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Abstract
This paper reports on visual obstacle detection from a monocular camera for au-

tonomous vehicles. By leveraging a textured prior map, we propose a probabilistic for-
mulation for finding the optimal image partition that separates obstacles from ground-
plane. Our key insight is the use of a prior map that enables ground appearance models
conditioned on prior map texture and a probabilistic optical flow vector formulation de-
rived from known scene structure and camera egomotion. We evaluate our methods on
a challenging urban setting using data collected on our autonomous platform and we
demonstrate that a notion of obstacles in the camera frame can improve visual localiza-
tion quality.

1 Introduction
Localization is a key task for autonomous cars; systems such as the Google driverless car
rely on precise and detailed maps for safe operation [18]. Light detection and ranging (LI-
DAR) sensors are capable of providing rich information—including metric range and point
appearance. Robust methods can use this data for vehicle localization by extracting the
ground-plane for alignment to a prior map, as done by Levinson et al. [11, 12].

Due to decreased cost and the ability to have robust, redundant sensing, vision sensors as
part of the localization pipeline can be a great enabler for autonomous platforms. Contrary
to LIDAR approaches, identifying the ground-plane from a camera image is a much more
challenging task. In our previous work [21], we considered localizing with just a monocular
camera by aligning the whole image to a prior map. This can be problematic as the ground-
plane can frequently be obscured by obstacles within view of the camera. We showed that
our visual localization system can be distracted when the image is dominated by obstacles,
leading to a degradation in localization.

In this work, we are interested in partitioning an image stream into obstacles and prior
map as shown in Fig. 1, with the goal of only using the portions of the image containing the
prior map for localization. This addition will lend itself to a more robust end-to-end visual
localization system.

We propose to leverage our textured prior map, consisting of a ground-plane mesh, to
formulate a Markov random field (MRF) that models the image partition between the obsta-
cles and the ground-plane. We present several probabilistically motivated energy functions
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Figure 1: In this work, we extract optical flow vectors and probabilistically evaluate them
against expected flow vectors (left). We present an MRF framework that fuses various en-
ergy potentials, including an optical flow derived potential, such that minimizing the energy
results in a partition of the image into ground-map and obstacles, as shown on the right.

that can be fused in this MRF framework. Specifically, the prior map allows us to evaluate
ground likelihood by conditioning our belief on the expected appearance from the prior map.
Moreover, we present a probabilistic method to evaluate optical flow likelihood against our
three-dimensional (3D) prior map, taking into account expected motion parallax.

Our proposed approach is evaluated on a challenging urban dataset where lighting is non-
uniform and our camera is an 8-bit monochrome sensor; note, explicitly no color imagery
is used to demonstrate effectiveness of our approach that relies more on observed motion
than visual appearance. We demonstrate our proposed algorithms by looking at errors with
respect to hand-labeled groundtruth and present results showing improved image registration
when obstacle masks are used.

1.1 Related Work

Modeling the ground plane appearance distribution directly from image data has been suc-
cessful in many domains. Ulrich and Nourbakhsh [17] build a histogram appearance model
for the ground plane, learning this distribution with the assumption that the bottom of the im-
age is mostly ground plane. Dahlkamp et al. [4] improves on this by restricting appearance
learning to within co-registered laser range finder returns. In addition, they and Álvarez and
Ĺopez [1] use an RGB colorspace transform to minimize the effect of shadows by actively
removing them from their appearance model. These works heavily rely on color images that
are clearly more discriminative than grayscale images.

Others have looked to exploit camera motion to infer scene structure and motion. Con-
sidering a temporal stream of images, Zhang et al. [23] looked at the residual error from
focus of expansion estimation. Similar to our proposed work, others have assumed a locally
planar ground in which motion can be inferred [13] or provided via odometry [3]. More-
over, Wedel et al. [20] proposed classifying between foreground and background by warping
sequential images onto multiple plane hypotheses.

In this work, we are interested in computing dense optical flow fields and evaluating them
against a likelihood measure. The use of optical flow for obstacle detection from a moving
vehicle was first looked at in [5] and [9], where optical flow vectors are sparsely extracted
and compared against estimated model flow vectors. Roberts and Dellaert [15] performed a
similar classification employing dense flow fields, though found problems when faced with
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textureless image regions.
Similar to our work, McManus et al. [14] applied optical flow for background detection

on an autonomous vehicle assuming an already known localization within a 3D prior map.
They evaluate the likelihood of this optical flow by computing optical flow twice—first on
the raw images then on the image warped via the 3D prior map—and comparing the flow
vectors.

Badino et al. [2] proposed a novel idea called the “Stixel World” in which image pro-
cessing demands can be significantly reduced under the context of on-vehicle cameras. The
representation is such that the world can be decomposed into a set of vertical stixels that
directly correspond to a column in image space. A key insight here is that the pixels between
the bottom of the image and the first obstacle in each column is strictly identified as free-
space—thus imposing a 1D image space partitioning that can be efficiently solved for using
dynamic programming.

Our work is quite similar in underlying machinery to more recent work by Yao et al. [22]
and Levi et al. [10], which closely resemble the stixel-world formulation with a monocular
camera. In [22], they propose inference in a 1D MRF that incorporates various cues includ-
ing pixel appearance, image edges, temporal consistency, and spatial smoothness. However,
many of these cues are severely biased towards the bottom of the images, leading to a brit-
tle system when faced with difficult imagery (e.g., shadows). In [10], they use a convolu-
tional neural network (CNN) to offline learn the appearance of the image partition. Both of
these methods rely on learning the appearance of the image partition and do not leverage
the temporal stream of images; thus, we propose a new set of cues that are probabilistically
motivated to jointly reason over appearance and perceived motion from optical flow.

2 Preliminaries

In our work, we use a survey vehicle equipped with 3D LIDAR scanners to construct a
detailed prior map for localization. As presented in [21], we build a 3D mesh of the ground-
plane that we texturize using reflectivity measurements from the LIDAR, as shown in Fig. 2.

We then localize an image, It , taken at time t from a monocular camera within this
prior map, M, by exploiting the statistical dependency between camera intensity values
and LIDAR reflectivities. Using a coarse prior (such as that from GPS), we generate several
synthetic views of the prior map, maximizing normalized mutual information (NMI):

x̂t = argmax
x

NMI(It ,Lt), (1)

where Lt = proj(M,x) is the synthetic LIDAR image generated by projectingM into the
camera frame at x = [x,y,z,r, p,h]>, using the standard pinhole camera model. NMI is a
normalized variant of mutual information that is maximized by minimizing the dispersion
between two random variables (a metric that is evaluated with the entropy of the joint and
marginal histograms of the two signals).

The projections for localization can be done efficiently within OpenGL using custom
shaders. Further, the OpenGL rendering process populates a depth buffer to determine screen
ordering of drawn triangles. This depth buffer can be scaled by the near and f ar clipping
planes to generate an expected depth image Ẑt . Thus, the localization process provides
expected depths for a given camera location, which we leverage for obstacle partitioning.
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(a) Prior Map (b) Synthetic Image (c) Image with Expected Depth

Figure 2: Using a survey vehicle equipped with 3D LIDAR scanners, we can offline generate
a rich mesh of the ground-plane colored by LIDAR reflectivity, as shown in (a). OpenGL is
used to generate synthetic viewpoints and expected depth of this prior map, (b) and (c). The
synthetic image and depth are relied upon for obstacle partitioning.

In the following sections, we detail how we can estimate prior map likelihood and then
how we can incorporate these likelihoods into a Markov random field (MRF) smoothing
framework.

3 Probabilistic Obstacle Partitioning
Our proposed formulation is heavily motivated by the Stixel World presented by Badino
et al. [2] and the similar monocular approach for free space estimation by Yao et al. [22].
Realizing the structure of the roadway as viewed in a camera image, they assume that there
is a distinct separation between free space and obstacles. This defined partition regularizes
the task of identifying obstacles in a camera image. We propose to use a sequence of camera
images to derive probabilistic appearance and motion likelihoods to find this partition.

Given an image It taken at time t, probabilistic obstacle partitioning seeks an optimal
seam that traverses the image left-to-right, S = {si}w

i=1, where si can take the value of h+1
labels, si ∈ {0, · · · ,h} (w and h denote the width and height of It ). Considering the ith column
of It , ci = {It(i, j)}h

j=1, the cut si implies a partitioning of this column into two disjoint sets
such that {It(i, j)}si

j=1 is sampled from the obstacle set, O, and {It(i, j)}h
j=si+1 is sampled

from the prior map, M; here, the prior map refers to the ground-only prior map (as static
3D structure is not in our maps). In our framework, i = 1 indicates the leftmost column and
j = 1 indicates the topmost row of the image. An illustration of this is provided in Fig. 3.

We formulate obstacle partitioning as the maximum a posteriori (MAP) estimation of
the set of column seams conditioned on the previous n camera images,

S∗ = argmax
S

p(S|It , · · · , It−n+1). (2)

Assuming a Markov factorization, we can factor the posterior as

p(S|It , · · · , It−n+1) ∝ p(It , · · · , It−n+1|S)p(S)

= ∏
i

p(It , · · · , It−n+1|si)∏
j

p
(
s j|s j−1

)
, (3)

where we assume independence between columns ci, given the column partition si. Applying
the negative log-likelihood, the MAP inference results in the following energy function to be
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Figure 3: We use a 1D MRF to partition images into two sets: ground-plane (blue) and
not ground-plane (red). Each variable in our MRF (green nodes) models a partition point
for each column in the image, and has unary potentials computed from a set of partition
likelihoods and pairwise potentials to enforce smoothness.

minimized:

E = ∑
i

∑
k∈K

wkφk (si)︸ ︷︷ ︸
unary

+∑
j

wpφp(s j,s j−1)︸ ︷︷ ︸
pairwise

, (4)

where K represents the set of unary potentials, {a, f ,e, l,r}, and wn represents the weight-
ing for each potential, which can be learned using training data as in [22]. The MRF forms
a chain connecting neighboring columns and can be efficiently solved using dynamic pro-
gramming as a Viterbi problem [19].

The pairwise potential is modeled as a truncated quadratic to enforce smoothness across
the seam, φp

(
s j,s j−1

)
= min(|s j− s j−1|,Tp)

2, where Tp is a threshold that allows the poten-
tial to enforce local smoothness without penalizing large jumps, as should be allowed with
objects near the camera. The remainder of this section details the unary potentials that are
used in this energy function, which exploit appearance and motion in the images.

3.1 Appearance Potential
We derive an appearance based potential that can be learned online using a monochrome
camera. The theory could easily be applied to color imagery, though we opted against to
demonstrate the effectiveness of our motion potential presented next (color can be an ex-
tremely discriminative feature in this context).

The motivation for this potential is to maximize the likelihood of the class assignments
(obstacle and prior map) using image intensities. The potential is defined as

φa (si) =− log p(ci|si) , (5)

where ci is the set of pixels in the ith column and the likelihood term is derived assuming
independence and recalling the strict partitioning of the data at si:

p(ci|si) =
h

∏
j=1

p(It(i, j)|si) (6)

=
si

∏
j=1

p(It(i, j)|O)︸ ︷︷ ︸
obstacle

likelihood

h

∏
j=si+1

p(It(i, j)|M)︸ ︷︷ ︸
prior map
likelihood

. (7)
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The obstacle appearance model is maintained using a joint histogram for p(It(i, j)|O) =
p(It(i, j)|O, i). This can be thought of as a 2D histogram with image intensity on one axis
and image column on the other. We convolve this with a Gaussian kernel so as to avoid
over-fitting and smooth the likelihoods.

The prior map appearance model is more intricate in that intensity is conditioned on
the LIDAR reflectivity in the prior map; therefore, p(It(i, j)|M) = p(It(i, j)|Lt(i, j)). This
conditional distribution is managed via the joint histogram over image intensity and LIDAR
reflectivity—this is the same distribution used to compute NMI for localization. Note, this
requires the camera to be localized as outlined in §2 to condition on the expected appearance
from the LIDAR prior, which is a reasonable assumption on an autonomous car.

Both of these conditional histograms are learned online using the previous n images and
extracted seams. Combined with the other potentials and the smoothing pairwise potential,
the appearance prior continuously learns the obstacle and prior map distributions. In this
work, we used a sliding time window over the last several seconds of data—this should be
kept short so distributions can quickly adapt to lighting changes.

3.2 Optical Flow Potential

Appearance potentials alone can perform quite poorly in complex environments where par-
tial illumination can distract the measure. Moreover, 8-bit grayscale imagery makes it dif-
ficult to differentiate between cars and roadways, resulting in weak appearance models. In
this section, we present a motion potential derived from evaluating the likelihood of optical
flow vectors—with the expectation that this can invalidate distracted areas due to parallax
and physically moving objects. This illumination robust measure can further aid the appear-
ance potential by maintaining the partition through complex lighting transitions so that the
appearance models can adapt to new lighting distributions.
Optical Flow Likelihood: We first extract optical flow vectors Ut = {u1, . . .uw}, where ui
denotes a column of optical flow vectors, ui = {fi,1, . . . , fi,h} and fi, j = [ui, j,vi, j]

> is the op-
tical flow at pixel (i, j). We use known egomotion xe = [x,y,z,r, p,h]> derived from vehicle
odometry, an estimate on the motion uncertainty Σe, and the expected scene depth, Ẑt , as
outlined in §2, to calculate the expected optical flow measurement using the homogeneous
point transfer [8]:

vt−1 = KRK−1vt +Kt/Ẑt(i, j), (8)

where vt−1 = [x,y,1]> represents the expected homogeneous pixel location in It−1 of vt =

[i, j,1]> (a homogeneous pixel in the current image It ). Further, K represents the pinhole
camera calibration matrix and [R|t] is the camera motion derived from xe. Therefore, the
expected optical flow measurement is f̂i, j = vt−1−vt .

Additionally, we can use the unscented transform (UT) to propagate motion uncertainty,
Σe, and scene depth uncertainty at each pixel, σ2

z , through the nonlinear point transfer of (8),
yielding ΣUT. This uncertainty estimate only accounts for optical flow uncertainty induced
by errors in odometry or expected scene depth. We extend this by estimating the uncertainty
of measuring optical flow at each pixel considering the spatial image gradients and uncer-
tainties in the spatio-temporal gradients, yielding Σg—we adopted the method proposed by
Simoncelli et al. [16]. This allows us to make use out of poorly constrained flow vectors
(such as those on image edges), yet still fully account for its inaccuracies. We can finally
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Figure 4: This figure details our proposed optical flow likelihood and potential. (Left) the
optical flow vectors (green) and the expected optical flow vectors and uncertainties (red),
note the shape of uncertainty ellipses along gradients. (Middle) Flow likelihood computed
against expected, brighter indicates a lower likelihood. (Right) Partition potential considers
segmenting image column into background, obstacle, and ground-map.

characterize the expected optical flow as a normally distributed measurement of the form:

fi, j ∼N (vt−1−vt ,ΣUT +Σg) . (9)

See Fig. 4 for visual depictions of this distribution.
Optical Flow Partition: Similar to appearance, the optical flow partition potential is formu-
lated as a function of the likelihood of class assignments (obstacle and prior map), such that
minimization of the potential maximizes the associated likelihood:

φ f (si) =− log p f (ui|si) . (10)

Following a similar derivation as (7), we arrive at the likelihood decomposition,

p(ui|si) =
si

∏
j=1

p(fi, j|¬M)
h

∏
j=si+1

p(fi, j|M). (11)

The prior map likelihood, p(fi, j|M), can be computed by evaluating against the Gaussian in
(9). However, the term on the left we decompose even further into,

si

∏
j=1

p(fi, j|¬M) =
k(si)

∏
j=1

p(fi, j|B)
si

∏
j=k(si)

p(fi, j|O), (12)

to partition the non-map elements into a background set, B, and an obstacle set, O, at k(si).
This split at k(si) is necessary to divide the very dissimilar flow sets generated by B and O;
these 3 disjoint sets are visualized in Fig. 4.

Given a world-frame height in meters of target obstacles, Hobs, we use known cam-
era geometry and scene depth to calculate the height in pixels of the obstacle, h(si) =
f ·Hobs/Ẑt(i,si), where f is the camera focal length. This can then be used to determine
the pixel location for splitting B and O, k(si) = si−h(si). This world-frame obstacle height
is a tuning parameter, though we have found the algorithm to be insensitive to selection
of Hobs and is chosen based on minimum acceptable obstacle height (Hobs = 1.5m in our
experiments).

Within an image column, elements of an obstacle are at a constant depth and, thus, flow
vectors are quite similar over the column. Therefore, we estimate p(fi, j|B) and p(fi, j|O) by
fitting a uniform distribution over the flow vectors within their respective column segment.
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We compute this potential over multiple image sequences so that we can capture fast
moving objects, yet still maintain observability for slow moving objects (such as those within
the focus of expansion). We use Farneback’s optical flow algorithm [6] and perform forward-
backward flow to discard inconsistent measurements (these discarded measurements provide
no influence in the likelihood computations). It is important to note that while stationary, the
optical flow potential only provides input to the MRF if something else is moving (a roughly
uniform prior over all partitionings otherwise)—this is a byproduct of the formulation as
stationary flow vectors observed from a stationary platform yields near constant likelihoods
derived in (11).

3.3 Additional Potentials
Edge Potential: There is typically a strong gradient between obstacles and the road, thus we
introduce an edge potential to bias cutting along image gradients: φe (si) =−∇It (i,si)

2.
LIDAR Potential: While our primary motivation is an image-only solution, the MRF pro-
vides a convenient method to fuse online LIDAR measurements. Given a LIDAR point in
the camera frame, p = [x,y,z]>, we project into the camera frame, [i, j]>. Using the esti-
mated ground-plane depth image, Ẑt , we find the expected ground point ŝi by minimizing∥∥Ẑt (i, ŝi)− z

∥∥. The resulting potential is a truncated quadratic: φl (si) = min(|si− ŝi|,Tl)
2,

where Tl is a threshold controlling the region of influence of the LIDAR potential.
Recursive Potential: The recursive potential propagates the full energy functional from
the previous time step into the current frame, as in [22]. With a known ground-model and
egomotion, we use the homogeneous point transfer (8) to propagate the sum over unary
potentials of the previous frame into the current frame, generating φr (si).

4 Results
We evaluated our proposed method on our autonomous platform, a TORC ByWire XGV, that
is equipped with Velodyne LIDAR scanners and a Point Grey Flea3 monochrome camera.
The LIDAR scanners, unless otherwise specified, were used only offline for generating prior
maps. Majority of the algorithms presented were implemented in CUDA and all experiments
were run on a laptop equipped with a Core i7-4910MQ and a laptop GPU (NVIDIA Quadro
K4100), resulting in an implementation that runs at 5-8 Hz. Throughout our experiments,
we assume that our platform is localized within our prior maps as detailed in §2.

4.1 Quantitative Analysis
We first present experiments on a hand-labeled dataset in which we have 240 ground-truth
image partitions. In addition to our vision only solution, we also demonstrate the effective-
ness of including a simple 2D LIDAR scanner to our system. Note that while our platform
is not equipped with such a planar scanner, we simulate this with the Velodyne scanners by
only using point returns within a 40 cm window, 1 m off the body frame ground.

Following the metrics presented by Fritsch et al. [7], we project our image partition into
the world to create a Bird’s Eye View (BEV) before calculating the F1 measure, precision,
recall, and false positive rate and results are tabulated in Table 1. Overall, we see that our
method performs quite well on a fairly difficult dataset and the addition of the LIDAR scan-
ner dramatically improves obstacle detection.
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Method F1 Precision Recall FPR
Proposed 87.85 % 90.07 % 85.74 % 9.93 %
Proposed+2D LIDAR 93.18 % 94.65 % 91.75 % 5.35 %

Table 1: The F1-score, precision, recall, and false positive rate for our proposed method and
our proposed method with the addition of 2D LIDAR measurements.
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Figure 5: Sample of improvement of the NMI cost surface when obstacle masks are used.

4.2 Qualitative Analysis
To demonstrate the contributions of each unary potential that is a part of the MRF model,
we present several candidate image partitions along with an overlay of each potential, see
Fig. 6—in these images, lighter (white) colors indicate a lower energy state. All potentials
presented in this paper were enabled except the LIDAR potential.

In the first row, we see our platform exiting a bright region into an area in shadow.
Through the illuminated region, the appearance models fit to this bright distribution and
hallucinate obstacles at the bright to shaded transition. Despite this, the image partitioning
is still successful because of the optical flow potential. Several frames later, depicted in row
2, we see the appearance models have quickly adjusted to the new lighting.

The second and third row demonstrates the flexibility of our model to be able to perfectly
follow the sharp contours of a pedestrian and a lightpost, respectively. One significant draw-
back of the optical flow potential is the effect of cast shadows from moving platforms, as
shown in the third row. There is a gap of falsely detected obstacles triggered by the moving
shadow to the right of the vehicle.

Finally, in the fourth row, we see a slight error on the right half of the road, where the
appearance potential beats out the flow potential as this is during a turn where there is limited
motion parallax. The remaining rows are samples of typical performance of the system.

4.3 Localization with Obstacle Partitions
Next, we incorporated our image partitions into our localization pipeline. To do so, we
only used pixels below the obstacle partition when performing registrations against our prior
map—all other pixels are discarded. As in [21], we performed a set of registration attempts
from randomly initialized offsets within a 3 m window around known ground-truth.

Overall, we see a modest improvement in median absolute deviation from 12.4 cm to
11.6 cm longitudinally, and 14.3 cm to 9.1 cm laterally. Further, we see that the cost function
is much more peaked when obstacle masks are used (Fig. 5). In future work, we hope this
distinct improvement can help improve registration efficiency.
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Partitioned
Image

Appearance
Potential

Optical Flow
Potential

Edge
Potential

Sum Unary
Potentials

Figure 6: This figure shows sample results of our probabilistic obstacle partitioning. In each
of these, lighter (white) colors indicate a lower energy state. See the text for more discussion;
best viewed in color.

5 Conclusion

In this paper, we showed that a grayscale, monocular camera can be used to partition an
image into disjoint sets of obstacles and the ground plane. We utilized a textured prior map
to derive appearance models and optical flow likelihoods that could be integrated into an
MRF. The resulting formulation can be solved at a framerate of 5–8 Hz. Furthermore, we
integrated this into our visual localization pipeline and demonstrated improved robustness
when obstacle partitions are considered during registration.

In the future, we hope to use the extracted optical flow vectors to segment objects lying
above the image partition, which can further be used to improve the recursive potential with
a motion model. Additionally, we plan to expand this to simpler prior maps where a full 3D
ground prior may not be available.
Acknowledgements: This work was supported by a grant from Ford Motor Company via
the Ford-UM Alliance under award N015392.
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[1] José M Álvarez and Antonio M Ĺopez. Road detection based on illuminant invari-

ance. IEEE Transactions on Intelligent Transportation Systems, 12(1):184–193, Octo-
ber 2011.

[2] H. Badino, U. Franke, and D. Pfeiffer. The stixel world – a compact medium level
representation of the 3d-world. In Proceedings of the DAGM Symposium on Pattern
Recognition, volume 5748, pages 51–60, Jena, Germany, September 2009.

[3] Christophe Braillon, Cédric Pradalier, James L Crowley, and Christian Laugier. Real-
time moving obstacle detection using optical flow models. pages 466–471, Tokyo,
Japan, June 2006.

[4] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-supervised
monocular road detection in desert terrain. In Proceedings of Robotics: Science and
Systems, Philadelphia, PA, USA, August 2006.

[5] W Enkelmann, V Gengenbach, W Kruger, S Rossle, and W Tolle. Obstacle detection
by real-time optical flow evaluation. pages 97–102, Paris, France, October 1994.

[6] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In
Proceedings of the 13th Scandinavian Conference on Image Analysis, pages 363–370,
Berlin, Heidelberg, June 2003. Springer-Verlag.

[7] Jannik Fritsch, Andreas Geiger, and Tobias Kühnl. A new performance measure and
evaluation benchmark for road detection algorithms. In IEEE Conference on Intelligent
Transportation Systems, pages 1693–1700, The Hague, Netherlands, October 2013.

[8] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, second edition, 2004.

[9] W Krüger, W Enkelmann, and S Rössle. Real-time estimation and tracking of optical
flow vectors for obstacle detection. pages 304–309, Detroit, MI, USA, September 1995.

[10] Dan Levi, Noa Garnett, and Ethan Fetaya. Stixelnet: A deep convolutional network
for obstacle detection and road segmentation. In Proc. British Mach. Vis. Conf., pages
109.1–109.12, Swansea, United Kingdom, September 2015.

[11] Jesse Levinson and Sebastian Thrun. Robust vehicle localization in urban environments
using probabilistic maps. In Proc. IEEE Int. Conf. Robot. and Automation, pages 4372–
4378, Anchorage, AK, May 2010.

[12] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-based precision ve-
hicle localization in urban environments. In Proc. Robot.: Sci. & Syst. Conf., Atlanta,
GA, June 2007.

[13] Manolis IA Lourakis and Stelios C Orphanoudakis. Visual detection of obstacles as-
suming a locally planar ground. In Proceedings of the Asian Conference on Computer
Vision, pages 527–534. Hong Kong, China, January 1998.



12 WOLCOTT, EUSTICE: PROBABILISTIC OBSTACLE PARTITIONING

[14] Colin McManus, Winston Churchill, Ashley Napier, Ben Davis, and Paul Newman.
Distraction suppression for vision-based pose estimation at city scales. In Proc. IEEE
Int. Conf. Robot. and Automation, pages 3762–3769, Karlsruhe, Germany, May 2013.

[15] Richard Roberts and Frank Dellaert. Optical flow templates for superpixel labeling
in autonomous robot navigation. In IROS Workshop on Planning, Perception, and
Navigation for Intelligent Vehicles, Tokyo, Japan, November 2013.

[16] E P Simoncelli, E H Adelson, and D J Heeger. Probability distributions of optical flow.
In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages 310–315, Maui, HI, USA, June
1991.

[17] Iwan Ulrich and Illah Nourbakhsh. Appearance-based obstacle detection with monoc-
ular color vision. In Proc. AAAI Nat. Conf. Artif. Intell., pages 866–871, Austin, TX,
USA, July 2000.

[18] Chris Urmson. How a driverless car sees the road. TED Talks, March 2015. URL
http://www.ted.com/talks/chris_urmson_how_a_driverless_
car_sees_the_road.

[19] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Transactions on Information Theory, IT-13(2):260–
269, April 1967.

[20] Andreas Wedel, Thomas Schoenemann, Thomas Brox, and Daniel Cremers. Warpcut–
fast obstacle segmentation in monocular video. In Pattern Recognition, pages 264–273.
Springer Berlin Heidelberg, 2007.

[21] Ryan W. Wolcott and Ryan M. Eustice. Visual localization within LIDAR maps for
automated urban driving. In Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst., pages
176–183, Chicago, IL, USA, September 2014.

[22] Jian Yao, Srikumar Ramalingam, Yuichi Taguchi, Yohei Miki, and Raquel Urtasun.
Estimating drivable collision-free space from monocular video. In Proceedings of
the IEEE Winter Conference on Applications of Computer Vision, pages 420–427,
Waikoloa Beach, HI, USA, January 2015.

[23] Yan Zhang, Stephen J Kiselewich, William A Bauson, and Riad Hammoud. Robust
moving object detection at distance in the visible spectrum and beyond using a moving
camera. In Computer Vision and Pattern Recognition Workshop, page 131, New York,
NY, USA, June 2006.


