 2-D Gaussian kernel hσ1 over m as:

d
′
St (m) = dSt (m)∗hσ1 , (3)
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where σ1 is the standard deviation of hσ1 and ∗ is the convolution operation. Finally, to better
handle small variations in brightness and subpixel motion [27] d

′
St
(m) is convolved with a

1-D Gaussian kernel hσ2 (with standard deviation σ2) over (i, j,c) (Figure 2(d)) as:

d
′′
St (i, j,c) = d

′
St (i, j,c)∗hσ2 . (4)

To compare the DF of Bt with d
′′
St
(i, j,c,m), we divide Bt into four smaller and equally

sized regions ba
t , where a = 1, ...,4, having width wt and height ht (Figure 2(b)). Then, using

the same feature space, a distribution for each ba
t (d

′′
ba

t
(i, j,c,m)) is computed using Equa-

tions (2) - (4), where St is replaced by ba
t . We use the L1 distance to compare d

′′
St
(i, j,c,m)

and d
′′
ba

t
(i, j,c,m) on each channel as:

ỹa
t =

1
wt ht M ∑

c∈{R,G,B}

(
ωc

ht

∑
i=1

wt

∑
j=1

M

∑
m=1

∣∣∣d ′′St (i, j,m)−d
′′
ba

t
(i, j,m)

∣∣∣
)
, (5)

where |.| denotes the absolute value. We normalise the distance by the height and width of
the state and the number of layers. The weight ωc assigned to each channel is computed as:

ωc =

∣∣∣µc
St
−µc

ba
t

∣∣∣

∑
c∈{R,G,B}

∣∣∣µc
St
−µc

ba
t

∣∣∣
, (6)

where µc
St

and µc
ba

t
are the mean R, G, B values for St and ba

t , respectively. Weighting the
colour channels allows us to exploit the most discriminative one(s) when comparing the two
distributions.

The overall tracking quality score yt is determined by quantifying the similarity between
Bt and St as:

yt =
1
4

4

∑
a=1

ỹa
t , (7)

where low (high) values of yt indicate similarity (dissimilarity) between Bt and St .

3 Detecting tracking errors

We detect tracking errors by employing time series analysis to model Y = {yt}T
t=1, a uni-

variate discrete time series, for forecasting. Forecasting methods such as moving average
models [16] have flat forecast functions and generally do not take past information into ac-
count. ARMA models [4] are built using past data and forecast using both past and present
data. State-space models, such as the Kalman Filter, require the model of the time series to
be known beforehand for forecasting [12]. Support Vector Machines [26] and neural net-
work models [12] are more complex than ARMA for forecasting. A comprehensive survey
of time series forecasting is presented in [12].

We employ ARMA to model Y, where the difference between the forecast and the orig-
inal returns a re-scaled signal, highlighting only the significant changes (tracking errors).
ARMA(p,q) models are defined by their autoregressive (AR) and moving average (MA)
orders p = 0, ...,P and q = 0, ...,Q, respectively. Determining the right model requires iden-
tification of P and Q by a visual inspection of the auto-correlation function (ACF) and partial
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Figure 3: Example for track quality estimation with forecasting using the results produced
by tracker DSST [7] on the VOT2014 sequence basketball. The tracker is re-initialised after
an error at frame 452. Top row: Tracking results. Red, yellow and green represent Bt , St and
the ground-truth state, respectively. Bottom row: (a) Tracker performance measured as Ot
(Section 4.1); (b) original yt and its forecast ŷt+l ; (c) forecast error signal |ẽt |. The tracking
error at frame 452 is reflected as a significant change within |ẽt |.

ACF (PACF) of Y or by employing statistical tests such as the Akaike and Bayesian Infor-
mation Criteria [12]. Using P,Q and the past data within a sliding temporal window ∆t2,
the AR polynomial φ̂(p), the MA polynomial θ̂(q) and the constant β̂ can be recursively
estimated using techniques such as the conditional least squares or the maximum likelihood
methods [4]. Using the parameters Ψ =

{
P,Q, φ̂(p), θ̂(q), β̂

}
forecasts are recursively com-

puted over the forecast length l ≥ 1 at time t as:

ŷt+l =





∑P
p=0 φ̂(p) ŷt+l−p +∑Q

q=0 θ̂(q) εt+l−q + β̂ for l < Q,

∑P
p=0 φ̂(p) ŷt+l−p + β̂ otherwise,

(8)

where εt = yt− ŷt is the estimation error (which is replaced by zero for l > Q, because it has
not occurred yet) [4]. The forecasting error ẽt+l = yt+l − ŷt+l determines the accuracy of a
forecasting approach [12]: low (high) values indicate good (bad) forecasts.

Since the values of ŷt+l are dependent on past values of yt between t−∆t2 and t, |ẽt+l |
temporally smooths yt . A significant change in the value of yt is a tracking error, et+l , and
computed as:

et+l =





1 if |ẽt+l | ≥ τ1,

0 otherwise,
(9)

where τ1 is determined experimentally. Finally, if δ e
t = et+l − et+l−1, then δ e

t = 1 indicates
when a tracking error first occurs.

4 Experimental evaluation

We compare the proposed approach with the SOA for detecting tracking errors and then test
its flexibility with results and sequences from the VOT2014 challenge [18].
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4.1 Experimental setup

We validate the proposed approach, Detect Tracking Errors using Forecasting (DTEF), using
a PF-based tracker that employs sparse (intensity) features to generate the target appearance
model and maximum a posteriori to estimate the target state and use the code publicly avail-
able from the author’s web page1 [31].

Dataset. For training we use 20 sequences from dataset D1 [17]. For testing we use
20 sequences from the Object Tracking Benchmark (OTB) dataset [34], namely: CarDark,
CarScale, Couple, Crossing, David (300:500), David3, Doll (1:500), FaceOcc1, Girl (1:210),
Jogging, Liquor (1:750), MotorRolling, MountainBike, Singer1, Singer2, Subway, Tiger1,
Walking, Walking2 and Woman (1:150). Sequences (first frame:last frame), are used with
a reduced number of frames since the tracker does not recover the target after a failure in
this point. The sequences cover indoor and outdoor scenarios containing tracking challenges
such as pose, motion and illumination changes, occlusions, background clutter, motion blur
and contain three target types, namely cars, people and faces. Sequences with less than
100 frames or where a tracking error occurs within the initial 15 frames are not used. Tar-
get initialisation for D1 and OTB can be found in http://www.eecs.qmul.ac.uk/
~andrea/dtef.html.

Forecasting model. We achieve model building and parameter estimation using the
MATLAB built-in arima and estimate functions, respectively. As finding the best fit for Y is
out of the scope of this paper, we determine the values of P = Q =1 by visual inspection of
the ACF and PACF plots of Y.

Experimental parameters. For both training and testing purposes, ∆t1 = 10 provides an
optimal value to encode the average target displacement and direction. The standard devia-
tion of the 2-D Gaussian kernel is set to σ1 = 1 and 2 for the u and v directions, respectively,
and σ2 = 0.625 for the 1-D Gaussian kernel as in [27], while the number of layers, M = 32
provides a better discrimination between background and target distributions. For training
over D1, we determine the optimal amount of past data required to build the forecast model
using different values of ∆t2 as 10 and 20. The forecast length is varied as l = 5, 10, 25, 50 to
determine the performance for both short-term and long-term forecasts. Finally, the thresh-
old τ1 was varied between 0.003 and 0.009 with a step size 0.001. For testing the approach
over OTB, we use ∆t2 = 20, l = 5 and τ1 = 0.004 based on the training results.

Methods under comparison. We compare DTEF with two variations of the proposed
approach: RAW and NAIVE; one SOA method for tracker error detection: Covariance Fea-
tures (CovF) [23] and two SOA feature descriptors employed for video tracking: RGB His-
tograms (RgbHist) and RGB+LBP Histograms (RLHist) [21]. NAIVE detects tracking errors
by forecasting yt using the Naive forecasting model [12] that forecasts values equal to the
last observed value (ŷt+l = yt ). Based on the training over D1, threshold for NAIVE = 0.004.
RAW detects tracking errors using raw yt values, where threshold = 0.039 is based on training
over D1. CovF [23] employs a 5-dimensional target descriptor based on the colour and posi-
tion values and compares them within consecutive frames to determine tracking quality. For
error detection, the threshold for CovF is set to 2.3 as in [23]. RgbHist and RLHist are em-
ployed for tracking failure detection and trained over D1 to select threshold = 0.88 for both
RgbHist and RLHist. For DTEF, NAIVE and CovF the tracking error is detected for values
above their respective thresholds, while for RAW, RgbHist and RLHist for values below their
respective thresholds.

1http://faculty.ucmerced.edu/mhyang/project/tip13_prototype/TIP12-SP.htm
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Evaluation measures. We measure the tracking error by comparing the tracker output
xt with the ground-truth (GT) data as [24]:

Ot = 1− 2|Ax
t
⋂

AGT
t |

|Ax
t |+ |AGT

t |
, (10)

where Ax
t and AGT

t represent the area in pixels of the estimated, xt , and GT target locations, re-
spectively; |Ax

t
⋂

AGT
t | is their spatial overlap in pixels. Ot ∈ [0,1]: values close to 0 (1) indi-

cate high (low) tracking performance. Time instants when Ot changes from success (Ot < 1)
to failure (Ot = 1) [24] are determined by the GT transitions, (δ O

t = O′t−O′t−1, if O′t−1 = 0
and O′t = 1, otherwise δ O

t = 0), where O′t is determined as:

O′t =





1 if Ot = 1,

0 if Ot < 1,
(11)

For comparing the performance in detecting tracking errors, we use the number of true
positives (nT P), false positives (nFP), false negatives (nFN) and true negatives (nT N). We
compute the false positive rate FPR= nFP

nFP+nT N
, precision (P), recall (R) and the F-score [17].

nT P (nFN) indicate whether the decisions, δ e
t , of the proposed method correspond correctly (in-

correctly) to the failure decisions generated by δ O
t . Similarly, a correct (incorrect) match of

the successful decisions between δ e
t and δ O

t is determined by nT N (nFP). A tolerance window
of ±5 frames is used to match δ e

t with each δ O
t .

Let a generic zt represent |ẽt |, yt or the tracking performance scores generated by the
SOA methods, and Z = {zt}T

t=1 be the corresponding time-series. We normalise each zt as:

z′t =
zt −min(Z)

max(Z)−min(Z)
, (12)

to enable the comparison of variations of the corresponding values over the whole dataset.

4.2 Tracking error detection
We first compare DTEF with NAIVE and RAW, and then with CovF, RgbHist and RLHist on
the OTB dataset.

While the values of yt vary across sequences (see Figure 4(a)-(d)), forecasting enables
us to generate a signal with the same range of values for the whole dataset. In CarDark
an illumination variation and background clutter cause a tracking error between frames 270
and 280, while in Crossing a tracking error occurs due to scale variations. RAW achieves
lower P than DTEF and NAIVE (Table 1), which detect these errors with their respective
forecasting approaches. RAW achieves a lower FPR and hence a better P than DTEF and
NAIVE, because for sequences where the tracker fails to re-acquire the target after an error,
the values of yt fall below the threshold. However, since the tracker is not stopped (or re-
initialised), yt generates false significant changes, which are recorded as tracking errors by
DTEF and NAIVE (see Figure 4(b) and (d)). Since NAIVE forecasts values at time t for
the complete forecast length (l), it may suppress some of the false significant changes (false
positives) of yt resulting in a better P than DTEF. However, this behaviour also results in a
lower R for NAIVE. The R of DTEF outperforms that of RAW and NAIVE by 76% and 7%,
respectively, hence DTEF achieves a better F-score.
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Figure 4: Example of variation of the track quality score, yt , for (a) CarDark, (b) CarScale,
(c) Crossing, (d) Doll. Top row: tracker performance measured as Ot . Middle row: track
quality score yt (blue line). Bottom row: forecast error |ẽt | (blue line). τ1 and ‘threshold’ are
used to detect time instants when the tracker fails for DTEF and RAW, respectively.

DTEF outperforms CovF, RgbHist and RLHist in terms of F-score, giving an overall
improvement of 23%, 31% and 36% compared to CovF, RgbHist and RLHist, respectively.
CovF, RgbHist and RLHist have a variable range of values over the dataset that leads to
false positive and false negative tracking errors. Although CovF detects the same number
of tracking errors as DTEF, a lower P results in lower F-score. RgbHist and RLHist are
affected by these variations in terms of R. Furthermore, CovF, RgbHist and RLHist have
similar failure modes to DTEF since their descriptors use colour as their primary feature.
CovF achieves better results than RgbHist and RLHist, possibly because it uses position
information as well, while RLHist improves over RgbHist, possibly due to the additional
LBP features. Sample results for CarDark are shown in Figure 5.

DTEF generates false positive tracking errors when RAW generates significant changes
after a tracker has failed. Furthermore, DTEF fails to detect tracking errors when RAW does
not generate a change in yt due to background clutter (in Liquor and MountianBike), occlu-
sions (in Jogging), sudden background lighting changes (in Singer1) and fast target rotation
and background clutter (in MotorRolling).

DTEF NAIVE RAW CovF RgbHist RLHist
P .110 .111 .122 .087 .083 .078
R .714 .667 .405 .714 .595 .667
F .191 .190 .188 .155 .146 .140

FPR .037 .035 .019 .048 .042 .051
µ±σ .17±.18 .15±.17 .60±.23 .30±.17 .67±.16 .61±.16

Table 1: Comparison of tracking error detection performance in terms of precision (P), re-
call (R), F-score (F) and false positive rate (FPR). The results are presented as total values
over the OTB dataset. The best results are indicated by bold font. The last row shows
the mean±standard deviation of z′t . Key — DTEF: Detect Tracking Errors using Forecast-
ing; NAIVE: error detection by forecasting yt via the Naive forecasting model [12]; RAW:
error detection using raw yt values; CovF: Covariance Features [23]; RgbHist: RGB His-
togram [21]; RLHist: RGB+LBP Histogram [21].
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Figure 5: Example of track quality scores for CarDark. First row: Sample tracking results:
the red, yellow and green bounding boxes represent Bt , St and the ground-truth state, respec-
tively. Second row: tracker performance measured as Ot (left) and |ẽt+l | score measured
with DTEF (right). Third row: track quality score measured with CovF (left); and track
quality score measured with RgbHist and RLHist (right).

DSST SAMF
DTEF NAIVE RAW CovF RgbHist RLHist DTEF NAIVE RAW CovF RgbHist RLHist

P .154 .124 .080 .077 .136 .135 .118 .078 .053 .059 .106 .126
R .700 .326 .395 .465 .488 .651 .488 .220 .244 .342 .415 .488
F .252 .180 .135 .132 .213 .224 .190 .115 .087 .100 .168 .200

FPR .016 .010 .020 .024 .013 .018 .015 .011 .018 .022 .014 .014
µ±σ .18±.17 .16±.16 .54±.19 .35±.17 .66±.16 .62±.14 .18±.17 .16±.16 .54±.19 .34±.17 .64±.16 .63±.13

KCF PLT_14
DTEF NAIVE RAW CovF RgbHist RLHist DTEF NAIVE RAW CovF RgbHist RLHist

P .158 .095 .070 .093 .183 .145 .065 .057 .041 .029 .016 .045
R .535 .256 .302 .419 .488 .395 .435 .304 .478 .217 .130 .261
F .243 .138 .114 .152 .266 .213 .113 .096 .076 .051 .028 .076

FPR .012 .010 .017 .017 .009 .010 .014 .012 .025 .017 .019 .015
µ±σ .16±.16 .16±.16 .55±.18 .36±.17 .68±.15 .64±.13 .19±.17 .17±.16 .57±.19 .41±.17 .61±.17 .61±.15

Table 2: Comparison of tracking error detection performance in terms of precision (P), recall
(R), F-score (F) and false positive rate (FPR). The results are presented as total values over
the whole VOT2014 dataset. The best results are indicated by bold font. The last row for
each tracker shows the mean±standard deviation of z′t . Key — DSST: Discriminative Scale
Space Tracker [7]; KCF: Kernelized Correlation Filter [15]; SAMF: Scale Adaptive KCF
tracker [20]; PLT_14: Pixel based LUT Tracker [14]; DTEF: Detect Tracking Errors using
Forecasting; NAIVE: error detection by forecasting yt via the Naive forecasting model [12];
RAW: error detection using raw yt values; CovF: Covariance Features [23]; RgbHist: RGB
Histogram [21]; RLHist: RGB+LBP Histogram [21].

4.3 VOT Results

Finally, we analyse the flexibility of DTEF via an experimental comparison with other meth-
ods using results from four trackers (DSST [7], SAMF [20], KCF [15], PLT_14 [14]) and
sequences from the VOT2014 challenge [18] (see Table 2). Note that VOT re-initialises
trackers after failure (Ot=1): the tracker is stopped for the subsequent five frames and then is
re-initialised with the ground truth. In order to compensate for the missing tracking results,
we keep for these five frames the same tracking result obtained when the tracker fails.
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The re-initialisation of the trackers allows DTEF to reduce its FPR and to achive a better
F-score than RAW. Overall, DTEF improves by 51% and 94% in terms of F-score over
both RAW and NAIVE, respectively. Using the forecast error signal allows DTEF to detect
tracking errors that are not detected by RAW. DTEF detects more tracking errors than CovF,
RgbHist and RLHist, and achieve the best R values for all the four trackers and a better F-
score for trackers DSST and PLT_14, indicating that the trained threshold, τ1, is applicabile
to various datasets. However, RgbHist and RLHist achieve a better F-score for KCF and
SAMF, respectively, due to a smaller FPR. All the approaches achieve their best results for
DSST followed by KCF, SAMF and PLT_14.

5 Conclusion
We presented a tracker-independent framework to estimate tracking quality using a tracker
state-background discrimination approach. We used time series forecasting to model the
track quality score while minimising noise. The difference between the original and forecast
values returns a forecast error signal that we use to detect tracking errors. The use of the fore-
cast error signal improves both the precision and recall of the proposed approach compared
to using the raw values of the track quality score. We validated the proposed approach using
publicly available datasets and demonstrated its flexibility using selected sequences from the
OTB benchmark dataset and tracking results and sequences from the VOT challenge.

As future work, we aim to use the background analysis technique to explore upcoming
positions of the target in the sequence and to help predict tracking errors. Furthermore, in
order to remove the dependence of the proposed approach on thresholds, we will model the
probability distribution of the forecasting error signal.

Acknowledgements
O. Khalid was supported by the EACEA Agency of the European Commission under the
Erasmus Mundus Joint Doctorate ICE, FPA n. 2010-0012.

References
[1] N. Anjum and A Cavallaro. Multifeature object trajectory clustering for video analysis.

IEEE Trans. Circuits Syst. Video Technol., 18(11):1555–1564, Nov 2008.

[2] T.A. Biresaw, A. Cavallaro, and C.S. Regazzoni. Tracker-level fusion for robust
bayesian visual tracking. IEEE Trans. Circuits Syst. Video Technol., 25(5):776–789,
May 2015.

[3] T. Bouwmans. Traditional and recent approaches in background modeling for fore-
ground detection: An overview. Comput. Science Review, 11-12:31 – 66, May 2014.

[4] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel. Time series analysis: Forecasting and
control. Wiley, 2008. ISBN 9780470272848.

[5] D.P. Chau, F. Bremond, and M. Thonnat. Online evaluation of tracking algorithm
performance. In Int. Conf. Crime Detection and Prevention, pages 1–6, Dec 2009.



KHALID, CAVALLARO, RINNER: DETECTING TRACKING ERRORS VIA FORECASTING 11

[6] W. Choi. Near-online multi-target tracking with aggregated local flow descriptor. In
IEEE Int. Conf. on Comput. Vis., Dec 2015.

[7] M. Danelljan, G. Häger, F.S. Khan, and M. Felsberg. Accurate scale estimation for
robust visual tracking. In Proc. British Mach. Vis. Conf., Sep 2014.

[8] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background sub-
traction. In European Conf. Comput. Vis., pages 751–767, Apr 2000.

[9] J. Fan, X. Shen, and Y. Wu. What are we tracking: A unified approach of tracking and
recognition. IEEE Trans. Image Process., 22(2):549–560, Feb 2013.

[10] M. Felsberg. Enhanced distribution field tracking using channel representations. In
IEEE Int. Conf. Comput. Vis. Workshops, pages 121–128, Dec 2013.

[11] Y. Gao, R. Ji, L. Zhang, and A. Hauptmann. Symbiotic tracker ensemble towards a
unified tracking framework. IEEE Trans. Circuits Syst. Video Technol., 24(7):1122 –
1131, Jul 2014.

[12] J.G. Gooijer and R.J. Hyndman. 25 years of time series forecasting. Int. Jour. Fore-
casting, 22(3):443 – 473, Jul 2006.

[13] S. Hare, A. Saffari, and P.H.S. Torr. Struck: Structured output tracking with kernels. In
Int. Conf. Comput. Vis., pages 263–270, Nov 2011.

[14] C. K. Heng, S. Yokomitsu, Y. Matsumoto, and H. Tamura. Shrink boost for selecting
multi-lbp histogram features in object detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 3250–3257, Jun 2012.

[15] J.F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernel-
ized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell., 37(3):583–596, Mar
2015.

[16] C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving aver-
ages. Int. Jour. Forecasting, 20(1):5 – 10, Jan 2004.

[17] O. Khalid, J. C. SanMiguel, and A. Cavallaro. Multi-tracker partition fusion. IEEE
Trans. Circuits Syst. Video Technol., 2016. doi: 10.1109/TCSVT.2016.2542699.

[18] M. Kristan, R. Pflugfelder, A. Leonardis, et al. The visual object tracking VOT2014
challenge results. In Proc. European Conf. Comput. Vis., pages 191–217, Sep 2014.

[19] J. Kwon and K. Lee. Tracking by sampling and integrating multiple trackers. IEEE
Trans. Pattern Anal. Mach. Intell., 36(7):1428–1441, Jul 2014.

[20] Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integra-
tion. In Proc. of European Conf. Comput. Vis., pages 254–265, Sep 2014.

[21] J. Ning, L. Zhang, D. Zhang, and C. Wu. Robust object tracking using joint color-
texture histogram. Int. Journal Pattern Recog. Artificial Intell., 23(07):1245–1263, Feb
2009.



12 KHALID, CAVALLARO, RINNER: DETECTING TRACKING ERRORS VIA FORECASTING

[22] J. Ning, W. Shi, S. Yang, and P. Yanne. Visual tracking based on distribution fields and
online weighted multiple instance learning. Image Vis. Computing, 31(11):853 – 863,
Nov 2013.

[23] J.C. SanMiguel and A. Calvo. Covariance-based online validation of video tracking.
IEEE Elec. Lett., 51(3):226–228, Feb 2015.

[24] J.C. SanMiguel and A. Cavallaro. Temporal validation of particle filters for video
tracking. Comput. Vis. Image Understanding, 131(0):42 – 55, Feb 2015.

[25] J.C. SanMiguel, A. Cavallaro, and J.M. Martinez. Adaptive online performance evalu-
ation of video trackers. IEEE Trans. Image Process., 21(5):2812–2823, May 2012.

[26] N.I. Sapankevych and R. Sankar. Time series prediction using support vector machines:
A survey. IEEE Computational Intell. Magazine, 4(2):24–38, May 2009.

[27] L. Sevilla-Lara and E. Learned-Miller. Distribution fields for tracking. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1910–1917, Jun 2012.

[28] K. Shearer, K.D. Wong, and S. Venkatesh. Combining multiple tracking algorithms for
improved general performance. Pattern Recog., 34(6):1257–1269, Jun 2001.

[29] C. Spampinato, S. Palazzo, and D. Giordano. Evaluation of tracking algorithm perfor-
mance without ground-truth data. In IEEE Int. Conf. Image Process., pages 1345–1348,
Sep 2012.

[30] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking.
IEEE Trans. Pattern Anal. Mach. Intell., 22(8):747–757, Aug 2000.

[31] D. Wang, H. Lu, and M-H. Yang. Online object tracking with sparse prototypes. IEEE
Trans. Image Process., 22(1):314–325, Jan 2013.

[32] Y. Wang, H. Chen, S. Li, J. Zhang, and C. Gao. Object tracking by color distribution
fields with adaptive hierarchical structure. The Visual Comput., pages 1–13, Nov 2015.

[33] H. Wu, A.C. Sankaranarayanan, and R. Chellappa. Online empirical evaluation of
tracking algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 32(8):1443–1458, Aug
2010.

[34] Y. Wu, J. Lim, and M-H. Yang. Online object tracking: A benchmark. In IEEE Conf.
Comput. Vis. Pattern Recogn., pages 2411–2418, Jun 2013.


